IWOCL / SYCLcon 2020

Evaluating the performance of HPCstyle SYCL applications

Tom Deakin and Simon McIntosh-Smith

uob-hpc.github.io

Introduction

- SYCL was first released in 2014.
- Recent development of different implementations providing support for devices used in the HPC space.
- Platforms:
 - Intel Xeon Skylake and Iris Pro GPUs
 - NVIDIA RTX 2080 Ti GPU
 - AMD Radeon VII GPU

- Try out three different compilers:
 - Codeplay's ComputeCpp
 - Intel's oneAPI DPC++
 - Heidelberg University's hipSYCL

Platforms

Name	Architecture	Device Type	Mem. BW (GB/s)
Intel Xeon Gold 6126 (12-core)	Skylake	HPC CPU (1 socket)	119.21
Intel NUC i7-6770HQ with Iris Pro 580 Graphics	Skylake/Gen9	CPU + Integrated GPU	34.1
AMD Radeon VII	Vega 20	Discrete GPU	1024
NVIDIA RTX 2080 Ti	Turing	Discrete GPU	616

Applications

- Three applications:
 - BabelStream
 - > Copy kernel: c[i] = a[i];
 - > Triad kernel:a[i] = b[i] + scalar * c[i];
 - > Dot kernel: sum += a[i] * b[i];
 - Heat
 - > Simple explicit finite difference solve.
 - > 5-point stencil.
 - CloverLeaf
 - > 2D structured grid Lagrangian-Eulerian hydrodynamics code.
- All are main memory bandwidth bound, like many other HPC applications today.

BabelStream: Triad

- Results are shown as percentage of theoretical peak bandwidth, so higher is better.
- SYCL shows little overhead over direct implementations in the underlying models, particularly on the GPUs.
- Intel OpenCL runtime still showing known performance gap with OpenMP on Xeon platforms.

BabelStream: Dot

- For SYCL, OpenCL, CUDA and HIP, we implemented a global reduction by hand as they don't have one built in.
- Do see some performance loss in the SYCL version compared to what is possible on the platforms.
- SYCL performance matches underlying implementations in most cases.

BabelStream: Copy

- Memory copy kernel, with no floating point operations.
- Heat application should behave similarly to this kernel.
- See good and consistent performance on all the GPUs.
- Observe large range of performance on the Xeon CPU.

Heat: average performance

- Two SYCL versions:
 - 2D range: parallel_for<...>(range<2>{n,n},...) acc[j][i]
 - 1D range: parallel_for<...>(range<1>{n*n},...) acc[j+i*n]
- Consistent performance on NUC and AMD.
- Xeon performance mirrors that of BabelStream Copy.
- NVIDIA platform shows issues with underlying models, possibly driver related.

Platform	Model	Runtime (s)	Mem. BW (GB/s)
Xeon	SYCL (2D range)	77.17	13.27
	SYCL $(1D \text{ range})$	87.64	11.68
	OpenCL	15.71	65.04
	OpenMP	15.52	65.99
NUC	SYCL (2D range)	38.34	26.71
	SYCL $(1D \text{ range})$	39.44	25.97
	OpenCL	38.31	26.73
	SYCL (2D range)	2.28	449.50
NVIDIA	SYCL $(1D \text{ range})$	2.27	450.23
	OpenCL	4.06	252.13
	CUDA	3.97	257.80
AMD	SYCL (2D range)	2.23	461.13
	SYCL $(1D \text{ range})$	1.74	588.20
	OpenCL	2.26	460.32
	HIP	2.09	490.17

Heat: comparison to Copy

- Compare to performance of Copy as measured for each model.
- On Xeon see about 60% of attainable Copy bandwidth.
- Consistent performance on NUC.
- AMD shows high variability.
- This chart highlights the performance issues with CUDA and OpenCL on NVIDIA.

SYCL (2D range) SYCL (1D range) OpenCL OpenMP CUDA HIP

CloverLeaf

- Chart shows runtime, lower is better.
- SYCL within 10% of OpenCL performance.
- Reduction cause of performance gap on NVIDIA.
- The OpenCL runtime needs improvement on Xeon in order to SYCL to achieve it's potential as a parallel programming model of choice.

Summary

- Often possible to write SYCL applications that get good performance across a number of platforms.
- SYCL performance close to lower level model such as OpenCL.
- All the source code is available online, at our GitHub page.
- Widespread and robust support from all vendors is needed now to ensure SYCL is a success for the HPC community.