
The Windsor Build and Testing Framework (WBTF)
Shane Peelar (peelar@uwindsor.ca) and Paul Preney (preney@uwindsor.ca)

School of Computer Science, University of Windsor

Overview

The purpose of the Windsor Build and Testing
Framework (WBTF) is to automate:
•downloading and building of software
components in a platform-independent
manner,

•building header-only, host-installed, or
device-installed code using specific versions
of Khronos software components, and,

• testing/running of such.
Supported software includes the:
•OpenCL ICD Loader [4],
•OpenCL C header files [3],
•OpenCL C++ Standard Library [2],
•Khronos Reference OpenCL C and OpenCL
C++ compiler [5], and

•Khronos Reference LLVM Framework with
SPIR-V support [1].

Overall Design

The WBTF is comprised of two subsystems:
1 the download-and-build subsystem (DABS),
and,

2 the build-and-test subsystem (BATS).

DABS

The download-and-build subsystem (DABS) is
used to:
•download/update various software tools
and libraries, and,

•build those tools using a user-installed
C/C++ compiler.

The result of the DABS is:
• the installation of various OpenCL-related
headers and libraries, and,

•an installed toolchain capable of compiling
OpenCL C/C++ code.

BATS

The build-and-test subsystem (BATS) uses the
installations from the DABS to build pro-
grams and/or to run conformance-style
tests.

BATS Configuration

BATS configurations are specified using iden-
tifiers for:
1 a build system that identifies the system
code/tests are being run on,

2 a host system that identifies the system that
will execute code/tests, e.g., ”native” and
”android”,

3 a device that identifies the targeted OpenCL
device attached to the system.

Such identifies a test configuration that de-
fines parameters for the tests to be performed.

BATS OpenCL Test Types

BATS supports these types of tests:
1 a run-time test, i.e., a host program linked
against an OpenCL implementation

2 a header-only or compile-time test, i.e., a C
or C++ source file that #includes OpenCL
headers whose resulting code after
compilation is not executed. Compile-time
checks are intended to check host/device
code and/or headers for validity.

There are two types of compile-time tests:
1 a host test is a test that is run using the host
compiler; and

2 a device test is a test that is run using an
OpenCL C or OpenCL C++ offline (device)
compiler.

NOTE: The ability to run device tests requires
appropriately installed OpenCL implementa-
tions.

DABS and BATS in a Nutshell
DABS is installed/updated by running build.sh (Linux/Unix systems) or build.bat (Windows).
BATS test configurations are invoked by running runtests.sh (Linux/Unix systems) or runtests.bat
(Windows) followed by a designed configuration file, e.g.,

runtests configs/compiletime-host-opencl-2.1.cmake
runtests configs/runtime-native-opencl-2.2.cmake

Ease-of-use

With a typical compiler toolchain installed, the
WBTF:
•will work without any explicit configuration
under Linux/Unix,

•may require some configuration under
Windows, and,

• requires appropriate OpenCL runtime
environments to be set up in advance for all
device tests.

Future Work

Future work aims to:
•add software hooks to execute when code is
deployed and run

•add additional support for some of the more
common SDKs

•add support to deploy-and-run device tests
on foreign architectures

Poster Presentation @ IWOCL, May 16-18, 2017.

Summary

Our tool makes it easy to download, install,
and use The Khronos Group’s OpenCL C/C++
compiler toolchain and libraries. This al-
lows interested hobbyists, researchers, and
professionals to develop and explore OpenCL
and SPIR-V in addition to the downloaded
sources. Although still a work-in-progress,
the BATS permits those who have at least one
OpenCL implementation available to run avail-
able Khronos conformance tests (e.g., OpenCL
C++) and to explore how OpenCL software can
be built including the use of the ICD.

References

[1] The Khronos Group. LLVM Framework with
SPIR-V Support. 2016. URL: https://github.
com/KhronosGroup/SPIRV-LLVM.git.

[2] The Khronos Group. OpenCL C++ Standard Li-
brary Repository. 2016. URL: https://github.
com/KhronosGroup/libclcxx.git.

[3] The Khronos Group. OpenCL Headers Repos-
itory. 2016. URL: https : / / github . com /
KhronosGroup/OpenCL-Headers.git.

[4] The Khronos Group. OpenCL ICD Loader
Repository. 2015. URL: https : / / github . com /
KhronosGroup/OpenCL-ICD-Loader.

[5] The Khronos Group. SPIR Generator/Clang
Compiler with OpenCL C and OpenCL C++ Sup-
port. 2016. URL: https : / / github . com /
KhronosGroup/SPIR.git.

Acknowledgements

We acknowledge and are very thankful for the support
of The Khronos Group OpenCLWorking Group as well as
the support of Dr. Robert Kent and Dr. Ziad Kobti of the
School of Computer Science, University of Windsor.

https://github.com/KhronosGroup/SPIRV-LLVM.git
https://github.com/KhronosGroup/SPIRV-LLVM.git
https://github.com/KhronosGroup/libclcxx.git
https://github.com/KhronosGroup/libclcxx.git
https://github.com/KhronosGroup/OpenCL-Headers.git
https://github.com/KhronosGroup/OpenCL-Headers.git
https://github.com/KhronosGroup/OpenCL-ICD-Loader
https://github.com/KhronosGroup/OpenCL-ICD-Loader
https://github.com/KhronosGroup/SPIR.git
https://github.com/KhronosGroup/SPIR.git

