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facilities. Systems
= 2x Cray XC40 (#118 and #150 in top500, year 4/5 in lifetime) with Xeon CPUs
= 80-node Xeon Phi (KNL) Cray XC40 test-and-development system
= 2X 32-node Infiniband cluster with Nvidia K40
= 2 test-and-development systems with AMD FirePro W8100

What | do:

= computer science research (methods)
= development of HPC codes

= evaluation of upcoming technologies

= consulting/training with system users



Why OpenCL? (aka: The Good)

Scientific HPC in a Nutshell

= tons of legacy code (FORTRAN) authored by domain experts

= rather closed community
= decoupled from computer science (ask a student about FORTRAN)

= highly conservative code owners
= modern software engineering advances are picked up very slowly
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Why OpenCL? (aka: The Good)

Scientific HPC in a Nutshell

= tons of legacy code (FORTRAN) authored by domain experts

= rather closed community
= decoupled from computer science (ask a student about FORTRAN)

= highly conservative code owners
= modern software engineering advances are picked up very slowly

= intra-node parallelism dominated by OpenMP (e.g. Intel) and CUDA (Nvidia)

=- vendor and tool dependencies = limited portability
= multiple diverging code branches = hard to maintain

= inter-node communication = MPI

= hardware life time: 5 years
= software life time: multiple tens of years
= outlives systems by far = aim for portability
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Why OpenCL? (aka: The Good)

Goal for new code: Do not contribute to that situation!

= portability first (# performance portability)

= OpenCL has the largest hardware coverage for intra-node programming
= library only = no tool dependencies
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Why OpenCL? (aka: The Good)

Goal for new code: Do not contribute to that situation!

= portability first (# performance portability)

= OpenCL has the largest hardware coverage for intra-node programming
= library only = no tool dependencies

= use modern techniques with a broad community (beyond HPC)
= modern C+ for host code

= develop code interdisciplinary

= domain experts design the model ...
= ...computer scientists the software
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Target Hardware

vendor
Intel
Intel
AMD
Nvidia

architecture
Haswell

Knights Landing
Hawaii

Kepler

device

2x Xeon E5-2680v3
Xeon Phi 7250
Firepro W8100
Tesla K40

compute

0.96 TFLOPS
2.61 TFLOPS*
2.1 TFLOPS
1.31 TFLOPS

memory
136 GiB/s
490/115 GiB/s
320 GiB/s
480 GiB/s

NVIDIA.
TESLA

AMDZU

FIREPRO

* calculated with max. AVX frequency of 1.2 GHz: 2611.2 GFLOPS = 1.2 GHz X 68 cores X 8 SIMD x 2 VPUs x 2 FMA
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COSIM - A Predictive Cometary Coma Simulation
Solve dust dynamics:
ddust(F) = dgas-drag + grav + 3Coriolis + dcentrifugal
= %CdaNgaS(F)mgaS(Vdust — Vgas) | Vdust — Vgas| — V&(F)

—20 X Vgust — & X (@ X T)

Compare with data of 67P/Churyumov—Gerasimenko
from Rosetta spacecraft:

corr 0.90 time 12:12

o 2 4 6 8 10 12

Panels 1-2: OSIRIS NAC Image, Panels 3-4: Simulation Results, Right Image: ESA — C. Carreau/ATG medialab, CC BY-SA 3.0-igo 6/28



HEOM - The Hierarchical Equations of Motion

Model for Open Quantum Systems

= understand the energy transfer in
photo-active molecular complexes

= e.g. photosynthesis
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HEOM - The Hierarchical Equations of Motion

Model for Open Quantum Systems

= understand the energy transfer in
photo-active molecular complexes

= e.g. photosynthesis

= millions of coupled ODEs

= hierarchical graph of matrices
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Interdisciplinary Workflow D domain experts D computer scientists

Mathematical
.
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Interdisciplinary Workflow O domain experts O computer scientists

Mathematlcal High Level Prototype OpenCL kernel
Model (Mathematica) within Mathematica

- ODEs - domain scientist’s tool - replace some code
- PDEs - high level with OpenCL
- Graphs - symbolic solvers

- - arbitrary precision
- very limited performance



Mathematica and OpenCL

(* Load OpenCL support *)
Needs ["OpenCLLink"]

(¥ Create OpenCLFunction from source , kernel mname , signature x*)
doubleFun = OpenCLFunctionLoad["

__kernel void doubleVec(__global mint * in, mint length) {

int index = get_global_id (0);

if (index < length)
in[index] = 2*in[index];
}", "doubleVec", {{_Integer}, _Integer}, 256]

(* Create some input *)

vec = Range [20];
(x Call the function *)
doubleFun[vec, 20] (% NDRange deduced from args and wg-size *)

https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html 9/28
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(* Load OpenCL support *)
Needs ["OpenCLLink"]

(¥ Create OpenCLFunction from source , kernel mname, signature

doubleFun = OpenCLFunctionLoad["
__kernel void doubleVec(__global mint * in, mint length) {

int index = get_global_id (0);

if (index < length)<— {NDRange can be larger than length ]

in[index] = 2*in[index];
}", "doubleVec", {{_Integer}, _Integer}, 256]

(¥ Create some dinput *)

vec = Range [20];

(x Call the function *)
doubleFun [vec, 20] (=* NDRange deduced from args and wg-size
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Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- OpenCL 1.2 for hotspots
- modern C+ 11/14

- CMake for building

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

O domain experts O computer scientists
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OpenCL SDKs and Versions

name version | OpenCL version supported devices

Intel OpenCL SDK | 16.1.1 1.2 (CPU), 2.1 (GPU) | CPUs (up to AVX2), Intel GPUs
Intel OpenCL SDK | 14.2 1.2 Xeon Phi (KNC)

Nvidia OpenCL CUDA 8 | 1.2 (exp. 2.0) Nvidia GPU

AMD APP SDK 3.0 2.0 (GPU), 1.2 (CPU) | GPU, CPUs (AVX,FMA4,XOP)
PoCL 0.14 2.0 CPUs (LLVM, AVX-512)




OpenCL SDKs and Versions

name version | OpenCL version supported devices

Intel OpenCL SDK | 16.1.1 1.2 (CPU), 2.1 (GPU) | CPUs (up to AVX2), Intel GPUs
Intel OpenCL SDK | 14.2 1.2 Xeon Phi (KNC)

Nvidia OpenCL CUDA 8 | 1.2 (exp. 2.0) Nvidia GPU

AMD APP SDK 3.0 2.0 (GPU), 1.2 (CPU) | GPU, CPUs (AVX,FMA4,XOP)
PoCL 0.14 2.0 CPUs (LLVM, AVX-512)

Vendors seem not to be too enthusiastic about OpenCL:
= portable OpenCL still means version 1.2 (released Nov. 2011)
= Xeon Phi implementation discontinued by Intel, no AVX-512 support (yet?)
= partial OpenCL 2.0 support by Nvidia introduced rather silently



Installation /Linking /Running

Platform and Device selection:
= simple, deterministic way: oclinfo tool = platform/device index
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Installation /Linking/Running

Platform and Device selection:
= simple, deterministic way: oclinfo tool = platform/device index

ICD loader mechanism (1ibOpenCL.s0):

= OpenCL typically not pre-installed in HPC environments
= adding ICD files to /etc/0OpenCL/ requires root

= not all loaders support OPENCL_VENDOR_PATH environment variable
= different ICDs report different platform/device order

= different order from different API paths (with or without context creation)
= SDK installation order matters

= use reference ICD
=- avoid ICD and link directly

= libs in /etc/OpenCL/vendors/*.icd
= libamdocl64.so, libintelocl.so, ...
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Compilation

OpenCL Header Files:

= avoid trouble: use reference headers, ship with project

CMake: find_package (OpenCL REQUIRED)
= OpenCL CMake module only works in some scenarios

= the magic line:

mkdir build.intel_16.1.1
cd build.intel_16.1.1

cmake -DCMAKE_BUILD_TYPE=Release -DOpenCL_FOUND=True -DOpenCL_INCLUDE DIR=../../
thirdparty/include/ -DOpenCL_LIBRARY=/opt/intel/opencl_runtime_16.1.1/0opt/
intel/opencl-1.2-6.4.0.25/1ib64/1libintelocl.so

make -j

13/28



Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v self-contained executable for
V' #include directives production use
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Handling Kernel Source Code

a) loading source files at runtime:

v" no host-code recompilation
V' #include directives

header
.cl

#include

kernel_
source
.l

b) embedded source as string constant:

V' self-contained executable for
production use
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header | _ _ _ __________.
.cl 1
1
. \
#include :
I
1
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Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
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Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- OpenCL 1.2 for hotspots
- modern C+ 11/14

- CMake for building

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

O domain experts O computer scientists

Mathematlcal High Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica
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- ODEs - domain scientist’s tool - replace some code
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Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

Distributed
Host Application

- scale to multiple nodes

- OpenCL 1.2 for hotspots - partitioning, balancing,

- modern C+ 11/14
- CMake for building

neighbour exchange, ...

- wrapped MPI 3.0

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

O domain experts O computer scientists

Mathematlcal High Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica
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OpenCL and Communication/MPI

Design Recommendation:

keep both aspects as independent as possible

design code to be agnostic to whether it works on a complete problem instance or
on a partition

implement hooks for communication between kernel calls

wrap needed part of MPI in a thin, exchangeable abstraction layer
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OpenCL and Communication/MPI
Design Recommendation:

= keep both aspects as independent as possible

= design code to be agnostic to whether it works on a complete problem instance or
on a partition

= implement hooks for communication between kernel calls

= wrap needed part of MPI in a thin, exchangeable abstraction layer

Trade-offs:

= communication introduces local host-device transfers
= scaling starts slowly, e.g. two nodes might be slower than one

= a single process might not be able to saturate the network
= multiple processes per node sharing a device (CPU device: set CPU mask)

= pick one: zero-copy buffers or overlapping compute and communication
= either host (comm.) or device (comp.) own the memory at any point in time
= overlapping requires copies again

16 /28



Data Transfer Paths

. . : . .
: : ! : :
OpenCL : application : fabric : fabric : application : OpenCL
driver code driver ! driver code driver
: : ! : :
1
] 1
E device ! device
o memory | memory
\
| : : : : 5 A
......... DAV A e DR e
: : . : :
¥ : : ! : : I
1
pinned mem host mem pinned X pinned mem host mem pinned
% device [ .., ™ -~ s, ® fabric |— RDMA > fabric [ _., 6 > 4, ® device
c c C c
£ buffer py memory py buffer buffer py memory py buffer
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Data Transfer Paths

OpenCL
driver

device

device
memory

I

host

pinned

device

buffer

application
code

host
memory

DMA -~ T ......

mém
cpy

OpenCL
driver

device
memory

A
|

pinned
> device

I
1
fabric X fabric application
driver : driver code
1
1
1
I
can be avoided
in some cases
with OpenCL :
TN R S TR R R RREREEEREE EEEEE > DMA .
I : i
! :
pinned | pinned mem host mem
fabric — RDMA 3| fabric | qé)y > memory - cpé)y
buffer buffer : :

buffer
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Data Transfer Paths

. . : . .
: : ! : :
OpenCL : application : fabric X fabric : application : OpenCL
driver code driver ! driver code driver
: : ! : :
0 ( Y 3!
% device { CUDA GPU-Direct RDMA } device
: : ! : :
© memory : can be avoided : : memory
: in some cases : :
I - : with OpenCL : : A
......... DMA‘ DMA
: : ! : :
4 : | : |
1
pinned mem Fost mem pinned | pinned mem host mem pinned
% device [ .., ™ -~ s, ® fabric |— RDMA > fabric [ _., 6 > 4, ® device
c C C C
2 butfer | o | ™Y | P buffer butfer | o | ™Y | P | buffer
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Benchmark Results: COSIM load imbalance (Xeon)

COSIM Runtime vs. Particle Count (2x Xeon, Haswell)
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Benchmark Results: COSIM load imbalance (Xeon)

COSIM Runtime vs. Particle Count (2x Xeon, Haswell)
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Benchmark Results: COSIM load imbalance (Xeon Phi)
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Benchmark Results: COSIM load imbalance (Xeon Phi)
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Benchmark Results: COSIM node imbalance, all

COSIM Runtime vs. Particle Count (all)
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Benchmark Results: COSIM node imbalance, all

COSIM Runtime vs. Particle Count (all)
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Interdisciplinary Workflow
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HEOM Benchmark Results: CPU SDK comparison

OpenCL CPU SDK Comparison on 2x Xeon (HSW)
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HEOM Benchmark Results: CPU SDK comparison

OpenCL CPU SDK Comparison on 2x Xeon (HSW) OpenCL CPU SDK Comparison on Xeon Phi (KNL)
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HEOM Benchmarks: Workitem Granularity on CPUs

Impact of Work-Item Granularity on 2x Xeon (HSW)
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HEOM Benchmarks: Workitem Granularity on GPUs

Impact of Work-ltem Granularity on Tesla K40
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HEOM Benchmarks: Performance Portability

Runtime Comparison on Different Hardware
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Conclusion
OpenCL

= highest portability of available programming models
= integrates will into interdisciplinary workflow

= runtime compilation allows compiler-optimisation with runtime-constants
= performance portability is not for free, but ...
= ...better to have two kernels than two programming models
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= performance portability is not for free, but ...
= ...better to have two kernels than two programming models

HPC Wishlist

= zero-copy buffers with shared ownership

= equivalents to CUDA's GPU-Direct and CUDA-aware MPI

= no way to specify memory alignment beyond data type size of a kernel parameter
= @vendors: please keep up with the standard

= @lIntel: AVX-512 / Xeon Phi support would be highly appreciated
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EoP

Thank you.

Feedback? Questions? Ideas?

noack@zib.de
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