
Accelerate Machine Learning Using
TensorFlow and SYCL on OpenCL Devices

Mehdi Goli, Luke Iwanski, Andrew Richards

May 2017

© 2017 Codeplay Software Ltd.2

Agenda

● Introduction to SYCL™, TensorFlow™ and Eigen
● Goals & Challenges
● Implementation Status
● Benchmarks
● Next Steps

© 2017 Codeplay Software Ltd.3

Motivation

● Machine Learning is back!
● More complex concepts can be applied
● Deep calculation networks can be trained and executed faster
● Thanks to heterogeneous platforms

● ML is widely used in many different areas
● Pattern recognition, classification, content generation, optimization, driving

cars, decision making

© 2017 Codeplay Software Ltd.4

Motivation

● Available frameworks are dominated by CUDA®

● Lack of OpenCL™ support

● Does not support multiple architectures

● Does not support performance portability

● Embedded system challenges

● Huge computation and data transfer demands

● Storage, power and memory resource constraints

● High efficiency and accuracy

© 2017 Codeplay Software Ltd.5

SYCL Programming Model
● A royalty-free, open standard from The Khronos Group™

● ComputeCpp implementation used for this project

– TriSYCL - alternative implementation

● Enables better cross-platform performance portability

● Modern C++ supported

● Single-source programming model

© 2017 Codeplay Software Ltd.6

Where SYCL Fits

SYCL

OpenCL SPIR™

CUDA®

TensorFlow™ TensorFlow™

PTX

NVIDIA GPUCPU/GPU/FPGA

C
O

M
P

U
T

E

STANDARD STACK CUDA® STACK

Eigen Eigen

S
/W

H
/W

© 2017 Codeplay Software Ltd.7

TensorFlow
● Modern data-flow framework by Google

● Front-end: graph-based model

● Tensor (input / output data)

● Operations (computation kernels)

● Back-ends:

– Eigen (main)

– CuDNN: NVIDIA neural network library

– Embedded built-in operations

ML Model

TensorFlow Python Wrapper

TensorFlow C++ Shared Library

Operation Kernels

LLVM

Stream Executor

TensorBoard

SWIG

NumPy

SCIPy

FFMPG

MKL

JPEG

Protobuf

...

Eigen

C
U

D
A

X
LA

S
Y

C
L

C
U

D
A

C
P

U

S
Y

C
L

O
penC

L

© 2017 Codeplay Software Ltd.8

Eigen

Eigen

Modules

TensorCholesky

Core

Geometry

Jacobi

...

Compile-Time Expression Tree

Runtime Executor

CPU Device
ThreadPool

Device
CUDA Device SYCL Device

C
P

U
(

S
er

ia
l)

B
ac

k-
en

d

C
P

U
(

T
hr

ea
dP

oo
l)

B
ac

k-
en

d

C
U

D
A

B
ac

k-
en

d

S
Y

C
L

B
ac

k-
en

d

● C++ high-performance linear algebra
library.

● Modular

● Headers only

● Expression template meta-programming
technique

● Back-ends:

– CPU

– NVIDIA CUDA

– and now SYCL

© 2017 Codeplay Software Ltd.9

The Goal

● Functional OpenCL 1.2 back-end in TensorFlow

● An OpenCL 1.2 back-end for Eigen is also needed

● Integration must be non-intrusive

● Should not change the front-end interface

● Should re-use the existing code base as much as possible

● Should not break any other modules

● TensorFlow integration without any major changes

© 2017 Codeplay Software Ltd.10

The Challenge
● Eigen

● Heavily uses C++ template meta-programming

● The expression tree model

● Single-source programming model used for CUDA and CPU

● Standard scalar pointer used for existing back-ends (persistent device pointer)

● Explicit data transfer interface between host and device

● TensorFlow

● Complex, multi-layered framework design

● CUDA design used for main heterogeneous back-end

● Under active development – new features are added on a weekly basis

© 2017 Codeplay Software Ltd.11

TensorFlow on GitHub

© 2017 Codeplay Software Ltd.12

Why SYCL?

● SYCL is an open standard, enabling portability across a wide range of devices

● SYCL can dispatch device kernels from a C++ application, similar to CUDA

● OpenCL 1.2 does not support C++ directly, so adding OpenCL support to TensorFlow
would require reimplementation of the back-end – maintenance overhead

● Expression of the tree-based kernel fusion is challenging without embedding a custom
compiler

● Single-source programming model

● No need to implement separate kernel code for each operation

● Re-use of the existing template code for both host and device is possible

© 2017 Codeplay Software Ltd.13

Work Performed

● Conversion of raw pointers to accessors at compile-time:

● The expression tree is recreated, with SYCL buffers in place of raw pointers

● The expression tree is then traversed, in order to re-instantiate the expression tree
on the SYCL device

● Pointers to data in host memory are replaced with the corresponding accessors to
SYCL buffers

© 2017 Codeplay Software Ltd.14

Work Performed

● TensorFlow operation
registration for SYCL

● Reuse of Eigen operations

© 2017 Codeplay Software Ltd.15

Work Performed

● TensorFlow operation
registration for SYCL

● Reuse of Eigen operations

© 2017 Codeplay Software Ltd.16

Where we are

● We have most of the Eigen back-end implemented

● We are working on performance improvements

● SYCL support in TensorFlow is approaching full support for Inception-v3

● Most of the model's operations run on SYCL devices

● We are in the process of upstreaming our changes

© 2017 Codeplay Software Ltd.17

Intel® Core™ i7-6700K CPU 4.00GHz VS AMD Radeon™ R9 Nano

© 2017 Codeplay Software Ltd.18

What Next?

● Current SYCL support in Eigen and TensorFlow is at an initial release level

● Progressing towards feature completion in both

● Performance improvements

● Benchmarking with ML models

● Targeting more platforms

● Continuing to push changes to the upstream repositories

● We’ll keep you posted!

© 2017 Codeplay Software Ltd.19

Thanks! Questions?

luke@codeplay.com

https://github.com/lukeiwanski/tensorflow
https://bitbucket.org/mehdi_goli/opencl

http://sycl.tech/

mailto:luke@codeplay.com
https://github.com/lukeiwanski/tensorflow
https://bitbucket.org/mehdi_goli/opencl
http://sycl.tech/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

