Experiences with OpenCL in PyFR:
2014—Present

F.D. Witherden1 and P.E. Vincent2

1Department of Ocean Engineering, Texas A&M University
2Department of Aeronautics, Imperial College London
Motivation
Motivation

• Computational fluid dynamics (CFD) is the bedrock of several high-tech industries.
Motivation

• Interested in simulating unsteady, turbulent, flows.
Motivation

- Objective is to solve the **Navier–Stokes** equations in the vicinity of **complex geometrical configurations**.
Motivation

High-Order Methods

PyFR

OpenCL Backend

Future
High-Order Methods

- Our choice of method is the high-order accurate Flux Reconstruction (FR) approach of Huynh.
- Combines aspects of traditional finite volume (FVM) and finite element methods (FEM).
High-Order Methods

• Consider a smooth function
High-Order Methods

- In FVM we divide the domain into cells...
High-Order Methods

• ...and in each cell store the average of the function.
High-Order Methods

• Cells are coupled via Riemann solves at the interfaces.
High-Order Methods

• In FR we divide the domain into elements…
High-Order Methods

• ...and in each element store a discontinuous interpolating polynomial of degree p.
High-Order Methods

- As before elements are coupled via Riemann solves.
High-Order Methods

• Greater **resolving power** per degree of freedom (DOF)…
 • …and thus **fewer overall DOFs** for same accuracy.

• Tight **coupling between DOFs** inside of an element…
 • …reduces indirection and **saves memory bandwidth**.
High-Order Methods

- Direct extension into 2D and 3D.
High-Order Methods

• Most operations can be cast as matrix-matrix products.

• Element type determines if the operation is sparse or dense.
PyFR

Python + Flux Reconstruction
PyFR

• High level structure.

Python Outer Layer
(Hardware Independent)

• Setup
• Distributed memory parallelism
• Outer loop calls hardware specific kernels
PyFR

• Need to generate **hardware specific kernels**.

Python Outer Layer
(*Hardware Independent*)

• Setup
• Distributed memory parallelism
• Outer loop calls **hardware specific kernels**
PyFR

- In FR **two types** of kernel are required.

<table>
<thead>
<tr>
<th>Python Outer Layer (Hardware Independent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Setup</td>
</tr>
<tr>
<td>- Distributed memory parallelism</td>
</tr>
<tr>
<td>- Outer loop calls hardware specific kernels</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Matrix Multiply Kernels</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Data interpolation/ extrapolation etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point-Wise Nonlinear Kernels</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Flux functions, Riemann solvers etc.</td>
</tr>
</tbody>
</table>
Matrix multiplications are quite simple.

- Setup
- Distributed memory parallelism
- Outer loop calls **hardware specific kernels**

Python Outer Layer
Hardware Independent

- Data interpolation/ extrapolation etc.
- Flux functions, Riemann solvers etc.

Point-Wise Nonlinear Kernels

Call GEMM
PyFR

• For the point-wise nonlinear kernels we use a DSL.

Python Outer Layer
(Hardware Independent)

• Setup
• Distributed memory parallelism
• Outer loop calls **hardware specific kernels**

Matrix Multiply Kernels

• Data interpolation/extrapolation etc.

Point-Wise Nonlinear Kernels

• Flux functions, Riemann solvers etc.

Call GEMM

Pass templates through **Mako derived** templating engine
PyFR

- Kernels are generated and compiled at start-up.

Python Outer Layer (Hardware Independent)
- Setup
- Distributed memory parallelism
- Outer loop calls hardware specific kernels

Matrix Multiply Kernels
- Data interpolation/extrapolation etc.

Point-Wise Nonlinear Kernels
- Flux functions, Riemann solvers etc.

Call GEMM

C/OpenMP Hardware specific kernels

OpenCL Hardware specific kernels

CUDA Hardware specific kernels

Pass templates through Mako derived templating engine
PyFR

• Which may then be called by the outer layer.
PyFR

• An example.

PyFR-Mako

```python
<%namespace module='pyfr.backends.base.makoutil' name='pyfr'/>

<%pyfr:macro name='inviscid_flux' params='s, f, p, v'>
    fpdtype_t invrho = 1.0/s[0];
    fpdtype_t E = s[${nvars - 1}];
    // Compute the velocities
    fpdtype_t rhov[${ndims}];
    % for i in range(ndims):
        rhov[i] = s[i + 1];
        v[i] = invrho * rhov[i];
    % endfor
    // Compute the pressure
    p = ${c['gamma'] - 1} * (E - 0.5 * invrho * ${pyfr.dot('rhov[i]', i=ndims)});
    // Density and energy fluxes
    % for i in range(ndims):
        f[i][0] = rhov[i];
        f[i][${nvars - 1}] = (E + p) * v[i];
    % endfor
    // Momentum fluxes
    % for i, j in pyfr.ndrange(ndims, ndims):
        f[i][${j + 1}] = rhov[i] * v[j]$ if i == j else ');
    % endfor
</%pyfr:macro>
```

CUDA
C/OpenMP
OpenCL
• An example.

PyFR-Mako

```mako
<%namespace module='pyfr.backends.base.makoutil' name='pyfr'/>

<%pyfr:macro name='inviscid_flux' params='s, f, p, v'%>
  fpdtype_t invrho = 1.0/s[0];
  fpdtype_t E = s[0]*s[0] - 1;
  // Compute the velocities
  fpdtype_t rhov[ndims];
  for i in range(ndims):
    rhov[i] = s[i] - invrho* rhov[i];
  %endfor
  // Compute the pressure
  p = (c['gamma'] - 1)*E - 0.5*invrho*pyfr.dot(rhv[i], i=ndims));
  // Density and energy fluxes
  for i in range(ndims):
    f[i][0] = rhov[i];
    f[i][nvarys - 1] = (E + p)*v[i];
  %endfor
  // Momentum fluxes
  for i, j in pyfr.ndrange(ndims, ndims):
    f[i][j] = rhov[i]*v[j];
  %endfor
</%pyfr:macro>
```

CUDA

```c
// AoSoA macros
#define SOA_SZ 32
#define SOA_IX(a, v, nv) ((((a) / SOA_SZ)* (nv) + (v)) * SOA_SZ + (a) % SOA_SZ)

// Typedefs
typedef double fpdtype_t;

__global__ void tflux(int _ny, int _nx, fpdtype_t* __restrict__ f_v, int ldf, const fpdtype_t* __restrict__ smats_v, int ldsmats, const fpdtype_t* __restrict__ u_v, int ldu)
{
  int _x = blockIdx.x*blockDim.x + threadIdx.x; int _y = blockIdx.y*blockDim.y + threadIdx.y;
  int _x = blockIdx.x*blockDim.y + threadIdx.y;
  #define X_IDX (_x)
  #define X_IDX_AOSOA(v, nv) SOA_IX(X_IDX, v, nv)

  if (_x < _nx && _y < _ny)
  {
    # Compute the flux
    fpdtype_t ftemp[2][4];
    fpdtype_t f[2][4];
    fpdtype_t invrho_ = 1.0/u_v[ldu*_y + X_IDX_AOSOA(0, 4)];
    fpdtype_t E_ = u_v[ldu*_y + X_IDX_AOSOA(3, 4)];
  
    // Compute the velocities
    f[0][0] = invrho_* rhov[i];
    f[0][nvarys - 1] = (E + p)*v[i];
  
    // Momentum fluxes
    for i, j in pyfr.ndrange(ndims, ndims):
      f[i][j] = rhov[i]*v[j];
  
  
  
}
```

PyFR
PyFR

• Abstracts data layout.

PyFR-Mako

```python
<%namespace module='pyfr.backends.base.makoutil' name='pyfr'/>
<%pyfr:macro name='inviscid_flux' params='s, f, p, v'>
    fpdtype_t invrho = 1.0/s[0];
    fpdtype_t E = s[${nvars - 1}];
    // Compute the velocities
    fpdtype_t rhov[${ndims}];
    % for i in range(ndims):
        rhov[i] = s[i + 1];
    v[i] = invrho*rhov[i];
    % endfor
    // Compute the pressure
    p = ${c['gamma'] - 1}*(E - 0.5*invrho*${pyfr.dot('rhov[i]', i=ndims)});
    // Density and energy fluxes
    % for i in range(ndims):
        f[i][0] = rhov[i];
        f[i][${nvars - 1}] = (E + p)*v[i];
    % endfor
    // Momentum fluxes
    % for i, j in pyfr.ndrange(ndims, ndims):
        f[i][j + 1] = rhov[i]*v[j] + p if i == j else 0;
    % endfor
</%pyfr:macro>

CUDA

```c
Compute the flux
fpdtype_t ftemp[2][4];
fpdtype_t p, v[2];
{
 fpdtype_t invrho_ = 1.0/u_v[ldu*_y + X_IDX_AOSOA(0, 4)];
 fpdtype_t E_ = u_v[ldu*_y + X_IDX_AOSOA(3, 4)];
 // Compute the velocities
 fpdtype_t rhov_ = u_v[ldu*_y + X_IDX_AOSOA(1, 4)];
 v[0] = invrho_*(rhov_[0]);
 rhov_[1] = u_v[ldu*_y + X_IDX_AOSOA(2, 4)];
 v[1] = invrho_*(rhov_[1]);
 // Compute the pressure
 p = 0.4*(E_ - 0.5*invrho_*((rhov_[0])*(rhov_[0]) + (rhov_[1])*(rhov_[1])));
 // Density and energy fluxes
 ftemp[0][0] = rhov_[0];
 ftemp[0][3] = (E_ + p)*v[0];
 % for i in range(ndims):
 ftemp[1][i] = rhov_[i];
 % endfor
 // Momentum fluxes
 % for i, j in pyfr.ndrange(ndims, ndims):
 ftemp[1][j + 1] = rhov_[i]*v[j] + p if i == j else 0;
 % endfor
```
PyFR

• Templates based on runtime parameters.

PyFR-Mako

<%namespace module='pyfr.backends.base.makoutil' name='pyfr'/>

<%pyfr:macro name='inviscid_flux' params='s, f, p, v'>
    fpdtype_t invrho = 1.0/s[0];
    fpdtype_t E = s[nvars - 1];
    // Compute the velocities
    fpdtype_t rhov[$ndims]];
    for i in range(ndims):
        rhov[i] = s[i + 1];
        v[i] = invrho*rhov[i];
    // Compute the pressure
    p = ${c['gamma'] - 1}*(E - 0.5*inwrho*$pyfr.dot('rhov[*]', i=ndims));
    // Density and energy fluxes
    for i in range(ndims):
        f[i][0] = rhov[i];
        f[i][nvars - 1] = (E + p)*v[i];
    // Momentum fluxes
    for i, j in pyfr.ndrange(ndims, ndims):
        f[i][j] = rhov[i]*v[j] + p if i == j else 0;
    % endfor
</%pyfr:macro>

CUDA

{ }

// Compute the flux
fpdtype_t ftemp[2][4];
fpdtype_t p, v[2];
{
    fpdtype_t invrho_ = 1.0/u_v[ldu*_y + X_IDX_AOSOA(0, 4)];
    fpdtype_t E_ = u_v[ldu*_y + X_IDX_AOSOA(3, 4)];

    // Compute the velocities
    fpdtype_t rhov$_{[2]}$;
    rhov$_{[0]}$ = u_v[ldu*_y + X_IDX_AOSOA(1, 4)];
    v$_{[0]}$ = invrho_*$rhov$_{[0]}$;
    rhov$_{[1]}$ = u_v[ldu*_y + X_IDX_AOSOA(2, 4)];
    v$_{[1]}$ = invrho_*$rhov$_{[1]}$;

    // Compute the pressure
    p = 0.4*(E - 0.5*inwrho_*$pyfr.dot('rhov[*]', i=ndims));
    // Density and energy fluxes
    ftemp[0][0] = rhov$_{[0]}$;
    ftemp[0][3] = (E + p)*v$_{[0]}$;
    ftemp[1][0] = rhov$_{[1]}$;
    // Momentum fluxes
    for i, j in pyfr.ndrange(ndims, ndims):
        ftemp[i][j] = rhov$_{[i]}$*$v$_{[j]}$ + p if i == j else 0;
    % endfor
}
• Can also use `$\text{Python}$` to generate code.

**PyFR-Mako**

```python
<%namespace module='pyfr.backends.base.makoutil' name='pyfr'/>
<%pyfr:macro name='inviscid_flux' params='s, f, p, v'>
fptype_t invrho = 1.0/s[0];
fptype_t E = s[ndims - 1];
// Compute the velocities
fptype_t rhov[ndims];
% for i in range(ndims):
 rhov[i] = s[i + 1];
v[i] = invrho*rhov[i];
% endfor
// Compute the pressure
p = (c['gamma'] - 1)*(E - 0.5*invrho*pyfr.dot('rhov', i=ndims));
// Density and energy fluxes
% for i in range(ndims):
 f[i][0] = rhov[i];
 f[i][ndims - 1] = (E + p)*v[i];
% endfor
// Momentum fluxes
% for i, j in pyfr.ndrange(ndims, ndims):
 f[i][j + 1] = rhov[i]*v[j] + p if i == j else p;
% endfor
</%pyfr:macro>
```

**CUDA**

```c
// Compute the pressure
p = 0.4*(E - 0.5*invrho*((rhov[0]*rhov[0]) + (rhov[1]*rhov[1])));

// Density and energy fluxes
f[0][0] = rhov[0]*v[0] + p;
f[0][2] = rhov[0]*v[1];
f[1][1] = rhov[1]*v[0];

// Momentum fluxes
f[0][i] = rhov[i]*v[j] + p if i == j else p;
```

PyFR-Mako is a Python macro to generate C code, while CUDA is a parallel computing platform and application programming interface (API) developed by NVIDIA for general-purpose computing on graphics processing units (GPGPUs). Both can be used to generate code, but PyFR-Mako is more general and can be used for a variety of tasks, including generating C code for numerical simulations.
PyFR

• Architecture enables PyFR to be performance portable across a range of platforms with complete feature parity.

• Can also mix and match backends across MPI ranks enabling heterogeneous computing.
Motivation  High-Order Methods  PyFR  OpenCL Backend  Future
OpenCL Backend

- PyFR’s OpenCL backend was written in 2014.
- Uses the **PyOpenCL** wrappers by Andreas Kloeckner.
  - As OpenCL is a C API it is *easy to wrap*.
- The code generation model also fits well with PyFR.
OpenCL Backend

- OpenMP
- NVIDIA CUDA
- Intel Xeon Phi
- AMD Radeon
- NVIDIA Tesla
OpenCL Backend

• Performance in **bandwidth-bound scenarios** is usually on a par with ‘native’ approaches.

• Consider breakdown of a Taylor–Green vortex.
OpenCL Backend

- Normalised run-time on an NVIDIA V100 GPU.
- OpenCL is **slightly faster** at both $p = 3$ and $p = 4$. 
OpenCL Backend

• Limitation #1: Lack of performance primitives.

• Getting a substantial fraction of peak FLOPS for GEMM requires **hardware specific assembly code**.

• These routines are usually **provided by vendors** in the form of BLAS libraries.
OpenCL Backend

- However, for OpenCL we have to call out to generic BLAS libraries; originally clBLAS and since 2018 CLBlast.

- Although both employ auto-tuning their performance is not competitive with Intel MKL or NVIDIA cuBLAS.

- Unable to push past 40–50% of peak FLOP/s.
OpenCL Backend

- Limitation #2: No MPI interoperability.

- With CUDA it is possible to pass device pointers to MPI.

- Under the right conditions it can improve strong scaling by ~10-15%.
OpenCL Backend

• Limitation #3: Implementation quality.

• Observed incorrect results with Mesa on AMD Fiji GPUs and the Intel Graphics Compute Runtime on Gen9 GPUs.
Motivation
High-Order Methods
PyFR
OpenCL Backend
Future
Future Work

• Currently investigating how to support upcoming Intel GPUs.

• As we’re a Python application **SYCL/DPC++ is not viable.**

• Initial support will likely be through our OpenCL backend.
Future Work

• In order to better support AMD GPUs we’re looking to add a **HIP backend** into PyFR.

• This will enable us to avoid some of the issues we’ve encountered with the OpenCL backend.