Pushing the boundaries of SYCL with hipSYCL

Aksel Alpay
Heidelberg University

IWOCL '22

1/40

About SYCL

2/40

. . UNIVERSITATS- UNIVERSITAT
U@ RECHENZENTRUM HEIDELBERG

orlglns ~ ZUKUNFT

- SEIT 1386

SYCL started its life as higher-level model for OpenCL!
» In SYCL 1.2.1, there's a 1:1 mapping from SYCL objects to OpenCL objects

» sycl::queue wraps OpenCL command queue

» sycl::device wraps OpenCL device
>

» SYCL task graph mostly handled by OpenCL out-of-order queues and
dependencies
» host compilation pass compiles kernels as fallback using pure C++
» Generally not intended for performance.
» An additional device compiler pass extracts kernels and generates SPIR/SPIR-V
» SYCL runtime passes SPIR/SPIR-V to OpenCL.

Even though there are now other backends apart from OpenCL, most

implementations have this design in their DNA.
3/40

. UNIVERSITATS- UNIVERSITAT
U@ RECHENZENTRUM HEIDELBERG

n e r I p S / ZUKUNFT

— SEIT 1386

» hipSYCL has always been independent from traditional SYCL interpretations
» Never had OpenCL backend...

hipSYCL has always been about exploring other interpretations of SYCL.
(subject of this talk)

4/40

Introduction to hipSYCL

5/40

UNIVERSITATS- UNIVERSITAT

URZ) RecHenzeNTRUM HEIDELBERG
/ ZUKUNFT
- SEIT 1386

https://github.com/

https://github.com/
AT S NVIDIAGPUs /1§ pSYCL/ featuresupport

Optional lambda naming v (PR) 11111had/h1PSYCL
ROCm AMD GPUs
Subgroups v (PR)
In-order queues v (PR) > Open source
LSR5 “ OESERE Any CPU Explicit dependencies (depends_on()) v (PR) » Used in prod UCtiOn by
' Backend interop API v (PR) |arge prOJeCtS
\ Intel GPUs Reductions v (PR) .
. . » Extensions such as
roup algorithms Vv (PR)
New device selector API v (PR) bL;ffer_US,\glt
. . Interoperanilli
> Multi-backend architecture = v R perabiiy
. Deduction guides v (PR) » Su pported by SYCL
> Aggregates multiple atomic_rer v PR) libraries, e.g. oneMKL
toolchains > s . Cof SYCL
upports most O
> OpenMP/clang CUDA/ (BN 2050
clang HIP / clang SYCL/ Bel{olSfeWA={(elV[oR=1={6siinln WA
nvc++ optional lambda naming / ...

6/40

Multi-backend runtime (0r) st

Modular runtime backend
plugins

librt-backend-cuda

hipSYCL runtime library

librt-backend-omp OpenMP

libhipSYCL-rt
User application
librt-backend-hip

Device code

librt-backend-ze oneAPI Level Zero

UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT1386

7140

Supported compilation flows @ e

Pure

OpenMP/Cis Input SYCL code Any OpantP Output binary
library flow P
Optional: OpenMP acceleration, HIP/CUDA
support
clang host pass
clang CUDA device

clang- [| |
based Input SYCL code

flow

clang HIP device

clang SYCL pass

(experimental)

» Pure library flow: syclcc --hipsycl-targets="omp" --hipsycl-cpu-cxx=...
» clang flow: syclcc --hipsycl-targets="omp;cuda:<archs>;hip:<archs>;spirv" g0

Supported compilation flows (0n2) e

Optional: OpenMP acceleration on host

nvc++-based flow

(experimental/WIP) DRUtSYCELCEdS)

Output binary

(WIP, no clang HIP device

unnamed pass
kernel

lambdas)

clang SYCL pass
(experimental)

syclcc --hipsycl-targets="cuda-nvcxx"

UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT1386

9/40

Moving beyond OpenCL

... Towards a multi-backend interpretation of SYCL
(now part of SYCL 2020)

See also this talk on SYCL 2020 backend interoperability:

Using Interoperability Mode in SYCL 2020
View Abstract "
N7’

Speaker: Aksel Alpay (Heidelberg University)
Co-Authors: Thomas Applencourt (Argonne National Laboratory), Gordon Brown (Codeplay Software), Ronan Keryell (AMD) and Greg Lueck (Intel)

10/40

Moving beyond OpenCL () it '

» hipSYCL has pioneered SYCL beyond OpenCL using HIP and CUDA backends
already in 2018 (this idea is now in SYCL 2020).

» Focus on integration with what is best supported by hardware vendors
(performance, debuggers, profilers, ...)

» Make SYCL independent from direct vendor support
» It is a myth that SYCL support from HW vendors is needed for
stability/performance/... !
» Don't confuse SYCL with OpenCL, where HW vendors generally need to provide an
implementation.
» Everybody can build a SYCL implementation that compiles to some IR, which is then
optimized by HW vendor compute stacks!

11/40

o~ W

» hipSYCL goes one step further: Integration with vendor toolchains and
programming models enables mix-and-match of programming models inside

kernels!

HIPSYCL_KERNEL_TARGET void
cuda_optimized () {
__shared__ int cuda_shared_mem
[16];
// some work here
__syncthreads () ;

}
void host_optimized (){
#ifdef _OPENMP
#pragma omp simd
for(int i = 0; i < 16;
// Some work
}
#else
// Use CPU vector intrinsics,
// or call external libraries
#endif
};

++i) {

q.parallel_for(range, [=](auto
idx){

__hipsycl_if_target_host(
host_optimized();

)

__hipsycl_if_target_cuda(
cuda_optimized () ;

)

__hipsycl_if_target_hip(

)
__hipsycl_if_target_spirv(
regular_sycl_version();
)
B;

12/40

Backend interoperability at (0r) et '
source level

SEIT1386

This enables:

» Gradual transition from e.g. CUDA code to SYCL code (can keep kernel code in
CUDA during transition)

» Optimized code paths for backends, including support for language extensions

» Use optimized libraries from vendor-specific ecosystems in kernels (e.g. AMD
rocPRIM, NVIDIA CUB)

» When usage is guarded by appropriate macros (e.g. __HIPSYCL__), code can
remain portable across SYCL implementations.

13/40

Making the SYCL ecosystem robust
...by riding on top of vendor-supported compilers!

14/40

Use vendor-supported com- @ wae, ‘ ey
. -/ e
pilers

Mature support: Experimental:

HlP-ciang
Vendor-provided OpenMP compilers EGSIBLENIEal-8 Y eSE3

hipSYCL can ride on top of vendor-supported compilers from AMD/NVIDIA/In-
tel

» Day 1 hardware support
» Leverage vendor hardware expertise
» Kernel performance on par with vendor programming models

15/40

- : UNIVERSITATS- UNIVERSITAT
Library-only backends () e '

Library-only backend/implementation: Implementing SYCL as a library for a
third-party compiler
(explicitly allowed in the SYCL 2020 specification)

» Important pillar to allow SYCL on vendor-supported compilers!

» Can be important for portability! (hipSYCL OpenMP backend runs on practically
any CPU)
» SYCL 2020 specification: Mainly intended to run on the host; not primarily for
performance
» hipSYCL is pushing the idea of a library-only host backend for performance
» OpenMP backend can deliver competitive performance for many applications!
» hipSYCL is pushing the idea of library-only backends for accelerators.

16/40

Library-only backends for ac- (0r) et '
celerators

SEIT1386

» No reason why library-only backends should have to remain limited to the host!
» A compiler does not need a lot to be able to support SYCL
» Pure C++ in kernels (no attributes like CUDA __device__)
» Heterogeneous execution model reasonably similar to SYCL/OpenCL/CUDA
» hipSYCL's library-only NVC++ CUDA backend is the first library-only device
backend in a major SYCL implementation

How Much SYCL Does a Compiler Need? Experiences from the Implementation of
SYCLas a Library for nve++ ¥,
\ A

View Abstract

Speaker: Aksel Alpay (Heidelberg University)
Co-Authors; Vincent Heuveline (Heidelberg University)

17/40

The flexibility of SYCL () it '

What is SYCL? What does it want to be?
» A full blown compiler and toolchain in itself? (Common interpretation)

» More control (is it needed?)
» Requires more effort to develop
» Requires more effort and time for widespread adoption/upstreaming

» A portability library layer for third-party compilers? (similarly to e.g. Kokkos)

» Easy to deploy and develop
» Dependency on quality and features exposed by other models/compilers

» Something in between? (hipSYCL has characteristics from both)

All of those are possible (and allowed by the specification)!
hipSYCL is actively exploring this.

18/40

Issues with library-only imple- G@ A
mentations

The SYCL 2020 specification contradicts itself!
» Explicitly allows library-only implementations

» A couple of features are not/not well implementable for library-only
implementations (attributes, kernel introspection)

Most noticable:

» parallel_for(range) model is efficiently implementable everywhere ©

UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT1386

» The parallel_for(nd_range) model is notoriously difficult to implement for

library-only host implementations.

» The SYCL 1.2.1 hierarchical parallel_for model (discouraged in SYCL 2020) is

notoriously difficult to implement on GPUs, and might be impossible to
implement on GPUs for library-only implementations.

19/40

hipSYCL's scoped parallelism
The case for a new programming model in SYCL

20/40

Why do we need a new model? () it '

» We need a model that exposes the functionality of parallel_for(nd_range), but
works well for all implementation choices on all hardware!

» We need a model that is flexible enough to adapt to all hardware architectures

» Different levels of parallelism on different backends/hardware (e.g. on CPU: NUMA
nodes, cores, SIMD units)
» Towards flexible group hierarchies as in CUDA cooperative groups

» Backends need to be able to expose hardware-specific hierarchies of parallelism
= Scoped parallelism - available in hipSYCL.

21/40

ENECUR N

o

0

©

10

—
w N e

14

hipSYCL scoped parallelism () it '

https://github.com/illuhad/hipSYCL/blob/develop/doc/scoped-parallelism.md

sycl::queue{}.parallel (num_work_groups, logical_group_size,
[=] (auto group){
// Note that the group argument is of generic auto type;
// this allows the implementation to provide arbitrary group
// types that are optimized for the backend.
sycl::distribute_groups (group, [&] (auto subgroup)d{
sycl::distribute_groups (subgroup, [&] (auto subsubgroup){
sycl::distribute_groups (sububgroup, [&] (auto subsubsubgroup){
// distribute_items () to make sure code is executed for each
logical item
sycl::distribute_items (subsubsubgroup, [&](sycl::s_item<1>
logical_idx){

»;
s

B
1y . 22/40

https://github.com/illuhad/hipSYCL/blob/develop/doc/scoped-parallelism.md

q.submit ([&] (sycl::handler& cgh){
sycl::accessor data{buff, cgh};
cgh.parallel (input_size / Group_size, Group_size,
[=] (auto grp){
sycl::local_memory_environment<int [Group_size]>(grp,
[&] (auto& scratch){
sycl::distribute_items(grp, [&](sycl::s_item<1> idx){
scratch[idx.get_local_id(grp, 0)] = datal[idx.get_global_id(0)];
b;
sycl::group_barrier (grp);

for(int i = Group_size / 2; i > 0; i /= 2){
sycl::distribute_items_and_wait (grp,
[&] (sycl::s_item<1> idx){
size_t 1lid = idx.get_innermost_local_id (0);
if(1id < i)
scratch[lid] += scratch[lid+il];
b
}
sycl::single_item(grp, [&]1O){
datal[grp.get_group_id (0) *Group_size] = scratch[0];
BN DI DIHES DI

23/40

Getting performance on CPUs without OpenCL
...if you have to use parallel_for(nd_range).

24/40

UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT1386

How do other compiler-based
SYCL implementations target () s '
CpPU?

SYCL code *>{ SYGL compiler H SPIR-V }_> OpenCL N Tra;?;’:ﬁ::irons

Problem is offloaded to OpenCL: OpenCL gets SPMD-style IR, and then performs
required compiler transformations.

» Requires OpenCL CPU implementation which may be a portability issue
» More difficult to deploy due to OpenCL dependency
» Locks into using OpenCL runtime. What if we want to use TBB, or OpenMP, ...?

25/40

New accelerated CPU support (0n) sz ‘ ey
. . = st
in hipSYCL

Idea: Pull compiler transformations directly into the SYCL compiler

SYCL code SYCL compiler Compller Machine code
Transformations

» Leverage existing hipSYCL LLVM clang plugin and add IR transformations during
the host pass

» No dependency on OpenCL — works wherever LLVM works

» Just looks for specific attributes that mark functions that need to be considered as
kernel entrypoints. Can be used with any C++ CPU runtime (TBB, OpenMP, ...)

» Retain many advantages of library-only implementations

26/40

Optional: OpenMP acceleration, HIP/CUDA
support

clang host pass

clang CUDA device
pass
clang-
based
flow

Input SYCL code Output binary

clang HIP device

pass

clang SYCL pass

(experimental)

See the poster for details!

Exploring Compiler-aided nd-range Parallel-for Implementations on CPU in
hipsycL
View Abstract

Speaker: Joachim Meyer (Saarland University)
Co-Authors: Aksel Alpay, Holger Froning and Vincent Heuveline (Heidelberg University)

27140

hipSYCL compiler- @@ e
accelerated CPU performance

» Tested on AMD, Intel, ARM (ThunderX2, A64fx)
» Competitive performance compared to OpenCL (pocl)
» Comes with any hipSYCL 0.9.2+

UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT1386

» New in SYCL ecosystem: Run SYCL kernels efficiently on any CPU supported

by LLVM!

28/40

A modern SYCL runtime
Stepping back from the traditional OpenCL-style mappings

29/40

. UNIVERSITATS- UNIVERSITAT

Q URZ) RecHENZENTRUM HEIDELBERG
ueue eSI n ZUKUNFT
SEIT 1386

» Traditionally, one SYCL queue is mapped to one backend queue

librt-backend-cuda CUDA queue pool

hipSYCL runtime library
User queue 1

librt-backend-omp OpenMP

User queue 2 libhipSYCL-rt

librt-backend-hip HIP queue pool

oneAPI Level Zero
librt-backend-ze queue pool

» hipSYCL decouples SYCL queues from backend objects!
» Backends maintain queue pool (if queue-based)
» Scheduler distributes work from all queues across backend resources

30/40

SEIT1386

Consequences of queue de- @@ o ' e
coupling

» Performance and concurrency of operations is independent of the number of
user queues — consistent performance

» Why should the user have to worry about the number of queues they construct in a
high-level model like SYCL?

» Scheduler can make stronger assumptions about execution behavior (number of
backend queues can be tied to hardware capabilities)

See hipSYCL extracting concurrency in action!
Emprical Measures of SYCL Concurrency
View Abstract

Speaker: Thomas Applencourt (Argonne National Laboratory)
Co-Authors: Abhishek Bagusetty (Argonne National Laboratory) and Aksel Alpay (Heidelberg University)

31/40

. UNIVERSITATS- UNIVERSITAT

What is a queue? G@ RECHENZENTRUM Helbelarne
— ZUKUNFT
q - 7/ SEIT 1386

» In hipSYCL, a queue is a light-weight object that does not represent actual
backend execution resources

» ...instead, is a mechanism to append work to the global SYCL task graph, and
synchronize groups of tasks using queue: :wait ()

» Better name might be task_collection...
» This has substantial consequences!

32/40

AW oN

SEIT1386

A queue does not have to be (0r) et '
tied to a device!

sycl::queue q{some_device, sycl::property::queue::in_order{}};

g.parallel _for(/* runs on some_device */);
q.submit ({sycl::property::command_group::hipSYCL_retarget{other_devicel},
[&] (sycl::handler& cgh){
cgh.parallel_for(/* runs on other_devicex/);
b
q.wait ();

» Convenient if most operations on a queue should go to a specific device, with
some exceptions.

» Single queue: :wait () can synchronize operations distributed across multiple
devices

» in-order queue can enforce in-order behavior across multiple devices

33/40

(o2 NN ¢ I U CUR RS

SEIT1386

. . UNIVERSITATS- UNIVERSITAT
M u It I _d ev I Ce q u e u es G\@ RECHENZENTRUM ' ?S&EJ%LFBTERG

Have hipSYCL distribute a task graph automatically across the system!

// User can also specify the list of devices to schedule to.
sycl::queue q{sycl::system_selector_v};

//kernels may be executed on different devices
q.parallel_for(...);

q.parallel_for(...);

q.parallel_for(...);

» Works, but don’t expect good performance yet from the scheduling ®

» Generalization of extracting concurrency from a single device

» Remark: Reinterpreting a sycl: :queue as a task collection also makes it apparent
that SYCL graphs can be implemented with minimal additions to the queue
interface.

34/40

Context @@/ e

» sycl::context iS similarly decoupled from backend contexts

» Prevents performance bugs (sycl::queue () constructing new context)
» Unclear what a sycl::context Should be...

UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT1386

35/40

Subbuffers are an unneces- () e ' ey
sary OpenCL concept

SEIT1386

» Needed to allow the runtime to execute kernels concurrently that use the same
data

» Disjoint accessor ranges is not enough per the specification®
» ...butitisin hipSYCL!

» hipSYCL tracks buffer data state below buffer granularity
» Fundamental difference in how buffer support in the runtime is designed

36/40

hipSYCL buffer pages (0ng) o

sycl::buffer<int, 2> buff{sycl::range{size, size},
sycl::property::buffer::hipSYCL_page_size<2>{
sycl::range{page_size, page_sizel}}};
// hipSYCL runtime will attempt to execute concurrently
q.submit ([&] (sycl::handler& cgh){
sycl::accessor<int, 2> acc{buff, cgh,
range{page_size, page_sizel}, id{0,0}};
cgh.parallel_for(...);
b
q.submit ([&] (sycl::handler& cgh){
sycl::accessor<int, 2> acc{buff, cgh,
range{page_size, 10*page_size}, id{page_size,0}};
cgh.parallel_for(...);
b

» Kernels may run concurrently if their accessors access different pages

UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT1386

37/40

. UNIVERSITATS- UNIVERSITAT
U@ RECHENZENTRUM HEIDELBERG

oncilusion — T

— SEIT 1386

» It is important to rethink SYCL independently of its history as OpenCL
abstraction layer!

» From its inception, hipSYCL has been exploring new ways of designing SYCL
implementations

...non-OpenCL backends

...Riding on top of vendor-supported compilers

...device library-only backends, and the idea of aggregating multiple toolchains
...New programming models like scoped parallelism

...CPU acceleration of kernels without OpenCL

...Decoupling backend objects from SYCL objects (like queue) leading to
muIt| device queues

vVvyvyVvyyypy

And there is more!
38/40

More features @@/ g,
int* input = ...; sycl::queue q;
// Asynchronous buffers & factory functions
auto b = sycl::make_async_view(input, size, q);
auto ¢ = sycl::make_sync_buffer(size);

q.submit ([&] (sycl::handler& h){
sycl::raw_accessor r{b, cgh}; // Light-weight accessors
cgh.parallel_for(...);

}); q.wait();

// Buffer-USM interop

void* data = b.get_pointer(q.get_device());

» Plus many standard SYCL 2020 features
» Wide-range of supported hardware
» Support for oneAPI components like oneMKL
Exploring the Possibility of a hipsYCL-based Implementation of oneAPI @
N

View Abstract

Speaker: Aksel Alpay (Heidelberg University)
Co-Authors: Balint Soproni, Holger Wiinsche and Vincent Heuveline (Heidelberg University)

UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT1386

39/40

...and more to come!
» Single compilation pass for host and all targeted devices

» Integrated profiling functionality for SYCL task graphs
> ..

All features are available on github!
https://github.com/illuhad/hipSYCL

40/40

https://github.com/illuhad/hipSYCL

