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Agenda

● Introduction to SYCL™, TensorFlow™ and Eigen
● Goals & Challenges
● Implementation Status
● Benchmarks
● Next Steps
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Motivation

● Machine Learning is back!
● More complex concepts can be applied
● Deep calculation networks can be trained and executed faster 
● Thanks to heterogeneous platforms

● ML is widely used in many different areas
● Pattern recognition, classification, content generation, optimization, driving 

cars, decision making  
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Motivation

● Available frameworks are dominated by CUDA®

● Lack of OpenCL™ support

● Does not support multiple architectures

● Does not support performance portability

● Embedded system challenges

● Huge computation and data transfer demands

● Storage, power and memory resource constraints

● High efficiency and accuracy
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SYCL Programming Model
● A royalty-free, open standard from The Khronos Group™

● ComputeCpp implementation used for this project 

– TriSYCL - alternative implementation

● Enables better cross-platform performance portability

● Modern C++ supported

● Single-source programming model
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Where SYCL Fits
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TensorFlow
● Modern data-flow framework by Google

● Front-end: graph-based model

● Tensor ( input / output data )

● Operations ( computation kernels )

● Back-ends:

– Eigen ( main )

– CuDNN: NVIDIA neural network library

– Embedded built-in operations
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Eigen
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● C++ high-performance linear algebra 
library.

● Modular

● Headers only

● Expression template meta-programming 
technique

● Back-ends: 

– CPU

– NVIDIA CUDA 

– and now SYCL



© 2017 Codeplay Software Ltd.9

The Goal

● Functional OpenCL 1.2 back-end in TensorFlow

● An OpenCL 1.2 back-end for Eigen is also needed

● Integration must be non-intrusive

● Should not change the front-end interface

● Should re-use the existing code base as much as possible

● Should not break any other modules

● TensorFlow integration without any major changes  
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The Challenge
● Eigen 

● Heavily uses C++ template meta-programming

● The expression tree model

● Single-source programming model used for CUDA and CPU

● Standard scalar pointer used for existing back-ends ( persistent device pointer )

● Explicit data transfer interface between host and device

● TensorFlow

● Complex, multi-layered framework design

● CUDA design used for main heterogeneous back-end

● Under active development – new features are added on a weekly basis  
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TensorFlow on GitHub
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Why SYCL?

● SYCL is an open standard, enabling portability across a wide range of devices

● SYCL can dispatch device kernels from a C++ application, similar to CUDA

● OpenCL 1.2 does not support C++ directly, so adding OpenCL support to TensorFlow 
would require reimplementation of the back-end – maintenance overhead

● Expression of the tree-based kernel fusion is challenging without embedding a custom 
compiler

● Single-source programming model

● No need to implement separate kernel code for each operation

● Re-use of the existing template code for both host and device is possible
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Work Performed

● Conversion of raw pointers to accessors at compile-time:

● The expression tree is recreated, with SYCL buffers in place of raw pointers

● The expression tree is then traversed, in order to re-instantiate the expression tree 
on the SYCL device

● Pointers to data in host memory are replaced with the corresponding accessors to 
SYCL buffers
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Work Performed

● TensorFlow operation 
registration for SYCL

● Reuse of Eigen operations
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Work Performed

● TensorFlow operation 
registration for SYCL

● Reuse of Eigen operations
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Where we are

● We have most of the Eigen back-end implemented

● We are working on performance improvements

● SYCL support in TensorFlow is approaching full support for Inception-v3

● Most of the model's operations run on SYCL devices

● We are in the process of upstreaming our changes
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Intel® Core™ i7-6700K CPU 4.00GHz VS AMD Radeon™ R9 Nano
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What Next?

● Current SYCL support in Eigen and TensorFlow is at an initial release level

● Progressing towards feature completion in both

● Performance improvements

● Benchmarking with ML models

● Targeting more platforms

● Continuing to push changes to the upstream repositories

● We’ll keep you posted!
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Thanks! Questions?

luke@codeplay.com

https://github.com/lukeiwanski/tensorflow
https://bitbucket.org/mehdi_goli/opencl

http://sycl.tech/

mailto:luke@codeplay.com
https://github.com/lukeiwanski/tensorflow
https://bitbucket.org/mehdi_goli/opencl
http://sycl.tech/
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