
Write Once, Deploy Many – 3D Rendering With 

SYCL Cross-Vendor Support and Performance 

Using Blender Cycles

Stefan Werner, Intel

Xavier Hallade, ph0b.com

Nikita Sirgienko and Sebastian Herholz, Intel
Malon Przemek, Codeplay Software

https://ph0b.com


#2

• Introduction on Blender and Cycles

• Blender Cycles code overview

• Experimental but critical extensions

• Maintaining and Shipping Blender with SYCL

• Getting a multi-vendors build using SYCL

• Results

Agenda



#3

• 3D editing and rendering application with 
Millions of users

• Two renderers
• EEVEE (GL/Vulkan/Metal) and Cycles 

(CPU/GPGPU)

• A Benchmark using Cycles
• opendata.blender.org

• 3-4 versions to support in parallel
• currently 3.6 LTS, 4.2 LTS, 4.4

• Broad end-users support
• from 10y old laptops to latest and future high-end 

Workstation and Datacenter GPUs

Blender

https://opendata.blender.org/


#4

• Path tracing physically based render engine

• Introduced in 2011 (Blender 2.61) supporting CPU and CUDA

• Initial implementation just one large kernel

• Refactored in 2021 (Blender 3.0 ) to a wavefront/microkernel 
approach (“Cycles X”)
• higher occupancy

• sorting between kernels for more coherent memory access

• reduced compile time

• lower register pressure

• despite that, still large kernels

History and Evolution of Cycles



#5

• Initial OpenCL support first released in 2015 (Blender 2.75)

• Split the kernel into a few smaller ones due to compiler bugs

• Still very unstable support, highly sensitive to driver versions

• Discrepancies between OpenCL and CUDA code

• Removed in 2021 (v3.0):
“The combination of the limited Cycles split kernel implementation, driver 
bugs, and stalled OpenCL standard has made maintenance too difficult.”

• v3.0 release with CPU, CUDA and HIP support

• SYCL backend added in 2022 (v3.3) for Intel Arc GPUs launch

OpenCL and SYCL in Cycles



#6

• Kernels written in C++ headers with own types and 
abstractions
• 36 different kernels
• state is periodically compacted and sorted
• simple in-order queue

• Almost no differences across targets

• Backend specific code:
• Compatibility header for kernels
• Memory operations
• Kernel launch
• Error handling

Cycles Code overview



#7

Kernels Graph

Init From 

Camera

Intersect 

Closest

Shade Surface

Shade 

Background

Intersect 

Shadow

Shade Shadow

Shade Volume

Volume Stack 

Init

Intersect 

Subsurface

For most scenes we can determine the 

camera position volume stack in 

advance and run this only once before 

the render loop.

If the volume stack is non-empty, a 

volume rendering kernel runs. The ray 

may either scatter or pass through to 

the surface.

If surface sampled a subsurface 

closure instead of BSDF, continue to 

subsurface kernel which will do ray-

traced scattering, and go back to 

Shade Surface to shade the exit point.

Surface and volume kernels may cast shadow rays.

On GPU, existing shadow ray must be handled before execution 

of the next kernel that could cast them.

Volume Stack 

Init

Just like for cameras, this volume stack 

init can be skipped most of the time.
Source: https://code.blender.org/2021/04/cycles-x/

Shade Light

Sorting and 

Compaction

https://code.blender.org/2021/04/cycles-x/


#8

#define ccl_gpu_thread_idx_x
(sycl::ext::oneapi::this_work_item::get_nd_item<1>().get_local_id(0))
#define ccl_gpu_global_id_x() 
(sycl::ext::oneapi::this_work_item::get_nd_item<1>().get_global_id(0))
#define ccl_gpu_global_size_x() 
(sycl::ext::oneapi::this_work_item::get_nd_item<1>().get_global_range(0))
#define ccl_gpu_warp_size
(sycl::ext::oneapi::this_work_item::get_sub_group().get_local_range()[0])
#define ccl_gpu_syncthreads() 
sycl::ext::oneapi::this_work_item::get_nd_item<1>().barrier()
…

#define ccl_gpu_ballot(predicate) \

(sycl::ext::oneapi::group_ballot(sycl::ext::oneapi::this_work_item::get_sub_group(), 
predicate) \

.count())

…

compat.h snippet

Complete version available in intern/cycles/kernel/device/oneapi/compat.h



#9

Launching Kernels
try {

queue->submit([&](sycl::handler &cgh) {
switch (device_kernel) {

case DEVICE_KERNEL_INTEGRATOR_RESET:
oneapi_call(kg, cgh, global_size, local_size, args, oneapi_kernel_integrator_reset);
break;
…

}
}

}

void oneapi_kernel_integrator_reset(KernelGlobalsGPU *ccl_restrict kg,
size_t kernel_global_size,
size_t kernel_local_size,
sycl::handler &cgh,
int num_states)

{
cgh.parallel_for<class kernel_integrator_reset>(

sycl::nd_range<1>(kernel_global_size, kernel_local_size), [=](sycl::nd_item<1> item) {
const int state = ccl_gpu_global_id_x();
…

})
);

}

oneapi_call goes through 

macros and templates 

leading to processed code 

such as: 



#10

• Evaluates user authored shader graph

• Shaders executed in a stack based 
virtual machine

• float[255] stack

• Switch statement for 98 node types

• Pre-sorting by shader ID to reduce 
divergence

• Kernel with high register pressure

• Despite sorting, still divergent due to 

Monte Carlo sampling and different light 

sources

• Long compile times, large binaries

• Challenging for compiler and hardware

• Execution mostly memory latency bound

180K instructions shade_surface



#11

• Bindless Textures
• experimental, used in Blender 4.4

• Device Globals
• experimental, very recent, targeting use in Blender 4.5

• free_memory (intel_device_info)
• supported, used since Blender 4.2

• Vulkan Interoperability
• experimental, very recent, targeting use in Blender 4.5

• Additional: group_local_memory, this_work_item, group_ballot

Important extensions for Blender



#12

• The number of textures does not 
need to be known at compile time

• Access to fixed function hardware 
for texture interpolation and 
cache

• One call replaces four hundred of 
lines of code

• Textures can be stored in plain 
memory

Bindless Textures

For a deeper dive into bindless textures, 
join this session on Friday, 11:15 – 11:45:

SYCL Interoperability with DirectX 
and Vulkan via Bindless Images
Duncan Brawley, Przemyslaw Malon, 
Jack Kirk, Georgi Mirazchiyski and Peter 
Žužek, Codeplay Software.



#13

• Original CUDA code makes 
use of __constant__ globals

• Our initial implementation:
• put them into a wrapper class

• extra level of indirection for 
loads at runtime

• Stored in regular global 
memory

• With device globals:
o sycl::device_global no longer 

requires wrapper class

o Can use dedicated constant 
cache on NVIDIA GPUs

o More opportunities for 
compiler and hardware 
optimizations

Device Global



#14

Maintaining and Shipping Blender with SYCL

Application Package MUST run on current and future Drivers and Hardware

Driver Package(s) (for Intel GPUs) Application Package

Developer/Build environment

Source code

• Targeting SYCL for Intel 
GPUs

Embree (optional)

• Used for Hardware Ray 
Tracing on Intel GPUs

• Inlined calls from 
Blender intersect kernels

OpenImageDenoise
(optional)

• Used for denoising after 
rendering

oneAPI DPC++ 
compiler

GPU compiler (AoT)

• From “ocloc” package 
for Intel GPUs

Application Binaries

• With dependency on 
SYCL runtime, Embree 
and OIDN

SYCL runtime

• with Unified Runtime 
plugin

Unified Runtime

• With L0 plugin/adapter

• with unified-memory-
framework

Level-Zero API

Level-Zero Loader

• One version installed 
system wide

Level-Zero Runtime

GPU compiler (JIT)

• For incompatible AoT 
and specific kernels GPU



#15

1. Open-Source, GPLv3 compatible application side components

2. No mandatory runtime dependencies outside of OS
• Optionally calling into driver libraries: yes. Anything else: no

3. Support for a wide range of Operating Systems and GPUs:
• Windows (x64 and arm64), Linux (also with “old” ABI), Mac OS 

• Nvidia, AMD, Intel, Apple GPUs... open to other OSes and GPUs

4. Compatible with vendor tools for debugging and profiling

5. Broad and long term hardware support

6. Compatible with future driver and hardware releases for 2+ years

7. Easy to download and setup in CI and on developer machines

8. Well documented application deployment
• redistributables, driver requirements, OS support, bug tracking

9. No change of main application compiler and linker

Blender Requirements



#16

1. Multiple AoT GPU binaries per target
• currently supported only for Intel devices

2. Device binaries compression
• must ensure compiler is built with LLVM_ENABLE_ZSTD=FORCE_ON

3. Hardware Ray Tracing
• native SYCL library for Intel GPUs (Embree)

• vendor specific for other GPUs (HIP RT, OptiX),
not compatible with SYCL

• Vulkan Ray Tracing is cross-platform,
but cannot be efficiently mixed with SYCL

Other Important features for Blender



#17

• Written before any native CMake support

• clang++ -fsycl compiler called using add_custom_command
and cmake -E env

• Used only for a standalone library: cycles_kernel_oneapi

• CYCLES_ONEAPI_SYCL_TARGETS values passed to -fsycl-targets

• CYCLES_ONEAPI_SYCL_OPTIONS_sycl_target value passed to 
-Xsycl-target-backed=sycl_target

CMake Integration

implementation visible in ./intern/cycles/kernel/CMakelists.txt 



#18

1.Use oneAPI DPC++ compiler with L0, 
CUDA and HIP support

2.Set Blender CMake options:
CYCLES_ONEAPI_SYCL_TARGETS=
amdgcn-amd-amdhsa;nvptx64-nvidia-cuda;spir64_gen

CYCLES_ONEAPI_SYCL_OPTIONS_amdgcn-amd-amdhsa=
--offload-arch=gfx1032 

CYCLES_ONEAPI_SYCL_OPTIONS_nvptx64-nvidia-cuda=
--offload-arch=sm_75

3.At runtime, set environment variable 
to allow using devices that aren’t 
officially supported by Blender

CYCLES_ONEAPI_ALL_DEVICES=1

Compiling and Running on more GPUs

implementation visible in ./intern/cycles/kernel/CMakelists.txt 



#19

Tooling



#20

Scores of Blender Benchmark scenes on Nvidia RTX3080

normalized on CUDA device results

96.7% 97.2% 96.1%
100.0% 100.0% 100.0%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

cyclesx_classroom cyclesx_junkshop cyclesx_monster

3dd6104c87c_maxrregcount128_DeviceGlobals

RTX3080

ONEAPI CUDA

Source: Blender 4.5 alpha 3dd6104c87c with -Xcuda-
ptxas --maxrregcount=128 and Device Globals
Compiled with CUDA 12.8 SDK

System:
Nvidia RTX 3080 with drivers 560.94
Intel Core i9-10980XE
Windows 24H2



#21

Per-Kernels execution in seconds

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

ONEAPI CUDA ONEAPI CUDA ONEAPI CUDA

cyclesx_classroom cyclesx_junkshop cyclesx_monster

RTX3080

3dd6104c87c_maxrregcount128_DeviceGlobals

out_of_kernel

sort_write_pass

sort_bucket_pass

terminated_paths_array

terminated_shadow_paths_array

compact_shadow_paths_array

compact_paths_array

compact_shadow_states

compact_states

queued_shadow_paths_array

queued_paths_array

sorted_paths_array

prefix sum

intersect_subsurface

shade_background

intersect_shadow

intersect_closest

shade_light

shade_shadow

Source: Blender 4.5 alpha 3dd6104c87c with -Xcuda-
ptxas --maxrregcount=128 and Device Globals
Compiled with CUDA 12.8 SDK

System:
Nvidia RTX 3080 with drivers 560.94
Intel Core i9-10980XE
Windows 24H2



#22

Per-Kernels execution in seconds, simplified

9.06 8.47

10.35
9.48

5.44
4.77

8.61

8.00

7.40
7.76

5.19
5.22

0.42

0.54

0.15
0.33

0.07
0.13

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

ONEAPI CUDA ONEAPI CUDA ONEAPI CUDA

cyclesx_classroom cyclesx_junkshop cyclesx_monster

RTX3080

3dd6104c87c_maxrregcount128_DeviceGlobals

out_of_kernel

intersect

non_intersect

Source: Blender 4.5 alpha 3dd6104c87c with -Xcuda-
ptxas --maxrregcount=128 and Device Globals
Compiled with CUDA 12.8 SDK

System:
Nvidia RTX 3080 with drivers 560.94
Intel Core i9-10980XE
Windows 24H2



#23

CUDA vs OptiX, Per-Kernels execution in seconds

8.47 8.45
9.48 9.25

4.77 4.77

8.00

1.47

7.76

1.72

5.22

2.42

0.54

0.55

0.33

0.34

0.13

0.14

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

CUDA OPTIX CUDA OPTIX CUDA OPTIX

cyclesx_classroom cyclesx_junkshop cyclesx_monster

RTX3080

3dd6104c87c_maxrregcount128_DeviceGlobals

out_of_kernel

intersect

non_intersect

Source: Blender 4.5 alpha 3dd6104c87c with -Xcuda-
ptxas --maxrregcount=128 and Device Globals
Compiled with CUDA 12.8 SDK

System:
Nvidia RTX 3080 with drivers 560.94
Intel Core i9-10980XE
Windows 24H2



#24

Scores of Blender Benchmark scenes on AMD RX6800 

normalized on HIP device results

Source: Blender 4.5 alpha 3dd6104c87c with 
Device Globals
ROCM 6.31

System:
AMD Radeon RX 6800 with drivers 

24.3.0.60301

Intel Core i9-13900K

Ubuntu 24.04

92.4%

79.3% 80.7%

100.00% 100.00% 100.00%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

cyclesx_classroom cyclesx_junkshop cyclesx_monster

RX6800

ONEAPI HIP



#25

• SYCL shipping in production through Blender for Intel GPUs since 
2022, and getting better every year

• Large real-world codebase able to target Level-Zero, HIP, CUDA 
devices with competitive performance on Linux and Windows

• Open-Source implementation: 
projects.blender.org/blender/blender/src/branch/main/intern/cycles

• Key features are available only through extensions at the moment
▪ Whether you're implementing SYCL or using SYCL, don’t overlook them

Conclusion

https://projects.blender.org/blender/blender/src/branch/main/intern/cycles


#26

• Math functions can be native (fast) or from library (slow)
• -ffast-math, sycl::native::*, etc have an influence

• verify by inspecting PTX assembly

• red flag: .f64 instructions when using only single precision float

• Godbolt for small reproducers: godbolt.org/z/Kc7xjr8aG

• Play with -Xcuda-ptxas --maxrregcount=N

• Differentiating targets can still be done
• #ifdef __NVPTX__, __AMDGPU__, __SPIRV__

Tips and Tricks

https://godbolt.org/z/Kc7xjr8aG


Write Once, Deploy Many – 3D Rendering With 

SYCL Cross-Vendor Support and Performance 

Using Blender Cycles

Stefan Werner, Intel

Xavier Hallade, ph0b.com

Nikita Sirgienko and Sebastian Herholz, Intel
Malon Przemek, Codeplay Software

https://ph0b.com

	Intro
	Slide 1
	Slide 2: Agenda

	Blender
	Slide 3: Blender
	Slide 4: History and Evolution of Cycles
	Slide 5: OpenCL and SYCL in Cycles

	Cycles Code Overview
	Slide 6: Cycles Code overview
	Slide 7: Kernels Graph 
	Slide 8: compat.h snippet
	Slide 9: Launching Kernels
	Slide 10: 180K instructions shade_surface

	Features and Extensions
	Slide 11: Important extensions for Blender
	Slide 12: Bindless Textures
	Slide 13: Device Global

	Build and Deployment
	Slide 14: Maintaining and Shipping Blender with SYCL
	Slide 15: Blender Requirements
	Slide 16: Other Important features for Blender
	Slide 17: CMake Integration
	Slide 18: Compiling and Running on more GPUs

	Tooling
	Slide 19: Tooling

	Results
	Slide 20: Scores of Blender Benchmark scenes on Nvidia RTX3080 normalized on CUDA device results
	Slide 21: Per-Kernels execution in seconds
	Slide 22: Per-Kernels execution in seconds, simplified
	Slide 23: CUDA vs OptiX, Per-Kernels execution in seconds
	Slide 24: Scores of Blender Benchmark scenes on AMD RX6800 normalized on HIP device results

	Conclusion
	Slide 25: Conclusion
	Slide 26: Tips and Tricks
	Slide 27


