
Pushing the boundaries of SYCL with hipSYCL

Aksel Alpay
Heidelberg University

IWOCL ’22

1 / 40



About SYCL

2 / 40



SYCL origins

SYCL started its life as higher-level model for OpenCL!
▶ In SYCL 1.2.1, there’s a 1:1 mapping from SYCL objects to OpenCL objects

▶ sycl::queue wraps OpenCL command queue
▶ sycl::device wraps OpenCL device
▶ …

▶ SYCL task graph mostly handled by OpenCL out-of-order queues and
dependencies

▶ host compilation pass compiles kernels as fallback using pure C++
▶ Generally not intended for performance.

▶ An additional device compiler pass extracts kernels and generates SPIR/SPIR-V
▶ SYCL runtime passes SPIR/SPIR-V to OpenCL.

Even though there are now other backends apart from OpenCL, most
implementations have this design in their DNA.

3 / 40



Enter hipSYCL

▶ hipSYCL has always been independent from traditional SYCL interpretations
▶ Never had OpenCL backend…

hipSYCL has always been about exploring other interpretations of SYCL.
(subject of this talk)

4 / 40



Introduction to hipSYCL

5 / 40



▶ Multi-backend architecture
▶ Aggregates multiple

toolchains
▶ OpenMP / clang CUDA /

clang HIP / clang SYCL /
nvc++

https://github.com/
/hipSYCL/featuresupport

USM / reductions / sub-
groups / group algorithms /
optional lambda naming / …

https://github.com/
illuhad/hipSYCL

▶ Open source

▶ Used in production by
large projects

▶ Extensions such as
buffer-USM
interoperability

▶ Supported by SYCL
libraries, e.g. oneMKL

▶ Supports most of SYCL
2020

6 / 40



Multi-backend runtime

7 / 40



Supported compilation flows

▶ Pure library flow: syclcc --hipsycl-targets="omp" --hipsycl-cpu-cxx=...
▶ clang flow: syclcc --hipsycl-targets="omp;cuda:<archs>;hip:<archs>;spirv" 8 / 40



Supported compilation flows

syclcc --hipsycl-targets="cuda-nvcxx"

9 / 40



Moving beyond OpenCL
…Towards a multi-backend interpretation of SYCL

(now part of SYCL 2020)

See also this talk on SYCL 2020 backend interoperability:

10 / 40



Moving beyond OpenCL

▶ hipSYCL has pioneered SYCL beyond OpenCL using HIP and CUDA backends
already in 2018 (this idea is now in SYCL 2020).

▶ Focus on integration with what is best supported by hardware vendors
(performance, debuggers, profilers, …)

▶ Make SYCL independent from direct vendor support
▶ It is a myth that SYCL support from HW vendors is needed for

stability/performance/... !
▶ Don’t confuse SYCL with OpenCL, where HW vendors generally need to provide an

implementation.
▶ Everybody can build a SYCL implementation that compiles to some IR, which is then

optimized by HW vendor compute stacks!

11 / 40



▶ hipSYCL goes one step further: Integration with vendor toolchains and
programming models enables mix-and-match of programming models inside
kernels!

1 HIPSYCL_KERNEL_TARGET void
cuda_optimized() {

2 __shared__ int cuda_shared_mem
[16];

3 // some work here
4 __syncthreads();
5 }
6 void host_optimized(){
7 #ifdef _OPENMP
8 #pragma omp simd
9 for(int i = 0; i < 16; ++i) {

10 // Some work
11 }
12 #else
13 // Use CPU vector intrinsics ,
14 // or call external libraries
15 #endif
16 };

1

2 q.parallel_for(range, [=](auto
idx){

3 __hipsycl_if_target_host(
4 host_optimized();
5 );
6 __hipsycl_if_target_cuda(
7 cuda_optimized();
8 );
9 __hipsycl_if_target_hip(

10 ...
11 );
12 __hipsycl_if_target_spirv(
13 regular_sycl_version();
14 );
15 });

12 / 40



Backend interoperability at
source level

This enables:
▶ Gradual transition from e.g. CUDA code to SYCL code (can keep kernel code in

CUDA during transition)
▶ Optimized code paths for backends, including support for language extensions
▶ Use optimized libraries from vendor-specific ecosystems in kernels (e.g. AMD

rocPRIM, NVIDIA CUB)
▶ When usage is guarded by appropriate macros (e.g. __HIPSYCL__), code can

remain portable across SYCL implementations.

13 / 40



Making the SYCL ecosystem robust
…by riding on top of vendor-supported compilers!

14 / 40



Use vendor-supported com-
pilers

Mature support:
HIP-clang

Vendor-provided OpenMP compilers

Experimental:
DPC++

CUDA using nvc++

hipSYCL can ride on top of vendor-supported compilers from AMD/NVIDIA/In-
tel
▶ Day 1 hardware support
▶ Leverage vendor hardware expertise
▶ Kernel performance on par with vendor programming models

15 / 40



Library-only backends

Library-only backend/implementation: Implementing SYCL as a library for a
third-party compiler

(explicitly allowed in the SYCL 2020 specification)

▶ Important pillar to allow SYCL on vendor-supported compilers!
▶ Can be important for portability! (hipSYCL OpenMP backend runs on practically

any CPU)
▶ SYCL 2020 specification: Mainly intended to run on the host; not primarily for

performance
▶ hipSYCL is pushing the idea of a library-only host backend for performance

▶ OpenMP backend can deliver competitive performance for many applications!
▶ hipSYCL is pushing the idea of library-only backends for accelerators.

16 / 40



Library-only backends for ac-
celerators

▶ No reason why library-only backends should have to remain limited to the host!
▶ A compiler does not need a lot to be able to support SYCL

▶ Pure C++ in kernels (no attributes like CUDA __device__)
▶ Heterogeneous execution model reasonably similar to SYCL/OpenCL/CUDA

▶ hipSYCL’s library-only NVC++ CUDA backend is the first library-only device
backend in a major SYCL implementation

17 / 40



The flexibility of SYCL

What is SYCL? What does it want to be?
▶ A full blown compiler and toolchain in itself? (Common interpretation)

▶ More control (is it needed?)
▶ Requires more effort to develop
▶ Requires more effort and time for widespread adoption/upstreaming

▶ A portability library layer for third-party compilers? (similarly to e.g. Kokkos)
▶ Easy to deploy and develop
▶ Dependency on quality and features exposed by other models/compilers

▶ Something in between? (hipSYCL has characteristics from both)

All of those are possible (and allowed by the specification)!
hipSYCL is actively exploring this.

18 / 40



Issues with library-only imple-
mentations

The SYCL 2020 specification contradicts itself!
▶ Explicitly allows library-only implementations
▶ A couple of features are not/not well implementable for library-only

implementations (attributes, kernel introspection)

Most noticable:
▶ parallel_for(range) model is efficiently implementable everywhere ,
▶ The parallel_for(nd_range) model is notoriously difficult to implement for

library-only host implementations.
▶ The SYCL 1.2.1 hierarchical parallel_for model (discouraged in SYCL 2020) is

notoriously difficult to implement on GPUs, and might be impossible to
implement on GPUs for library-only implementations.

19 / 40



hipSYCL’s scoped parallelism
The case for a new programming model in SYCL

20 / 40



Why do we need a new model?

▶ We need a model that exposes the functionality of parallel_for(nd_range), but
works well for all implementation choices on all hardware!

▶ We need a model that is flexible enough to adapt to all hardware architectures
▶ Different levels of parallelism on different backends/hardware (e.g. on CPU: NUMA

nodes, cores, SIMD units)
▶ Towards flexible group hierarchies as in CUDA cooperative groups

▶ Backends need to be able to expose hardware-specific hierarchies of parallelism

⇒ Scoped parallelism - available in hipSYCL.

21 / 40



hipSYCL scoped parallelism

https://github.com/illuhad/hipSYCL/blob/develop/doc/scoped-parallelism.md
1 sycl::queue{}.parallel(num_work_groups , logical_group_size ,
2 [=](auto group){
3 // Note that the group argument is of generic auto type;
4 // this allows the implementation to provide arbitrary group
5 // types that are optimized for the backend.
6 sycl::distribute_groups(group, [&](auto subgroup){
7 sycl::distribute_groups(subgroup, [&](auto subsubgroup){
8 sycl::distribute_groups(sububgroup , [&](auto subsubsubgroup){
9 // distribute_items() to make sure code is executed for each

logical item
10 sycl::distribute_items(subsubsubgroup , [&](sycl::s_item <1>

logical_idx){
11 ...
12 });
13 });
14 });
15 });
16 });

22 / 40

https://github.com/illuhad/hipSYCL/blob/develop/doc/scoped-parallelism.md


1 q.submit([&](sycl::handler& cgh){
2 sycl::accessor data{buff, cgh};
3 cgh.parallel(input_size / Group_size , Group_size ,
4 [=](auto grp){
5 sycl::local_memory_environment <int[Group_size]>(grp,
6 [&](auto& scratch){
7 sycl::distribute_items(grp, [&](sycl::s_item <1> idx){
8 scratch[idx.get_local_id(grp, 0)] = data[idx.get_global_id(0)];
9 });

10 sycl::group_barrier(grp);
11

12 for(int i = Group_size / 2; i > 0; i /= 2){
13 sycl::distribute_items_and_wait(grp,
14 [&](sycl::s_item <1> idx){
15 size_t lid = idx.get_innermost_local_id(0);
16 if(lid < i)
17 scratch[lid] += scratch[lid+i];
18 });
19 }
20 sycl::single_item(grp, [&](){
21 data[grp.get_group_id(0)*Group_size] = scratch[0];
22 }); }); }); });

23 / 40



Getting performance on CPUs without OpenCL
…if you have to use parallel_for(nd_range).

24 / 40



How do other compiler-based
SYCL implementations target
CPU?

Problem is offloaded to OpenCL: OpenCL gets SPMD-style IR, and then performs
required compiler transformations.
▶ Requires OpenCL CPU implementation which may be a portability issue
▶ More difficult to deploy due to OpenCL dependency
▶ Locks into using OpenCL runtime. What if we want to use TBB, or OpenMP, ...?

25 / 40



New accelerated CPU support
in hipSYCL

Idea: Pull compiler transformations directly into the SYCL compiler

▶ Leverage existing hipSYCL LLVM clang plugin and add IR transformations during
the host pass

▶ No dependency on OpenCL – works wherever LLVM works
▶ Just looks for specific attributes that mark functions that need to be considered as

kernel entrypoints. Can be used with any C++ CPU runtime (TBB, OpenMP, ...)
▶ Retain many advantages of library-only implementations

26 / 40



See the poster for details!

27 / 40



hipSYCL compiler-
accelerated CPU performance

▶ Tested on AMD, Intel, ARM (ThunderX2, A64fx)
▶ Competitive performance compared to OpenCL (pocl)
▶ Comes with any hipSYCL 0.9.2+
▶ New in SYCL ecosystem: Run SYCL kernels efficiently on any CPU supported

by LLVM!

28 / 40



A modern SYCL runtime
Stepping back from the traditional OpenCL-style mappings

29 / 40



Queue design

▶ Traditionally, one SYCL queue is mapped to one backend queue

▶ hipSYCL decouples SYCL queues from backend objects!
▶ Backends maintain queue pool (if queue-based)
▶ Scheduler distributes work from all queues across backend resources

30 / 40



Consequences of queue de-
coupling

▶ Performance and concurrency of operations is independent of the number of
user queues → consistent performance
▶ Why should the user have to worry about the number of queues they construct in a

high-level model like SYCL?

▶ Scheduler can make stronger assumptions about execution behavior (number of
backend queues can be tied to hardware capabilities)

See hipSYCL extracting concurrency in action!

31 / 40



What is a queue?

▶ In hipSYCL, a queue is a light-weight object that does not represent actual
backend execution resources

▶ …instead, is a mechanism to append work to the global SYCL task graph, and
synchronize groups of tasks using queue::wait()

▶ Better name might be task_collection…
▶ This has substantial consequences!

32 / 40



A queue does not have to be
tied to a device!

1 sycl::queue q{some_device , sycl::property::queue::in_order{}};
2

3 q.parallel_for(/* runs on some_device */);
4 q.submit({sycl::property::command_group::hipSYCL_retarget{other_device}},
5 [&](sycl::handler& cgh){
6 cgh.parallel_for(/* runs on other_device*/);
7 });
8 q.wait();

▶ Convenient if most operations on a queue should go to a specific device, with
some exceptions.

▶ Single queue::wait() can synchronize operations distributed across multiple
devices

▶ in-order queue can enforce in-order behavior across multiple devices

33 / 40



Multi-device queues

Have hipSYCL distribute a task graph automatically across the system!

1 // User can also specify the list of devices to schedule to.
2 sycl::queue q{sycl::system_selector_v};
3 //kernels may be executed on different devices
4 q.parallel_for(...);
5 q.parallel_for(...);
6 q.parallel_for(...);

▶ Works, but don’t expect good performance yet from the scheduling ,
▶ Generalization of extracting concurrency from a single device
▶ Remark: Reinterpreting a sycl::queue as a task collection also makes it apparent

that SYCL graphs can be implemented with minimal additions to the queue
interface.

34 / 40



Context

▶ sycl::context is similarly decoupled from backend contexts
▶ Prevents performance bugs (sycl::queue() constructing new context)
▶ Unclear what a sycl::context should be…

35 / 40



Subbuffers are an unneces-
sary OpenCL concept

▶ Needed to allow the runtime to execute kernels concurrently that use the same
data
▶ Disjoint accessor ranges is not enough per the specification/

▶ …but it is in hipSYCL!
▶ hipSYCL tracks buffer data state below buffer granularity
▶ Fundamental difference in how buffer support in the runtime is designed

36 / 40



hipSYCL buffer pages

1

2 sycl::buffer<int, 2> buff{sycl::range{size, size},
3 sycl::property::buffer::hipSYCL_page_size <2>{
4 sycl::range{page_size , page_size}}};
5 // hipSYCL runtime will attempt to execute concurrently
6 q.submit([&](sycl::handler& cgh){
7 sycl::accessor<int, 2> acc{buff, cgh,
8 range{page_size , page_size}, id{0,0}};
9 cgh.parallel_for(...);

10 });
11 q.submit([&](sycl::handler& cgh){
12 sycl::accessor<int, 2> acc{buff, cgh,
13 range{page_size , 10*page_size}, id{page_size ,0}};
14 cgh.parallel_for(...);
15 });

▶ Kernels may run concurrently if their accessors access different pages
37 / 40



Conclusion

▶ It is important to rethink SYCL independently of its history as OpenCL
abstraction layer!

▶ From its inception, hipSYCL has been exploring new ways of designing SYCL
implementations

▶ …non-OpenCL backends
▶ …Riding on top of vendor-supported compilers
▶ …device library-only backends, and the idea of aggregating multiple toolchains
▶ …New programming models like scoped parallelism
▶ …CPU acceleration of kernels without OpenCL
▶ …Decoupling backend objects from SYCL objects (like queue) leading to

multi-device queues

And there is more!
38 / 40



More features

1 int* input = ...; sycl::queue q;
2 // Asynchronous buffers & factory functions
3 auto b = sycl::make_async_view(input, size, q);
4 auto c = sycl::make_sync_buffer(size);
5 q.submit([&](sycl::handler& h){
6 sycl::raw_accessor r{b, cgh}; // Light-weight accessors
7 cgh.parallel_for(...);
8 }); q.wait();
9 // Buffer-USM interop

10 void* data = b.get_pointer(q.get_device());

▶ Plus many standard SYCL 2020 features
▶ Wide-range of supported hardware
▶ Support for oneAPI components like oneMKL

39 / 40



…and more to come!
▶ Single compilation pass for host and all targeted devices
▶ Integrated profiling functionality for SYCL task graphs
▶ …

All features are available on github!
https://github.com/illuhad/hipSYCL

40 / 40

https://github.com/illuhad/hipSYCL

