
Evaluating the 
performance of HPC-
style SYCL applications 

Tom Deakin
and Simon McIntosh-Smith

uob-hpc.github.io 1

IWOCL / SYCLcon 2020



Introduction

▪ SYCL was first released in 2014.

▪ Recent development of different implementations providing support 
for devices used in the HPC space.

2IWOCL / SYCLcon 2020

▪ Platforms:
– Intel Xeon Skylake and Iris Pro 

GPUs

– NVIDIA RTX 2080 Ti GPU

– AMD Radeon VII GPU

▪ Try out three different compilers:
– Codeplay’s ComputeCpp

– Intel’s oneAPI DPC++

– Heidelberg University’s hipSYCL



Platforms

3IWOCL / SYCLcon 2020



Applications
▪ Three applications:

– BabelStream
➢ Copy kernel: c[i] = a[i];
➢ Triad kernel: a[i] = b[i] + scalar * c[i];
➢ Dot kernel: sum += a[i] * b[i];

– Heat
➢ Simple explicit finite difference solve.
➢ 5-point stencil.

– CloverLeaf
➢ 2D structured grid Lagrangian-Eulerian hydrodynamics code.

▪ All are main memory bandwidth bound, like many other HPC 
applications today.

4IWOCL / SYCLcon 2020



BabelStream: Triad

▪ Results are shown as percentage 
of theoretical peak bandwidth, so 
higher is better.

▪ SYCL shows little overhead over 
direct implementations in the 
underlying models, particularly on 
the GPUs.

▪ Intel OpenCL runtime still showing 
known performance gap with 
OpenMP on Xeon platforms.

5IWOCL / SYCLcon 2020



BabelStream: Dot

▪ For SYCL, OpenCL, CUDA and 
HIP, we implemented a global 
reduction by hand as they don’t 
have one built in.

▪ Do see some performance loss in 
the SYCL version compared to 
what is possible on the platforms.

▪ SYCL performance matches 
underlying implementations in 
most cases.

6IWOCL / SYCLcon 2020



BabelStream: Copy

▪ Memory copy kernel, with no 
floating point operations.

▪ Heat application should behave 
similarly to this kernel.

▪ See good and consistent 
performance on all the GPUs.

▪ Observe large range of 
performance on the Xeon CPU.

7IWOCL / SYCLcon 2020



Heat: average performance 
▪ Two SYCL versions:

– 2D range: 
parallel_for<…>(range<2>{n,n},…)
acc[j][i]

– 1D range: 
parallel_for<…>(range<1>{n*n},…)
acc[j+i*n]

▪ Consistent performance on NUC and 
AMD.

▪ Xeon performance mirrors that of 
BabelStream Copy.

▪ NVIDIA platform shows issues with 
underlying models, possibly driver 
related.

8IWOCL / SYCLcon 2020



Heat: comparison to Copy

▪ Compare to performance of Copy 
as measured for each model.

▪ On Xeon see about 60% of 
attainable Copy bandwidth.

▪ Consistent performance on NUC.

▪ AMD shows high variability.

▪ This chart highlights the 
performance issues with CUDA 
and OpenCL on NVIDIA.

9IWOCL / SYCLcon 2020



CloverLeaf

▪ Chart shows runtime, lower is 
better.

▪ SYCL within 10% of OpenCL 
performance.

▪ Reduction cause of performance 
gap on NVIDIA.

▪ The OpenCL runtime needs 
improvement on Xeon in order to 
SYCL to achieve it’s potential as a 
parallel programming model of 
choice.

10IWOCL / SYCLcon 2020



Summary

▪ Often possible to write SYCL applications that get good 
performance across a number of platforms.

▪ SYCL performance close to lower level model such as OpenCL.

▪ All the source code is available online, at our GitHub page.

▪ Widespread and robust support from all vendors is needed now to 
ensure SYCL is a success for the HPC community.

11IWOCL / SYCLcon 2020

uob-hpc.github.io


