
Production-CL
library for iterative scientific calculations

Petr F. Kartsev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Dept. No 70 (Physics of Solid-state and Nanosystems),
115409, Kashirskoe sh., 31, Moscow, Russia

PFKartsev@mephi.ru

Motivation

Our research group studies many problems of condensed-matter physics. They include, among others, superconduc-
tivity, Bose-Einstein condensation, optoelectronics[2], micromagnetism, atomic clusters. All these problems demand
labor-costly calculations in iterative way. For example, (i) to solve a nonlinear problem or to find eigenvalues of the
matrix, one typically applies some iteration procedure until the result converges[1]. (ii) To study numerically the evo-
lution in time (molecular dynamics, kinetic equations, nonlinear optics), one repeats steps of implicit/explicit Euler,
Runge-Kutta, Crank-Nicolson or another finite difference methods. (iii) Applying the Monte Carlo approach, one uses
the law of large numbers, by repeating some stochastic procedure for large number of times. As a result, our typical
calculation consists of large amount of calculations made with some repeating procedure.
Typical runtime ranges from several minutes to days and weeks and demands periodic writing of intermediate data,
to prevent losing work, for control and debug purposes.
We found OpenCL to be the promising way to increase the simulation performance in our problems. From our point
of view, OpenCL is preferable to CUDA, due to wider range of devices. The second cause is the better performance
in double precision (required for our type of scientific calculation) on (at least some) AMD devices.
On the other side, the development of OpenCL program proved to be very slow and error-prone, due to long sequence
of calls associated with any action, such as running the kernel, or reading/writing data. However the sequence looks
almost the same for all kernels in the calculation. This fact allowed us to develop the helper library performing all the
typical tasks expected in the iterative calculations. We named it ‘Production-CL’, meaning its main use in ‘production’
environment with long runs of calculation and expected level of data safety.
This report is devoted to main ideas and component parts of the PCL library.

Typical workflow

• Long run: from hours to days and weeks. State save and load to prevent losing work
• From time to time: save work data (arrays, graphs, signals etc. for control and debug)

Condensed-matter problems to solve with iterations

• Study the evolution in time (molecular dynamics, kinetic equations, nonlinear optics)
– Euler, Runge-Kutta, implicit/explicit, finite difference methods...

• Solve problem with iterative numerical method (nonlinear equations, eigenvalues, ...)
– Gross-Pitaevskii, Ginzburg-Landau, Crank-Nicolson, pseudoviscosity method...

Main ideas of PCL

• Consider each array as a super-‘variable’
• Call each kernel with a single (simple) line
• Link each kernel with a set of its own arrays:

inputs and outputs
• Organize kernels into a batch to be called iter-

atively (all these kernels with their arguments
in predefined order)

• Several levels of abstraction: (i) arrays/ker-
nels, (ii) batch (one step of calculation), (iii)
iterations (main flow of calculation)

Main blocks of PCL library

1. Config file
2. Arrays: saved/loaded (public) or created each

time (private)
3. Kernels: from source or binary
4. Batch of kernels
5. Save/load state with all arrays contents, kernels

and batches. Load and continue
6. Iterations: e.g. 1000000 batch invocations, each

1000 save state, each 100 save main result
7. Save intermediate data files: text array or *.bmp

– for debug and control

Comparison and statistics

Standard approach. Solution of Ginzburg-
Landau equations for superconducting film

• Number of lines, C: 4346
• Number of files, C: 22
• Number of lines, OpenCL: 1333
• Number of kernels: 17
• Time of development: more than 4 weeks
• Error-prone due to repeating patterns of code
• Hard to implement new features

Production-CL library

• Number of lines, C: 1693

PCL approach. Solution of kinetic equations
for excitons in semiconductor

• Number of lines, C: 2132 (excluding PCL)
• Number of files, C: 2 (excluding PCL)
• Number of lines, OpenCL: 1717
• Number of kernels: 18
• Main batch (Runge-Kutta 4th order) consists

of 36 kernel calls
• Time of successful development: less than 1

week
• Easy to implement new features, add new

terms in equation, etc.

PCL approach. Solution of Gross-Pitaevskii
equation for Bose-Einstein condensate in two
cavities

• Number of lines, C: 1640 (excluding PCL)
• Number of files, C: 2 (excluding PCL)
• Number of lines, OpenCL: 553
• Number of kernels: 10
• Time of successful development: about 4 days
• Easy to implement new features

Example of PCL code

pcl_array x ; // in t e ge r handles
pcl_kerne l k0 ;
pcl_batch b ;
int s t a r t I t e r a t i o n s =0;
i f (! pc l_loadState (" s t a t e . dat")) {

pcl_array y = pcl_createArray (1048576 , 0) ; // 0 = pr i va t e
k0 = pcl_createKerne l (" i n i t " , 1 , y) ; // one array : y
x = pcl_createArray (1048576 , 1) ; // 1 = pub l i c
pcl_kerne l k1 = pcl_createKerne l (" ca l c " , 2 , x , y) ; // two arrays : x , y
. . .
b = pcl_createBatch () ;
pcl_addKernelToBatch (b , k1 , 1 , 5) ; // one add i t i ona l argument=5
pcl_addKernelToBatch (b , k1 , 1 , 7) ; // one add i t i ona l argument=7
. . . // more kerne l s , i f needed

} else {
. . . // ge t x , k0 , b , s t a r t I t e r a t i o n s

}
pcl_runKernel (k0 , 1 , 2017) ; // run kerne l k0 (y ,2017) once
for (i=s t a r t I t e r a t i o n ; i<numIterat ions ; i++) {

i f ((i%numSave)==0) pcl_saveState (" s t a t e . dat") ; // save every th ing except p r i va t e arrays
pcl_runBatch (b) ; // run k1 (x , y , 5) , k1 (x , y , 7) , more (i f any)
i f ((i%numShow)==0) pcl_saveArray1D (x) ; // dump to f i l e for checking purposes

}

References
[1] Richardson W B, Pardhanani A L, Carey G F, and Ardelea A. Int. Journal for Numerical Methods

Engineering 59 1251 (2004).
[2] P.F. Kartsev, I.O. Kuznetsov, J. Phys: Conf. Ser. 737 012033 (2016)
[3] N.S. Voronova and Yu.E. Lozovik. Phys. Rev. B 86 195305 (2012)

Next steps

• Refine and piblish on GitHub
• multi-GPU
• swap to CPU RAM for large problems

