Modeling Explicit SIMD Programming With Subgroup Functions

Ben Ashbaugh, Biju George

IWOCL 2017
From IWOCL 2015:

Large performance increase using Subgroups

Additional performance increase using Subgroup Extensions
Executing OpenCL™ Kernels on Intel® Processor Graphics
Intel® Core™ i5 with Iris™ Graphics 6100:
Intel® Iris™ Pro Graphics 580
EU: Execution Unit

Instruction Fetch

Thread Arbiter

Send
Branch
SIMD FPU
SIMD FPU
OpenCL™ Work Groups Assigned to One or More EU Threads, Across Multiple EUs
What is a Subgroup?

A Subgroup is a Collection of Work Items

- Another Level in the Execution Hierarchy
- Between Work Groups and Work Items

Key Takeaways:

- On Intel® Processor Graphics, work items in a subgroup execute on the same EU Thread!
- Subgroups can use specialized SIMD instructions for “block operations”

Subgroup Functions bring “Explicit SIMD” to OpenCL kernels!
Block Reads and Writes
Block Copies in Standard OpenCL™:

(Potentially) Asynchronously Copy Data from Global Memory to Local Memory!

Problems:

- Requires Local Memory to Share Data
- Requires Work Group Barriers to Synchronize Access
- Specialized SIMD Instructions for Block Copies Operate on Registers (AKA Private Memory)

→ Infrequently Used, In Practice
Block Reads and Writes: cl_intel_subgroups

Intel cl_intel_subgroups Extension Adds Subgroup Block Reads and Writes:

For Buffers:

```c
1  // block read
2 gentype intel_sub_group_block_read(
3    const __global gentype* p );

5  // block write
6 void intel_sub_group_block_write(
7    __global gentype* p,
8    gentype data );
```

And Images:

```c
1  // block read
2  gentype intel_sub_group_block_read(
3    image2d_t image,
4    int2 coord );

6  // block write
7  void intel_sub_group_block_write(
8    image2d_t image,
9    int2 coord,
10   gentype data );
```

These functions were used to accelerate SGEMM.

Notes:
- Data is read into and written from registers.
- Block sizes are implicit – determined by subgroup size.
Block Reads and Writes: `cl_intel_media_block_io`

For Images, Intel GPUs also support *flexible* block reads and writes.

Intel `cl_intel_media_block_io` Extension Adds Additional Functions
- Explicit block sizes, full application control, still operates on registers

Implicit Block Size:

```
1 uint2 return_value = intel_sub_group_block_read(
2     image,
3     coord);
```

Explicit Block Size:

```
1 char4 return_value = intel_sub_group_media_block_read_uc4(
2     coord,
3     16,
4     2,
5     image);
```

Two Component Block Read:

```
return value.x .y
```

16x2 Media Block Read for Subgroup Size 8:
Block Read and Write Benefits

Performance!

- Address Arithmetic: Compute one address per subgroup vs. per work item
- Block Sizes: Read or write lots of data per instruction
Block Read and Write Benefits

Particularly Beneficial for Images:

- “Raw” Reads and Writes: Process pixels from multiple rows and/or columns
- Cache-friendly Reads and Writes: Avoid partial cache lines with Tiled Images
Video Motion Estimation (VME)
What is Video Motion Estimation?

A key algorithm component for Video Encoding, Frame Rate Conversion, Asynchronous Space Warping for Virtual Reality, more...

A Block Operation:

- Simplified: (In) Source and Reference Blocks \rightarrow (Out) Motion Vectors
- In reality: much more!
Video Motion Estimation Hardware

Intel® Processor Graphics has a dedicated Motion Estimation Engine

- Part of the Media Sampler

How to expose this capability to OpenCL™ kernels...

- Programmed at the EU Thread Level
Motion Estimation in OpenCL™ Kernels: cl_intel_device_side_avc_motion_estimation

Solution: Subgroup functions! (of course!)

- Described by the cl_intel_device_side_avc_motion_estimation extension

Unique Characteristic:
Every Step is a Subgroup Operation!

- Initialization
- Configuration
- Execution
- Assigning Results
Summary and Future Work
Summary

OpenCL™ Subgroups are Great!

Subgroup Functions Bring “Explicit SIMD” Programming Concepts to “Implicit SIMD” OpenCL Kernels

- Utilize Additional Hardware Features
- Improve Performance
- Add New Functionality

Future Work:

- Application to other domains: AVX intrinsics?
- Programming Models: Hierarchical Parallelism?
Thank You!

Acknowledgements: This presentation would not have been possible without material and review comments from many people – thank you!

Stephen Junkins, Jeffrey McAllister, Robert Ioffe, ...
Useful Links:

The Compute Architecture of Intel® Processor Graphics Gen9

SGEMM for Intel® Processor Graphics Sample Code

Intel Subgroup Extensions
- https://www.khronos.org/registry/OpenCL/extensions/intel/cl_intel_subgroups.txt
- https://www.khronos.org/registry/OpenCL/extensions/intel/cl_intel_subgroups_short.txt
- https://www.khronos.org/registry/OpenCL/extensions/intel/cl_intel_required_subgroup_size.txt
- https://www.khronos.org/registry/OpenCL/extensions/intel/cl_intel_device_side_avc_motion_estimation.txt
Legal Notice and Disclaimers

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

© 2017 Intel Corporation.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2017, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

<table>
<thead>
<tr>
<th>Optimization Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.</td>
</tr>
</tbody>
</table>

Notice revision #20110804