2017-05-18, IWOCL 2017

OpenCL in Scientific High Performance Computing
—The Good, the Bad, and the Ugly

Matthias Noack
noack@zib.de

B

Zuse Institute Berlin

Distributed Algorithms and Supercomputing

https://doi.org/10.1145/3078155.3078170

/28

https://doi.org/10.1145/3078155.3078170

Context

ZIB hosts part of the HLRN (Northern German Supercomputing Alliance)
facilities.

Context

ZIB hosts part of the HLRN (Northern German Supercomputing Alliance)
facilities. Systems:
= 2x Cray XC40 (#118 and #150 in top500, year 4/5 in lifetime) with Xeon CPUs
= 80-node Xeon Phi (KNL) Cray XC40 test-and-development system
= 2X 32-node Infiniband cluster with Nvidia K40
= 2 test-and-development systems with AMD FirePro W8100

Context

ZIB hosts part of the HLRN (Northern German Supercomputing Alliance)
facilities. Systems
= 2x Cray XC40 (#118 and #150 in top500, year 4/5 in lifetime) with Xeon CPUs
= 80-node Xeon Phi (KNL) Cray XC40 test-and-development system
= 2X 32-node Infiniband cluster with Nvidia K40
= 2 test-and-development systems with AMD FirePro W8100

What | do:

= computer science research (methods)
= development of HPC codes

= evaluation of upcoming technologies

= consulting/training with system users

Why OpenCL? (aka: The Good)

Scientific HPC in a Nutshell

= tons of legacy code (FORTRAN) authored by domain experts

= rather closed community
= decoupled from computer science (ask a student about FORTRAN)

= highly conservative code owners
= modern software engineering advances are picked up very slowly

28

Why OpenCL? (aka: The Good)

Scientific HPC in a Nutshell

= tons of legacy code (FORTRAN) authored by domain experts

= rather closed community
= decoupled from computer science (ask a student about FORTRAN)

= highly conservative code owners
= modern software engineering advances are picked up very slowly

= intra-node parallelism dominated by OpenMP (e.g. Intel) and CUDA (Nvidia)

=- vendor and tool dependencies = limited portability
= multiple diverging code branches = hard to maintain

= inter-node communication = MPI

3/28

Why OpenCL? (aka: The Good)

Scientific HPC in a Nutshell

= tons of legacy code (FORTRAN) authored by domain experts

= rather closed community
= decoupled from computer science (ask a student about FORTRAN)

= highly conservative code owners
= modern software engineering advances are picked up very slowly

= intra-node parallelism dominated by OpenMP (e.g. Intel) and CUDA (Nvidia)

=- vendor and tool dependencies = limited portability
= multiple diverging code branches = hard to maintain

= inter-node communication = MPI

= hardware life time: 5 years
= software life time: multiple tens of years
= outlives systems by far = aim for portability

3/28

Why OpenCL? (aka: The Good)

Goal for new code: Do not contribute to that situation!

= portability first (# performance portability)

= OpenCL has the largest hardware coverage for intra-node programming
= library only = no tool dependencies

28

Why OpenCL? (aka: The Good)

Goal for new code: Do not contribute to that situation!

= portability first (# performance portability)

= OpenCL has the largest hardware coverage for intra-node programming
= library only = no tool dependencies

= use modern techniques with a broad community (beyond HPC)
= modern C+ for host code

28

Why OpenCL? (aka: The Good)

Goal for new code: Do not contribute to that situation!

= portability first (# performance portability)

= OpenCL has the largest hardware coverage for intra-node programming
= library only = no tool dependencies

= use modern techniques with a broad community (beyond HPC)
= modern C+ for host code

= develop code interdisciplinary

= domain experts design the model ...
= ...computer scientists the software

28

Target Hardware

vendor
Intel
Intel
AMD
Nvidia

architecture
Haswell

Knights Landing
Hawaii

Kepler

device

2x Xeon E5-2680v3
Xeon Phi 7250
Firepro W8100
Tesla K40

compute

0.96 TFLOPS
2.61 TFLOPS*
2.1 TFLOPS
1.31 TFLOPS

memory
136 GiB/s
490/115 GiB/s
320 GiB/s
480 GiB/s

NVIDIA.
TESLA

AMDZU

FIREPRO

* calculated with max. AVX frequency of 1.2 GHz: 2611.2 GFLOPS = 1.2 GHz X 68 cores X 8 SIMD x 2 VPUs x 2 FMA

28

COSIM - A Predictive Cometary Coma Simulation
Solve dust dynamics:
ddust(F) = dgas-drag + grav + 3Coriolis + dcentrifugal
= %CdaNgaS(F)mgaS(Vdust — Vgas) | Vdust — Vgas| — V&(F)

—20 X Vgust — & X (@ X T)

Compare with data of 67P/Churyumov—Gerasimenko
from Rosetta spacecraft:

corr 0.90 time 12:12

o 2 4 6 8 10 12

Panels 1-2: OSIRIS NAC Image, Panels 3-4: Simulation Results, Right Image: ESA — C. Carreau/ATG medialab, CC BY-SA 3.0-igo 6/28

HEOM - The Hierarchical Equations of Motion

Model for Open Quantum Systems

= understand the energy transfer in
photo-active molecular complexes

= e.g. photosynthesis

BChlcrod
element

g,
89

P
FMO
protein

el le]

Cytaplasm

Periplasm
Reaction centar Rieske ISP
cors complex cytochrome b
Cytochrome ¢ complex

[Image by University of Copenhagen Biology Department]

M. Noack, F. Wende, K.-D. Oertel, OpenCL: There and Back Again, in High Performance Parallelism Pearls:
Multicore and Many-core Programming Approaches, Vol. 2, 2015 7/28

HEOM - The Hierarchical Equations of Motion

Model for Open Quantum Systems

= understand the energy transfer in
photo-active molecular complexes

= e.g. photosynthesis

= millions of coupled ODEs

doy, 7
el < |
@~ nihed
B K-1
- Uuz Z nu,(b,k)’)/(bv k)
b=1 k
B K-1
20 C(b k)
_ _ V>< V><
> G~ 2 g m) Vi
B K-1
+y D V) Tubik
b=1 k
K-1

T, (b, k) IM A (5,k) T (10,1

S8
Il
—

4
M
=[]

M. Noack, F. Wende, K.-D. Oertel, OpenCL: There and Back Again, in High Performance Parallelism Pearls:

Multicore and Many-core Programming Approaches, Vol. 2, 2015 7/

28

HEOM - The Hierarchical Equations of Motion

Model for Open Quantum Systems

. " level Py -
= understand the energy transfer in ol eled
photo-active molecular complexes / \
= e.g. photosynthesis lovel b, 0,

= millions of coupled ODEs / / \

2" level P, P, P,
VA NVANY

5

= hierarchical graph of matrices

Lo]

M. Noack, F. Wende, K.-D. Oertel, OpenCL: There and Back Again, in High Performance Parallelism Pearls:
Multicore and Many-core Programming Approaches, Vol. 2, 2015 7

/28

HEOM - The Hierarchical Equations of Motion

Model for Open Quantum Systems

= understand the energy transfer in
photo-active molecular complexes

= e.g. photosynthesis

= millions of coupled ODEs

= hierarchical graph of matrices

M. Noack, F. Wende, K.-D. Oertel, OpenCL: There and Back Again, in High Performance Parallelism Pearls:
Multicore and Many-core Programming Approaches, Vol. 2, 2015 7/28

HEOM - The Hierarchical Equations of Motion

Model for Open Quantum Systems

= understand the energy transfer in
photo-active molecular complexes

= e.g. photosynthesis

= millions of coupled ODEs

= hierarchical graph of matrices

M. Noack, F. Wende, K.-D. Oertel, OpenCL: There and Back Again, in High Performance Parallelism Pearls:
Multicore and Many-core Programming Approaches, Vol. 2, 2015 7/28

Interdisciplinary Workflow D domain experts D computer scientists

Mathematical
.

8/28

Interdisciplinary Workflow O domain experts O computer scientists

Mathematical
.

- ODEs
- PDEs
- Graphs

8/28

|nterdiscip|inary Workflow O domain experts O computer scientists

Mathematical High Level Prototype
o :
Model (Mathematica)

- ODEs
- PDEs
- Graphs

8/28

Interdisciplinary Workflow

Mathemat|cal High Level Prototype
I\/Iodel (Mathematica)

- ODEs
- PDEs
- Graphs

domain scientist’s tool
high level

symbolic solvers
arbitrary precision

very limited performance

O domain experts O computer scientists

/28

Interdisciplinary Workflow O domain experts O computer scientists

Mathematlcal High Level Prototype OpenCL kernel
Model (Mathematica) within Mathematica

- ODEs - domain scientist’s tool
- PDEs - high level
- Graphs - symbolic solvers

- - arbitrary precision
- very limited performance

8/28

Interdisciplinary Workflow O domain experts O computer scientists

Mathematlcal High Level Prototype OpenCL kernel
Model (Mathematica) within Mathematica

- ODEs - domain scientist’s tool - replace some code
- PDEs - high level with OpenCL
- Graphs - symbolic solvers

- - arbitrary precision
- very limited performance

Mathematica and OpenCL

(* Load OpenCL support *)
Needs ["OpenCLLink"]

(¥ Create OpenCLFunction from source , kernel mname , signature x*)
doubleFun = OpenCLFunctionLoad["

__kernel void doubleVec(__global mint * in, mint length) {

int index = get_global_id (0);

if (index < length)
in[index] = 2*in[index];
}", "doubleVec", {{_Integer}, _Integer}, 256]

(* Create some input *)

vec = Range [20];
(x Call the function *)
doubleFun[vec, 20] (% NDRange deduced from args and wg-size *)

https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html 9/28

https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html

Mathematica and OpenCL

(* Load OpenCL support *)
Needs ["OpenCLLink"]

(¥ Create OpenCLFunction from source , kernel mname, signature
doubleFun = OpenCLFunctionLoad["
__kernel void doubleVec(__global mint * in, mint length) {

int index = get_global_id (0);

special OpenCL typedefs
if (index < length) matching Mathematica types
in[index] = 2*in[index];
}", "doubleVec", {{_Integer}, _Integer}, 256]

(¥ Create some dinput *)

vec = Range [20];

(x Call the function *)
doubleFun [vec, 20] (=* NDRange deduced from args and wg-size

https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html

*)

*)

9/28

https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html

Mathematica and OpenCL

(* Load OpenCL support *)
Needs ["OpenCLLink"]

(¥ Create OpenCLFunction from source , kernel mname, signature

doubleFun = OpenCLFunctionLoad["
__kernel void doubleVec(__global mint * in, mint length) {

int index = get_global_id (0);

if (index < length)<— {NDRange can be larger than length]

in[index] = 2*in[index];
}", "doubleVec", {{_Integer}, _Integer}, 256]

(¥ Create some dinput *)

vec = Range [20];

(x Call the function *)
doubleFun [vec, 20] (=* NDRange deduced from args and wg-size

https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html

*)

*)

9/28

https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html

Interdisciplinary Workflow O domain experts O computer scientists

Mathematlcal High Level Prototype OpenCL kernel
Model (Mathematica) within Mathematica

- ODEs - domain scientist’s tool - replace some code
- PDEs - high level with OpenCL
- Graphs - symbolic solvers

- - arbitrary precision
- very limited performance

10/28

Interdisciplinary Workflow

O domain experts O computer scientists

Mathematlcal High Level Prototype OpenCL kernel
I\/Iodel (Mathematica) within Mathematica

- ODEs
- PDEs
- Graphs

domain scientist’s tool
high level

symbolic solvers
arbitrary precision

very limited performance

- replace some code
with OpenCL

compare results

figure out numerics

- use accelerators in MM

10/28

Interdisciplinary Workflow

O domain experts O computer scientists

Mathematlcal High Level Prototype OpenCL kernel
I\/Iodel (Mathematica) within Mathematica

- ODEs
- PDEs
- Graphs

C+ Host
Application

domain scientist’s tool
high level

symbolic solvers
arbitrary precision

very limited performance

- replace some code
with OpenCL

compare results

figure out numerics

- use accelerators in MM

10/28

Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- OpenCL 1.2 for hotspots
- modern C+ 11/14

- CMake for building

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

O domain experts O computer scientists

Mathematlcal High Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica

10/28

OpenCL SDKs and Versions

name version | OpenCL version supported devices

Intel OpenCL SDK | 16.1.1 1.2 (CPU), 2.1 (GPU) | CPUs (up to AVX2), Intel GPUs
Intel OpenCL SDK | 14.2 1.2 Xeon Phi (KNC)

Nvidia OpenCL CUDA 8 | 1.2 (exp. 2.0) Nvidia GPU

AMD APP SDK 3.0 2.0 (GPU), 1.2 (CPU) | GPU, CPUs (AVX,FMA4,XOP)
PoCL 0.14 2.0 CPUs (LLVM, AVX-512)

OpenCL SDKs and Versions

name version | OpenCL version supported devices

Intel OpenCL SDK | 16.1.1 1.2 (CPU), 2.1 (GPU) | CPUs (up to AVX2), Intel GPUs
Intel OpenCL SDK | 14.2 1.2 Xeon Phi (KNC)

Nvidia OpenCL CUDA 8 | 1.2 (exp. 2.0) Nvidia GPU

AMD APP SDK 3.0 2.0 (GPU), 1.2 (CPU) | GPU, CPUs (AVX,FMA4,XOP)
PoCL 0.14 2.0 CPUs (LLVM, AVX-512)

Vendors seem not to be too enthusiastic about OpenCL:
= portable OpenCL still means version 1.2 (released Nov. 2011)
= Xeon Phi implementation discontinued by Intel, no AVX-512 support (yet?)
= partial OpenCL 2.0 support by Nvidia introduced rather silently

Installation /Linking /Running

Platform and Device selection:
= simple, deterministic way: oclinfo tool = platform/device index

12/28

Installation /Linking/Running

Platform and Device selection:
= simple, deterministic way: oclinfo tool = platform/device index

ICD loader mechanism (1ibOpenCL.s0):

= OpenCL typically not pre-installed in HPC environments
= adding ICD files to /etc/0OpenCL/ requires root

= not all loaders support OPENCL_VENDOR_PATH environment variable
= different ICDs report different platform/device order

= different order from different API paths (with or without context creation)
= SDK installation order matters

= use reference ICD
=- avoid ICD and link directly

= libs in /etc/OpenCL/vendors/*.icd
= libamdocl64.so, libintelocl.so, ...

12/28

Compilation

OpenCL Header Files:

= avoid trouble: use reference headers, ship with project

CMake: find_package (OpenCL REQUIRED)
= OpenCL CMake module only works in some scenarios

= the magic line:

mkdir build.intel_16.1.1
cd build.intel_16.1.1

cmake -DCMAKE_BUILD_TYPE=Release -DOpenCL_FOUND=True -DOpenCL_INCLUDE DIR=../../
thirdparty/include/ -DOpenCL_LIBRARY=/opt/intel/opencl_runtime_16.1.1/0opt/
intel/opencl-1.2-6.4.0.25/1ib64/1libintelocl.so

make -j

13/28

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v self-contained executable for
V' #include directives production use

14 /28

Handling Kernel Source Code

a) loading source files at runtime:

v" no host-code recompilation
V' #include directives

header
.cl

#include

kernel_
source
.l

b) embedded source as string constant:

V' self-contained executable for
production use

14 /28

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v self-contained executable for
V' #include directives production use
header | _ _ _ __________.
.cl 1
1
. \
#include :
I
1
kernel_
source —— resolve__includes.sh
.cl

14 /28

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v’ self-contained executable for
V' #include directives production use
header

.l ! - create raw string literal
! R"str_not_in src(
“include : // input
; E)str_not_in_src"

kernel_
source —— resolve__includes.sh cl_to_hpp.sh
.cl

14 /28

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v’ self-contained executable for
V' #include directives production use
header

.l ! - create raw string literal
! R"str_not_in src(
“include : // input
; E)str_not_in_src"

kernel_ kernel_
source ——| resolve_includes.sh cl_to_hpp.sh source
.cl .hpp

14 /28

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v’ self-contained executable for
V' #include directives production use
header

.l - create raw string literal
R"str_not_in src(

#in(::lude : // input

)str_not_in_src"

kernel_ kernel_
source ——| resolve_includes.sh cl_to_hpp.sh source
.cl .hpp

#include

kernel L
wrapper._|
class
-hpp/.cpp

14 /28

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v’ self-contained executable for
V' #include directives production use
header

.l - create raw string literal
R"str_not_in src(
// input
)str_not_in_src"

kernel_ kernel_
source ——| resolve_includes.sh cl_to_hpp.sh source
.cl .hpp

#include

#include

kernel L
wrapper._|
class
-hpp/.cpp

14 /28

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v’ self-contained executable for
V' #include directives production use
header

.l - create raw string literal
R"str_not_in src(
// input
)str_not_in_src"

kernel_ kernel_
source — | resolve__includes.sh cl_to_hpp.sh source
.cl .hpp
Ty CMake A e generates: - ;
Make dependency #lnqlude

#include

kernel L
wrapper._|
class
-hpp/.cpp

14 /28

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v’ self-contained executable for
V' #include directives production use
header

.l - create raw string literal
R"str_not_in src(
// input
)str_not_in_src"

kernel_ kernel_
source — | resolve__includes.sh cl_to_hpp.sh source
.cl .hpp
Ty CMake A e generates: - ;
Make dependency #lnqlude

#include

kernel L
wrapper._|
class
-hpp/.cpp

14 /28

Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- OpenCL 1.2 for hotspots
- modern C+ 11/14

- CMake for building

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

O domain experts O computer scientists

Mathematlcal High Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica

15/28

Interdisciplinary Workflow O domain experts O computer scientists

Mathematlcal High Level Prototype OpenCL kernel
I\/Iodel (Mathematica) within Mathematica

- ODEs - domain scientist’s tool - replace some code
- PDEs - high level with OpenCL
- Graphs - symbolic solvers - compare results

- - arbitrary precision figure out numerics
- very limited performance - use accelerators in MM

C+ Host Distributed
Application Host Application

- start single node

- OpenCL 1.2 for hotspots
- modern C+ 11/14

- CMake for building

15/28

Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

Distributed
Host Application

- scale to multiple nodes

- OpenCL 1.2 for hotspots - partitioning, balancing,

- modern C+ 11/14
- CMake for building

neighbour exchange, ...

- wrapped MPI 3.0

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

O domain experts O computer scientists

Mathematlcal High Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica

15/28

OpenCL and Communication/MPI

Design Recommendation:

keep both aspects as independent as possible

design code to be agnostic to whether it works on a complete problem instance or
on a partition

implement hooks for communication between kernel calls

wrap needed part of MPI in a thin, exchangeable abstraction layer

16/28

OpenCL and Communication/MPI
Design Recommendation:

= keep both aspects as independent as possible

= design code to be agnostic to whether it works on a complete problem instance or
on a partition

= implement hooks for communication between kernel calls

= wrap needed part of MPI in a thin, exchangeable abstraction layer

Trade-offs:

= communication introduces local host-device transfers
= scaling starts slowly, e.g. two nodes might be slower than one

= a single process might not be able to saturate the network
= multiple processes per node sharing a device (CPU device: set CPU mask)

= pick one: zero-copy buffers or overlapping compute and communication
= either host (comm.) or device (comp.) own the memory at any point in time
= overlapping requires copies again

16 /28

Data Transfer Paths

. . : . .
: : ! : :
OpenCL : application : fabric : fabric : application : OpenCL
driver code driver ! driver code driver
: : ! : :
1
] 1
E device ! device
o memory | memory
\
| : : : : 5 A
......... DAV A e DR e
: : . : :
¥ : : ! : : I
1
pinned mem host mem pinned X pinned mem host mem pinned
% device [.., ™ -~ s, ® fabric |— RDMA > fabric [_., 6 > 4, ® device
c c C c
£ buffer py memory py buffer buffer py memory py buffer

17/28

Data Transfer Paths

OpenCL
driver

device

device
memory

I

host

pinned

device

buffer

application
code

host
memory

DMA -~ T

mém
cpy

OpenCL
driver

device
memory

A
|

pinned
> device

I
1
fabric X fabric application
driver : driver code
1
1
1
I
can be avoided
in some cases
with OpenCL :
TN R S TR R R RREREEEREE EEEEE > DMA .
I : i
! :
pinned | pinned mem host mem
fabric — RDMA 3| fabric | qé)y > memory - cpé)y
buffer buffer : :

buffer

17/28

Data Transfer Paths

. . : . .
: : ! : :
OpenCL : application : fabric X fabric : application : OpenCL
driver code driver ! driver code driver
: : ! : :
0 (Y 3!
% device { CUDA GPU-Direct RDMA } device
: : ! : :
© memory : can be avoided : : memory
: in some cases : :
I - : with OpenCL : : A
......... DMA‘ DMA
: : ! : :
4 : | : |
1
pinned mem Fost mem pinned | pinned mem host mem pinned
% device [.., ™ -~ s, ® fabric |— RDMA > fabric [_., 6 > 4, ® device
c C C C
2 butfer | o | ™Y | P buffer butfer | o | ™Y | P | buffer

17/28

Benchmark Results: COSIM load imbalance (Xeon)

COSIM Runtime vs. Particle Count (2x Xeon, Haswell)
125 -

~—— Intel OpenCL SDK
100- — AMD APP SDK
— PoCL
w
c
9o 75-
s
Q
=
(9]
Q
() o
g
<
2
ol |I||”|”H’ s
0 250 500 750 1000

particles per compute node

18/28

Benchmark Results: COSIM load imbalance (Xeon)

COSIM Runtime vs. Particle Count (2x Xeon, Haswell)
125 -

~—— Intel OpenCL SDK
100 - —— AMD APP SDK
—— PoCL

75-

50 -

runtime per iteration [s]

25-

particles per compute node

18/28

Benchmark Results: COSIM load imbalance (Xeon)

COSIM Runtime vs. Particle Count (2x Xeon, Haswell) COSIM Runtime vs. Particle Count (2x Xeon, Haswell)
w1111
~—— Intel OpenCL SDK e ~—— Intel OpenCL SDK
/
100- — AMD APP SDK M — AMD APP SDK
7
—— PoCL M — PoCL
#

) 24
c =
o 2
S s
2 2
5] 5]
o Q
(o] (o]
= £
s 5%

0-

1000 0 250 500 750 1000
particles per compute node particles per compute node

18/28

Benchmark Results: COSIM load imbalance (Xeon)

COSIM Runtime vs. Particle Count (2x Xeon, Haswell)

/> ol [

125 -

100 -

runtime per iteration [s]

~—— Intel OpenCL SDK
— AMD APP SDK
—— PoCL

‘!

7
v
by

750
particles per compute node

1000

COSIM Runt

—— Intel OpenCL SDK

ime vs. Particle Count (2x Xeon, Haswell)

—— AMD APP SDK
—— PoCL
Dy
c
il
© T
8
g
Q
£
Se-
= 384 workitems = 16 x 24 cores]
0 250 500 750 10b0

particles per compute node

18/28

Benchmark Results: COSIM load imbalance (Xeon Phi)

400 -

300 -

runtime per iteration [s]

200 -

COSIM Runtime vs. Particle Count (Xeon Phi, KNL)

~—— Intel OpenCL SDK
— AMD APP SDK
—— PoCL

0 500 1000 1500
particles per compute node

19/28

Benchmark Results: COSIM load imbalance (Xeon Phi)

400 -

300 -

runtime per iteration [s]

200 -

COSIM Runtime vs. Particle Count (Xeon Phi, KNL)

No PoCL data for

i M AP SDK in this range
— PoCL
0 500 1000 1500

particles per compute node

19/28

Benchmark Results: COSIM load imbalance (Xeon Phi)

400 -

300 -

runtime per iteration [s]

200 -

COSIM Runtime vs. Particle Count (Xeon Phi, KNL)

No PoCL data for
multiples of 32
in this range

~—— Intel OpenCL SDK
— AMD APP SDK

—— PoCL

' ' '
0 500 1000

particles per compute node

runtime per iteration [s]

1

o
=)

75-

5.0-

25-

COSIM Runtime vs. Particle Count (Xeon Phi, KNL)

- WA

—— Intel OpenCL SDK
— AMD APP SDK

—— PoCL

0.0-

e

500 1000
particles per compute node

=

o~

'
1500

19/28

Benchmark Results: COSIM node imbalance, all

COSIM Runtime vs. Particle Count (all)

400 —— Intel OpenCL SDK, 2x Xeon
—— AMD APP SDK, 2x Xeon
~— PoCL, 2x Xeon
— Intel OpenCL SDK, Xeon Phi

__300- —— AMD APP SDK, Xeon Phi
2, ~—— PoCL, Xeon Phi
c
o
©
2
© 200 -
Q
)
£
€
2

100 -

ol .Illll

0 250 500 750 1000
particles per compute node

20/28

Benchmark Results: COSIM node imbalance, all

COSIM Runtime vs. Particle Count (all)

400 —— Intel OpenCL SDK, 2x Xeon
—— AMD APP SDK, 2x Xeon
—— PoCL, 2x Xeon
— Intel OpenCL SDK, Xeon Phi
__300- —— AMD APP SDK, Xeon Phi
2, ~—— PoCL, Xeon Phi
c
o
©
2
© 200 -
Q
)
£
€
2
100- m ,
o .lll”

0 250 500 750 1000
particles per compute node

runtime per iteration [s]

" —— Intel OpenCL SDK, 2x Xeon

6-

IS

N

COSIM Runtime vs. Particle Count (all)

—— AMD APP SDK, 2x Xeon
—— PoCL, 2x Xeon

— Intel OpenCL SDK, Xeon Phi
—— AMD APP SDK, Xeon Phi
—— PoCL, Xeon Phi

||||“| . e 110111

LI Ll {

'IH

0 250 500 750
particles per compute node

x

‘[‘
i

q"

1000

20/28

Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

Distributed
Host Application

- scale to multiple nodes

- OpenCL 1.2 for hotspots - partitioning, balancing,

- modern C+ 11/14
- CMake for building

neighbour exchange, ...

- wrapped MPI 3.0

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

O domain experts O computer scientists

Mathematlcal High Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica

21/28

Interdisciplinary Workflow

Mathematlcal High Level Prototype OpenCL kernel
Model (Mathematica) ithi

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

replace some code
with OpenCL
compare results
figure out numerics

use accelerators in MM

Distributed Optimisation /
Host Application Production Runs

- scale to multiple nodes

- OpenCL 1.2 for hotspots - partitioning, balancing,

- modern C+ 11/14
- CMake for building

neighbour exchange, ...

- wrapped MPI 3.0

J

O domain experts O computer scientists

within Mathematica]_ o

21/28

Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

Distributed Optimisation /
Host Application Production Runs

- scale to multiple nodes

- OpenCL 1.2 for hotspots - partitioning, balancing,

- modern C+ 11/14
- CMake for building

neighbour exchange, ...

- wrapped MPI 3.0

- always collect perf. data

- profile/tune code

- add performance tweaks

- use device-specific
kernel variants if needed

O domain experts O computer scientists

Mathematlcal High Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica

21/28

HEOM Benchmark Results: CPU SDK comparison

OpenCL CPU SDK Comparison on 2x Xeon (HSW)
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

Il AMD PoCL Il AMD PoCL

300 -

200 - OpenCL SDK

. Intel
B Avo
[T poct

100 -

average kernel runtime [ms]

0-

22/28

HEOM Benchmark Results: CPU SDK comparison

OpenCL CPU SDK Comparison on 2x Xeon (HSW) OpenCL CPU SDK Comparison on Xeon Phi (KNL)
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg
500 -
300 -

400 -
) w
£ =
[} [0
£ 200- OpenCL SDK £ 300~ OpenCL SDK
2 . Intel 2 . Intel
2 I Amo 2 [Avo
Q Q
f, . PoCL i 200 . PoCL
=] o
© ©
© 100~)
s E

100 -

0-

Intel VD PoCL Intel MD PoCL Intel MD PoCL Intel MD PoCL

22/28

HEOM Benchmarks: Workitem Granularity on CPUs

Impact of Work-Item Granularity on 2x Xeon (HSW)
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

400 -

300 -

Granularity:

. Matrix
. Element

200 -

average kernel runtime [ms]

100 -

Matrix Element Matrix Element

23/28

HEOM Benchmarks: Workitem Granularity on CPUs

Impact of Work-Item Granularity on 2x Xeon (HSW) Impact of Work-Item Granularity on Xeon Phi (KNL)
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg
400 -

300 -
200- I I I
0-

Matrix Element Matrix Element Matrix Element Matrix Element

300 -

Granularity:

. Matrix
. Element

Granularity:

. Matrix
. Element

200 -

100 -

average kernel runtime [ms]

=
8
T
average kernel runtime [ms]

23/28

HEOM Benchmarks: Workitem Granularity on GPUs

Impact of Work-ltem Granularity on Tesla K40
fmo_22baths_d3.cfg Ihcii_{bath_d8.cfg

2000 -

1500 -

Granularity:

1000 - . Matrix
. Element

average kernel runtime [ms]

o
=}
S

0- - -

Matrix Element Matrix Element

24 /28

HEOM Benchmarks: Workitem Granularity on GPUs

Impact of Work-ltem Granularity on Tesla K40
fmo_22baths_d3.cfg Ihcii_{bath_d8.cfg

2000 -

1500 -

1000 - . Matrix
. Element

average kernel runtime [ms]

o
=}
S

0- - -

Matrix Element Matrix Element

Granularity:

Impact of Work-Iltem Granularity on FirePro W8100
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

9000 -

Granularity:

. Matrix
. Element

6000 -

3000 -

average kernel runtime [ms]

Matrix Element Matrix Element

24 /28

HEOM Benchmarks: Performance Portability

Runtime Comparison on Different Hardware
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

300 -

200-
Hardware
[2x xeon (Hsw)
. Xeon Phi (KNL)
. Tesla K40
[FirePro w100

100-

0-

HSW KNL K40 W8100 HSW KNL K40 Ws100

average kernel runtime [ms]

25/28

HEOM Benchmarks: Performance Portability

Runtime Comparison on Different Hardware

fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

300-
7
£
& 200~
£ Hardware
g [2x xeon (Hsw)
= . Xeon Phi (KNL)
s [Testa ko
g esla
o [FirePro w100
100-
g
©
0-

HSW KNL K40 W8100 HSW KNL K40 Ws100

average kernel runtime [ms]

300 -

200 -

100 -

0-

Performance Portability Relative to Xeon

fmo_22baths_d3.cfg

HSW KNL K40 Wa100

Ihcii_1bath_d8.cfg

Ll

HSW KNL

K40 W8'100

Hardware

[2x xeon (Hsw)

. Xeon Phi (KNL)

. expected from FLOPS
. expected from GiB/s
[resa ka0

. expected from FLOPS
. expected from GiB/s
[FirePro w8100

. expected from FLOPS
|

expected from GiB/s

25/28

Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

Distributed Optimisation /
Host Application Production Runs

- scale to multiple nodes

- OpenCL 1.2 for hotspots - partitioning, balancing,

- modern C+ 11/14
- CMake for building

neighbour exchange, ...

- wrapped MPI 3.0

- always collect perf. data

- profile/tune code

- add performance tweaks

- use device-specific
kernel variants if needed

O domain experts O computer scientists

Mathematlcal High Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica

26 /28

Conclusion
OpenCL

= highest portability of available programming models
= integrates will into interdisciplinary workflow

= runtime compilation allows compiler-optimisation with runtime-constants
= performance portability is not for free, but ...
= ...better to have two kernels than two programming models

27 /28

Conclusion
OpenCL

= highest portability of available programming models
= integrates will into interdisciplinary workflow

= runtime compilation allows compiler-optimisation with runtime-constants
= performance portability is not for free, but ...
= ...better to have two kernels than two programming models

HPC Wishlist

= zero-copy buffers with shared ownership

= equivalents to CUDA's GPU-Direct and CUDA-aware MPI

= no way to specify memory alignment beyond data type size of a kernel parameter
= @vendors: please keep up with the standard

= @lIntel: AVX-512 / Xeon Phi support would be highly appreciated

27 /28

EoP

Thank you.

Feedback? Questions? Ideas?

noack@zib.de

The author would like to thank the domain experts from the HEOM and COSIM teams for
the many fruitful discussions on the OpenCL user-experience and reported struggles with the
different implementations and target systems. This project was supported by the German
Research Foundation (DFG) project RE 1389/8, and the North-German Supercomputing
Alliance (HLRN)

https://doi.org/10.1145/3078155.3078170

28/28

https://doi.org/10.1145/3078155.3078170

