
Assessing the feasibility of OpenCL CPU
implementations for agent-based simulations

Nuno Fachada & Agostinho C. Rosa



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
Agent-based modeling (ABM)

What is Agent-based modeling ABM?

Bottom-up modeling approach
Model individual heterogeneous entities
Entities (agents) make independent decisions
System behavior emerges from local decisions and
interactions



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
Agent-based modeling (ABM)

ABM is well-suited for...

Complex systems with many heterogeneous entities

Battlefield Ecology Epidemiology

Crowd dynamics Traffic Computer games



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
Agent-based modeling (ABM)

Problems with ABM
and with popular ABM frameworks

Faithful simulations may require many agents
Can be very slow
Solution: parallelization

e.g. chip-based parallelism



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
ABM parallelization

Generic parallelization approaches

Thread 0 Thread 1 Thread 2 Thread 3

Environment-parallel (EP) Agent-parallel (AP)



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
ABM parallelization

In the literature

CPU
Java
OpenMP

GPU
CUDA (mainly)
OpenCL

GPU+CPU
OpenCL



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
ABM parallelization

CPU-optimized OpenCL?

Focus of current study
Uncommon at best
Does it offer cost-effective performance gains?



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
The PPHPC model

Predator-Prey for High Performance Computing
A reference research ABM

Reference agent-based model
Stochastic, well-studied
dynamics
Based on classic predator-prey



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
The PPHPC model

Basic rules

2D grid
100× 100
200× 200
. . .

Wolves eat sheep
Sheep eat grass
Agents reproduce
Grass regrows



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
The PPHPC model

Main algorithm

Processes per time step

1: for all agent do . Any order
2: Move()
3: end for
4: for all grid cell do . Any order
5: GrowFood()
6: end for
7: for all agent do . Random order
8: Act()
9: end for

10: GetStats()



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
The PPHPC model

Implementations

Reference NetLogo implementation
Parallel Java implementation

Up to 40× faster on 6-core HT CPU



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
The PPHPC model

NetLogo implementation

User-friendly GUI for modelers
Benchmarked in CLI mode



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
The PPHPC model

Java implementation
Six EP parallelization strategies

Thread 1 Thread 2 Thread 3

ST

Single-thread
No sync.

Reproducible

EQ

l

l

l

l

l

l

l

l

l

l

l

l

Equal
Cell sync.

Non-reprod.

EX

m

m

m

m

m

m

m

m

m

m

m

m

Equal
Cell sync.

Reproducible

ER

Equal
Row sync.

Reproducible

OD

On-demand
Cell sync.

Non-reprod.



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
CPU-optimized OpenCL implementation

OpenCL CPU
Basics

C99 host code with helper libraries:
Glib
cf4ocl
cl_ops

OpenCL 1.2 kernels, runs on:
Intel OpenCL (Windows/Linux)
AMD APP SDK (Windows/Linux)
Apple OpenCL



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
CPU-optimized OpenCL implementation

OpenCL CPU
Parallelization approach

Environment parallel (EP) approach
ER strategy (row synchronization)

Row sync. Row sync.

Unprocessed Processing Processed Worker#1 Worker#2 Worker#3



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
CPU-optimized OpenCL implementation

ER strategy – row synchronization

No synchronization for agent movement
Allows numerically reproducible simulations



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
CPU-optimized OpenCL implementation

Main algorithm
Modeler’s perspective

Processes per time step
1: j ← 0
2: for j < rows per thread do
3: Move() + GrowFood() . Environment-parallel
4: j ← j + 1
5: end for
6: j ← 0
7: for j < rows per thread do
8: Act() + GatherStats() . Environment-parallel
9: j ← j + 1

10: end for



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
CPU-optimized OpenCL implementation

Main algorithm
OpenCL developer’s perspective

Processes per time step
1: j ← 0
2: for j < rows per thread do
3: step1() . OpenCL kernel
4: j ← j + 1
5: end for
6: j ← 0
7: for j < rows per thread do
8: step2() . OpenCL kernel
9: j ← j + 1

10: end for



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
CPU-optimized OpenCL implementation

Data structures

Array of grid cells Array of agents

Sc Cell state
ia1 First agent

index or NULL

Sa Agent state
iaN Next agent

index or NULL



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
CPU-optimized OpenCL implementation

Agent allocation

Performed in step2() kernel
Atomic compare-exchange on random agent array
location

If location empty, then allocation successful
Otherwise, try again (until max. times)

Allocation not deterministic...
...but irrelevant for simulation reproducibility



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
Statistical equivalence of models

Model replication

Replicating an ABM is difficult
Parallelization

Harder kind of replication
Easy to introduce undesired biases

Crucial: verify if parallelized model is statistically
equivalent to serial model



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
Statistical equivalence of models

How to test?

Multiple runs of each model implementation
Define output summary measures

Averages, extremes values, principal components (PCs)
Apply statistical tests to summary measures

H0: outputs from same distribution
H1: outputs from different distributions

Multiple parameterizations: increased confidence in
replication



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
Results

Experimental setup
Hardware and software

Hardware
Intel Xeon CPU E5-2650 v3 @ 2.30GHz (10 cores,
HyperThreading)
64GB RAM

Software
Ubuntu 16.04.1 LTS
OpenJDK Java 1.8.0
OpenCL:

Intel OpenCL CPU Runtime 16.1.1
AMD APP SDK 3.0



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
Results

Experimental setup
Parameterizations

Implementations:
Java: 20 threads
OpenCL: 20 work-items/work-groups

Parameter sets:
1
2 (+agents)

Model sizes:
400× 400
. . .
6400× 6400



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
Results

Scalability

Parameter set 1

400 800 1600 3200 6400100

101

102

103

104

Size

T
im

e
(s
)

Java
OpenCL Intel
OpenCL AMD

Parameter set 2 (+agents)

400 800 1600 3200 6400100

101

102

103

104

Size

T
im

e
(s
)

Java
OpenCL Intel
OpenCL AMD



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
Results

Speedup OpenCL vs Java

Parameter set 1

OpenCL Intel OpenCL AMD
0

2

4

6

8

10

12

Implementations

Sp
ee
du

p
vs

Ja
va

400
800
1600
3200
6400

Parameter set 2 (+agents)

OpenCL Intel OpenCL AMD
0

1

2

3

4

5

6

7

8

Implementations

Sp
ee
du

p
vs

Ja
va

400
800
1600
3200
6400



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
Results

Statistical comparison

Size/set Outputs

P s Pw Pc E
s

E
w

C

400/1 0.062 0.285 0.029 0.241 0.446 0.030
800/1 0.863 0.482 0.865 0.047 0.494 0.864
1600/1 0.532 0.816 0.759 0.332 0.382 0.768
3200/1 0.125 0.212 0.174 0.119 0.189 0.171
6400/1 0.189 0.117 0.218 0.015 0.452 0.218

400/2 0.557 0.639 0.717 0.735 0.535 0.721
800/2 0.522 0.560 0.558 0.289 0.724 0.559
1600/2 0.623 0.822 0.787 0.297 0.655 0.786
3200/2 0.153 0.567 0.715 0.830 0.654 0.715
6400/2 0.996 0.989 0.990 0.997 0.882 0.990

P-values for the MANOVA test on PCs explaining 90% of variance
H0: Outputs from Java and OpenCL drawn from same distribution



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
Conclusions, ongoing research and future work

Conclusions

CPU-optimized OpenCL is feasible for ABM
Reproducible simulations possible
Statistically similar results to Java...
...but much faster



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
Conclusions, ongoing research and future work

Ongoing research

Agent-parallel (AP) OpenCL GPU implementation
Similar performance to OpenCL CPU implementation

Problem: expensive agent sorting step
Outputs statistically different

Hypothesis: PRNG stream partitioning



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
Conclusions, ongoing research and future work

Future work

CPU
OpenCL 2.0+
Nested parallelism

GPU
Fix incorrect behavior
Improve performance
Run on Intel and Mali GPUs



Assessing the feasibility of OpenCL CPU implementations for agent-based simulations
Conclusions, ongoing research and future work

Thank you!

Full paper https://doi.org/10.1145/3078155.3078174
Source code https://github.com/fakenmc/pphpc
Data analysis https://zenodo.org/record/293014

https://doi.org/10.1145/3078155.3078174
https://github.com/fakenmc/pphpc
https://zenodo.org/record/293014

	Agent-based modeling (ABM)
	ABM parallelization
	The PPHPC model
	CPU-optimized OpenCL implementation
	Statistical equivalence of models
	Results
	Conclusions, ongoing research and future work

