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Overview

The purpose of the Windsor Build and Testing
Framework (WBTF) is to automate:
•downloading and building of software
components in a platform-independent
manner,

•building header-only, host-installed, or
device-installed code using specific versions
of Khronos software components, and,

• testing/running of such.
Supported software includes the:
•OpenCL ICD Loader [4],
•OpenCL C header files [3],
•OpenCL C++ Standard Library [2],
•Khronos Reference OpenCL C and OpenCL
C++ compiler [5], and

•Khronos Reference LLVM Framework with
SPIR-V support [1].

Overall Design

The WBTF is comprised of two subsystems:
1 the download-and-build subsystem (DABS),
and,

2 the build-and-test subsystem (BATS).

DABS

The download-and-build subsystem (DABS) is
used to:
•download/update various software tools
and libraries, and,

•build those tools using a user-installed
C/C++ compiler.

The result of the DABS is:
• the installation of various OpenCL-related
headers and libraries, and,

•an installed toolchain capable of compiling
OpenCL C/C++ code.

BATS

The build-and-test subsystem (BATS) uses the
installations from the DABS to build pro-
grams and/or to run conformance-style
tests.

BATS Configuration

BATS configurations are specified using iden-
tifiers for:
1 a build system that identifies the system
code/tests are being run on,

2 a host system that identifies the system that
will execute code/tests, e.g., ”native” and
”android”,

3 a device that identifies the targeted OpenCL
device attached to the system.

Such identifies a test configuration that de-
fines parameters for the tests to be performed.

BATS OpenCL Test Types

BATS supports these types of tests:
1 a run-time test, i.e., a host program linked
against an OpenCL implementation

2 a header-only or compile-time test, i.e., a C
or C++ source file that #includes OpenCL
headers whose resulting code after
compilation is not executed. Compile-time
checks are intended to check host/device
code and/or headers for validity.

There are two types of compile-time tests:
1 a host test is a test that is run using the host
compiler; and

2 a device test is a test that is run using an
OpenCL C or OpenCL C++ offline (device)
compiler.

NOTE: The ability to run device tests requires
appropriately installed OpenCL implementa-
tions.

DABS and BATS in a Nutshell
DABS is installed/updated by running build.sh (Linux/Unix systems) or build.bat (Windows).
BATS test configurations are invoked by running runtests.sh (Linux/Unix systems) or runtests.bat
(Windows) followed by a designed configuration file, e.g.,

runtests configs/compiletime-host-opencl-2.1.cmake
runtests configs/runtime-native-opencl-2.2.cmake

Ease-of-use

With a typical compiler toolchain installed, the
WBTF:
•will work without any explicit configuration
under Linux/Unix,

•may require some configuration under
Windows, and,

• requires appropriate OpenCL runtime
environments to be set up in advance for all
device tests.

Future Work

Future work aims to:
•add software hooks to execute when code is
deployed and run

•add additional support for some of the more
common SDKs

•add support to deploy-and-run device tests
on foreign architectures
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Summary

Our tool makes it easy to download, install,
and use The Khronos Group’s OpenCL C/C++
compiler toolchain and libraries. This al-
lows interested hobbyists, researchers, and
professionals to develop and explore OpenCL
and SPIR-V in addition to the downloaded
sources. Although still a work-in-progress,
the BATS permits those who have at least one
OpenCL implementation available to run avail-
able Khronos conformance tests (e.g., OpenCL
C++) and to explore how OpenCL software can
be built including the use of the ICD.
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