13th International Workshop on OpenCL and SYCL

IWOCL 2025 o=

Debugging SYCL on Intel GPUs with Visual Studio
and VS Code

Rakesh Ganesh, Intel
Rakesh Ganesh, Andria Pazarloglou, Sergey Bobko - Intel

April 7-11,2025 | Heidelberg, Germany | iwocl.org KHRCONOS

GGGGG

Introduction

Debugging applications written in SYCL, OpenMP, and Fortran—especially those targeting heterogeneous architectures like CPUs and GPUs—is inherently
complex. Intel actively contributes to GDB to enhance support for modern high-performance computing requirements, and the Intel® Distribution for GDB,
part of the Intel® oneAPI Base Toolkit, builds on these advancements. It provides an efficient debugging solution for parallel and multithreaded applications
developed in SYCL, OpenMP, and Fortran, and offers powerful capabilities to analyze GPU states, memory, and thread interactions.

This technical paper highlights the enhanced features of Intel® Distribution for GDB, including its integration into Visual Studio and VS Code. By leveraging a
user-friendly interface, developers can debug applications more efficiently without relying on intrusive printf statements or direct interaction with the GDB
CLI. This streamlined experience enables developers to focus on solving critical issues effectively on Intel CPUs and GPUs across both Windows and Linux
environments.

Additionally, we will cover the detailed setup process for Intel® Distribution for GDB on both Windows and Linux machines, ensuring developers can
configure their debugging environment seamlessly.

Windows — Visual Studio:
Debugging Environment and Setup

The full guide to getting started with Intel® Distribution for GDB on Windows can be found on the Intel’s webpage online.

Prerequisites
Before we can debug our SYCL application on VS IDE, we must ensure the following prerequisites are met:

e Resizable BAR or Smart Access Memory must be enabled for debugging applications using Intel® Arc™ Graphic cards. Please follow
the instructions to enable the Resizable BAR. For local GPU debugging, the Resizable BAR needs to be enabled on the host machine and for remote
GPU debugging, this needs to be enabled on the target machine.

e Forlocal GPU debugging, a Windows system with a combination of either an integrated and a discrete GPU, or multiple discrete GPUs is required.
The list of supported GPU devices can be found here.

e Forremote GPU debugging, two Windows systems are required: a host and a target. Microsoft Visual Studio* and Intel® oneAPI Base Toolkit must
be installed on the host system. The application is deployed and run on the target system.

https://www.intel.com/content/www/us/en/docs/distribution-for-gdb/get-started-guide-windows/2025-0/overview.html
https://www.intel.com/content/www/us/en/support/articles/000090831/graphics.html
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/gdb-system-requirements.html?wapkw=system%20requirements#inpage-nav-2-1

Software Installation
Local GPU debugging
e Install Microsoft Visual Studio* 2019 or 2022 on the host machine.

e Install the Intel® oneAPI Base Toolkit for Windows* OS on the host machine.

e Install the latest GPU drivers on the host machine.

e Run the target installer of Intel Distribution for GDB (gen_debugger_target.msi) located in the following path:
%ProgramFiles(x86)%\Intel\oneAPI\debugger\latest\opt\debugger\target.

While installing, select the checkbox under “Additional Installer Task” to set the TdrDelay to the default value of 300 seconds
Remote GPU debugging

e |Install the latest GPU drivers on the target system.

e Install Microsoft Visual Studio remote debugger on the target.

e Install run-time dependencies by selecting Intel® oneAPI DPC++/C++ Compiler Runtime for Windows* from the list of runtime dependencies.

e Copy and run the target installer of Intel Distribution for GDB (gen_debugger_target.msi) from the host system to the target. The installer can be
found on the host machine in the following path: %ProgramFiles(x86)%\Intel\oneAPI\debugger\latest\opt\debugger\target.

While installing, select the checkbox under “Additional Installer Task” to set the TdrDelay to the default value of 300 seconds

e To enable Fortran debugging, install, in addition, the Fortran Compiler from the Intel® HPC Toolkit for Windows* OS.
Verify the setup and build the application

We now need to create a SYCL application that we want to debug. To help with the setup, Intel provides a set of sample applications that can be
downloaded and used. Follow the steps to set up a sample application:

e Open anew VS instance and clone the oneAPI sample repository from the below path:

https://github.com/oneapi-src/oneAPl-samples.git

https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio?view=vs-2019
https://learn.microsoft.com/en-us/visualstudio/install/install-visual-studio?view=vs-2022
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html
https://www.intel.com/content/www/us/en/download/726609/intel-arc-iris-xe-graphics-whql-windows.html
https://www.intel.com/content/www/us/en/download/726609/intel-arc-iris-xe-graphics-whql-windows.html
https://learn.microsoft.com/en-us/visualstudio/debugger/remote-debugging-cpp?view=vs-2022
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/hpc-toolkit.html

Clone a repository

Enter a Git repository URL

) GitHub

Navigate to the path containing oneAPl samples and then to oneAPl-samples\Tools\ApplicationDebugger\array-transform and open the array-
transform.sin.

Open the project properties of the array-transform project.
For local debugging, specify the following environment variables:

Environment ? *

b MEAPI_DEVICE_SELECTOR=level_zero:0
ZET_EMABLE_PROGRAM_DEBUGGING=1

Evaluated value:

OMEAPI_DEVICE_SELECTOR=level_zero:)
ZET_EMABLE_PROGRAM_DEBUGGING=1

Inherited values:

[l Inherit from parent or project defaults Macros= >

1> To set the value of ONEAPI_DEVICE_SELECTOR, open a new command prompt and run the below prompt:
sycl-Is

You should see a similar output indicating CPU and GPU drivers.

EX Administrator: Command Prompt — (m] ®

Based on the device you want to debug, specify the value of ONEAPI_DEVICE_SELECTOR. In this case we want to debug the Battlemage GPU, and
we set the variable value as level_zero:0.

2> Set the environment variable ZET_ENABLE_PROGRAM_DEBUGGING=1.

array-transform Property Pages ? X
Configuration: Active(Debug) ~ Platform: Active(x64) Cenfiguration Manager...
4 Configuration Properties Debugger to launch:
General Local Windows Debugger ~
Advanced
Debugging C d S(TargetPath,
Intel® Libraries for oneAP| emman (TargetPath)
e (TTsnr Command Arguments
b DPC++ Working Directory S(ProjectDir)
b Linker Attach No
b Manifest Tool Debugger Type Aute
I XML Document Generator Environment ONEAPI_DEVICE_SELECTOR=level_zero:0ZET_ENABLE_ PROGRAM_DEBUGGING=1 -
I- Browse Information Merge Environment Yes
I> Build Events S0L Debugging No
I> Custom Build Step Amp Default Accelerator WARP software accelerator
I Code Analysis
Environment
Specifies the environment for the debugee, or variables to merge with existing environment.

oK I Cancel Apply

e For remote debugging, follow the steps as below:
1> Set the remote command value to the application executable you want to debug.
2> Set the working directory to the location of this application executable.
3> Specify the remote server’s name to the target machine IP address which contains the GPU (or CPU) device you want to debug.
4> Specify the environment variables as done for local debugging.
5> Specify the deployment directory where you want your executable to be placed. Usually this is the same value as the working directory.
6> Open the configuration manager and check the build and deploy checkboxes.

Configuration Manager ? X
Active solution configuration: Active solution platform:
Debug ~ || xbd ~

Project contexts (check the project configurations to build or deploy):

Project Configuration Platform Build Deploy
array-transform Debug ~ [x6d rd
Close l

e Save the changes by clicking apply and close the property page.

array-transform Property Pages ? *

Configuration: Active(Debug) « Platform: Active(x64) ~ Configuration Manager...
4 Configuration Properties Debugger to launch:
G |
A:nara d Remote Windows Debugger v
vances
Debugging -
Intel® Libraries for oneAP| Remote Command CADeploy\array-transform.exe
NCis Directories Remete Command Arguments
B DPC++ Working Directory C:A\Deploy
b Linker Remote Server Name 10.62.192.65:4026
B Manifest Tool Connection Remote with Windows authentication
I XML Documnent Generator Debugger Type Aute
b Browse Information Environment ONEAPI_DEVICE_SELECTOR:level_zero:0ZET_ENABLE_PROGRAM_DEBUGGING=1
I Build Events Attach No
I: Custorn Build Step SOL Debugging No
I Code Analysis Deployment Directory CADeploy

Additional Files to Deploy

Deploy Visual C++ Debug Runt Yes

Deploy Visual C++ Runtime Lib No

Amp Default Accelerator 'WARP software accelerator

Remote Command
The debug command to execute.

Note: The general, DPC++ and the Linker settings are usually set in the sample application.

Navigate to Extensions > Intel > oneAPI Options. Go the Intel® Distribution for GDB* and set the Enable Debugging to true.

Manage Extensions...

Custormize Menu...

- [Llobal Scc

Pl Landing page

online documentation re

onelAPl Options...

Search Options (Ctrl+E) ﬁl ~ General

p Database Tools 1 Connect Timeout (ms) 15000

b E#Tools Type words to search for ‘ Enable Debugging True

b GitHub Enable $5H 551 Tunnel False

b Graphics Diagnostics Enter oneAPl install directory

b Intel Compilers and Libraries Maximum Mumber of Retries 3

b Intel DPC++ Compatibility Tool TCR/IP port 1234

4 Intel oneAP! v Logging
FPGA Settings Log to File False
Intel® Distribution for GDB* Log te Output Debug Pane True
Samples

I IntelliCode

I Live Share

I+ Live Unit Testing

I NuGet Package Manager

I Test Connect Timeout (ms)

I Test Adapter for Google Test Specify the timeout in milliseconds to connect to gdbserver,

I Text Templating

Use the getting started with Intel® Distribution for GDB to explore more options.

Debug Health Check

We can also check that the setup is correct for local or remote debugging by selecting the desired debugging type and running the health checks.

earch = array-transform

- Jebugger ~ [> Qy | B ik

Run Intel® Distribution for GDB* Health Check

https://www.intel.com/content/www/us/en/docs/distribution-for-gdb/get-started-guide-windows/2025-0/overview.html

This should provide the output in the output window (under Health Check Results). The failures can also be seen on error list window (under Build +
IntelliSense).

“binvcompiler (x86)\Intel\oneAPI\compilery

Debugging a GPU application
Now that we have set up our host and target machines (for remote debugging), we can start debugging the sample application.

Place a breakpoint inside the kernel offloaded to the GPU. It is indicated in the sample application code.

q.submit([&](auto &h) {
3 in(buffer_in, h, read_only);
out (buffer_out, h, write_only);

h.parallel_for(data_range, [=](id<1> index) [[sycl::reqd_sub_group_size(32)]] {

_t id® = GetDim(ex, 0);
element = in[i .
result = element + 50;

if (ide % 2 == 0) {
result = result + 50;
} else {
result = -1;

out[index] = result;

Debug the application by clicking the Local Windows Debugger icon. We should be able to hit the kernel breakpoint.

q.submit([&](auto &h) {
acc in(buffer_in, h, read_only);
out(buffer_out, h, write_only);

iex) [[sycl::reqd_sub_group_size(32)]] {

t element = in[inde
¢ result = element + 50;
if (ide % 2 =— 0) {
result = result + 50;
} else {
result = -1;
§
out[index] = result;

Features
Intel oneAPI GPU Threads window

Once we hit the kernel breakpoint, navigate to Debug > Windows > Intel oneAPI GPU Threads and open the oneAPl GPU Threads Window. We should be
able to see the active threads and SIMD lanes by default when the Filter stopped threads checkbox is selected.

oneAP| GPU Threads

Search: I:I Group by: None - Filter stopped threads

Thread ID 1 roup Location SIMD Lanes & Thread Info

array-transform. 154 ID

Active Lanes Mask

SIMD Width

Selected SIMD Lane Info
Lane Index

State

array-trans 54 item Global ID

array-trans

array-trans

array-trans item Local ID

Device Info

Mumber

Mame (Th) A Graphics
array-trans =

array-trans fendor 1D

Target ID
Debug Info
Exception

It is possible to view workgroup and location information for each active thread. The right part of the view displays information about the selected thread,
SIMD lane and the current device. The Thread Info section contains the ID, Active Lanes Mask and the SIMD Width of the selected thread. The Selected
SIMD Lane Info section contains Lane Index, State, Global ID and Local ID of the work-item selected. The Device Info part shows information regarding the
current device used for offloading, such as Device Number, Name, Location, Vendor ID and Target ID.

It is possible to switch to another active SIMD lane that does not meet the breakpoint condition by clicking it and see all the variable information for that
lane on Locals/Autos window. The last selected lane can be identified by a small box around the SIMD lane.

neAPl GPU Threads

Search: |:| Group - Filter stopped threads Search (Ctrl+E)

Thread ID Location SIMD Lanes Thread Info (oo
) ido

ment
ult

e Lanes Mask
SIMD Width
Selected SIMD Lane Info

Device Info

Number

Target ID
Debug Info

Qutput _Error List

We can also double-click on another active thread to set it as the current thread. The first available SIMD lane will be selected for that thread. We can then
inspect the lane information and local variables.

Autos
- Filter stopped threads Search (Ctrl+E)
SIMD Lan Thread Info Name
644] element
OXFFFFFFFF §
]
" SelectedSIMD Lanelnfo
Lane Index 0

State Acti
item Global ID

Device Info

MNumber

Name el(R) Arc(0 Graphics
PP

Target ID
Debug Info
Exception None

oneAPl GPU Threads piler Inline g I s ng 0 v m n rList

We can filter and group the data inside the oneAP| GPU thread window. To filter the data, enter the text we want to search in the text box next to Search.
Similarly, we can select the field or the device we want to group the data by, by selecting a value from the drop down next to Group by.

Group group - Search (Ctrl+E) P~

Location SIMD Lanes # Thread Info Name Value

elan
SIMD Width
Selected SIMD Lane Info

Device Info

Number

Debug Info
Exception

Pl GPU Thread i t C iler Optimi: C. 3 ion Setti mmedi i Qutput Error List

We can view SIMD lane colour scheme by clicking the information button next to SIMD Lanes column in the oneAPI GPU thread window. This opens a popup
that signifies the meaning of each colour.

oup by: None

Thread Info

Selected SIMD Lane Info
Lane Index

ve met breakpoint c

Device Info

Number

Name

cation
Vendor ID
Target ID
Debug Info
ceptio

ut Error List

We can also see the unavailable threads when we uncheck the Filter stopped threads checkbox.

eAPI GPU Thre;

Search:

Thread ID o SIMD Lanes @ Thread Info
A5 D
7 ;

Y h
SESESESE SN NENEEESEENEREEEs I S

Lai
 met breakpoint conditions

Target ID
Debug Info

Intel oneAPI SIMD Lane Parallel Watch window

Once we hit the kernel breakpoint, navigate to Debug > Windows > Intel oneAPI SIMD Lane Parallel Watch and open the oneAPI SIMD Lane Parallel Watch
window. This is an advanced watch window where we can see the value of variables in all the active lanes for a selected thread.

oneAPI SIMD Lane Parallel Watch

dimensions

Toolbar Options
SIMD Lane Toolbar

We can change the SIMD lane from the toolbar and inspect the change in local variables. To view SIMD Lane in the toolbar, navigate to View > Toolbars >
SIMD Lanes and enable it.

SIMD Lane: |0

Stack Frame: 0

ethise

Scheduler-locking Continue and Scheduler-locking Step

When debugging the application, we can use the Scheduler-locking Continue and Scheduler-locking Step Ul buttons in the toolbar to control the scheduler
locking settings when continuing or stepping through the program.

When Scheduler-locking Continue is on, the scheduler gets locked for continuing commands during normal execution and record modes. For continuing
commands other threads may not pre-empt the current thread. This setting is off by default.

Exdensions Wi elp £ Search - array-transform

P Continue ~) E B _ = SIMD Lane: 0 - _CB 6 - (5 = +

Thread: [457] 457 (ZE 0.7.1.0) o v T A S ET G EBIETGLLETED Scheduler-locking continue on/off

When Scheduler-locking Step is on, the scheduler gets locked for stepping commands during normal execution and record modes. While stepping, other
threads may not pre-empt the current thread, so that the focus of debugging does not change unexpectedly. This setting is off by default.

array-transform

SIMD Lane: 0 - _ BB

Thread: [457] 457 (ZE 0.7.1.0) = T A S E TR S BTGB ETOL EIEN G Scheduler-locking step on/off

SIMD Lane specific breakpoint

We can add a SIMD Lane specific breakpoint inside a kernel which respects the SIMD Lane conditions. To place SIMD lane specific breakpoint inside a kernel,

we place an ordinary breakpoint. Once we hit this breakpoint, we must right click on the breakpoint. This opens a popup where you can select Add SIMD
Lane Condition....

Delete Breakpoint

Disable Breakpoint Ctrl+F9
Conditions... Alt+F3, C
Actions...

Edit labels... Alt+F3, L
Add SIMD Lane condition...

Add to Breakpoint Group

& E::-::Fl ort...

0 New SIMD Lane Breakpaint X

Break when selected breakpoint has reached the specified thread and lane:

Thread ID: | 641 “ | SIMD Lane: |12 -

Insert Breakpoint Cancel

Visual Studio windows for GPU debugging
Locals

We can investigate local variables, by navigating to Debug > Windows > Locals.

Locals

Search (Ctrl+E}

Value

<optimized out> const int

Disassembly

We can view the disassembly by navigating to Debug > Windows > Disassembly.

Disassembly # X arr form.cpp
Address: main:{lambda(auto:18)#1}:operator()<syck: V1:handler> (syck: V1:handler8) const:{lambda(syck: V1zid<1>)#1}:operator()(syck: Vixid<1>) const

v Viewing Options

Registers

We can view respective registers when the kernel is offloaded to a GPU by right clicking inside the windows and selecting the register we want to view.

Registers
No data available

ARF
Wirtual

Other Registers

Below we see the ARF Registers displayed.

Registers v X

af = {exfal, Oxl,| oxf77f, ©xf958, ©x100, Ox0, Oxf8f8, ©Ox98b4, OxfffO, Oxfb7a, Oxblf9, Oxfafs, A
0xd978, Oxbafa, ©xfbb6, Oxdef9} E 3

0 = {ex5555, Ox5555} f1 = {@x5555, Ox5555} ce = Oxffffffff

accO = {Ox1, Ox1, Ox1, Oxl, ex1l, Oxl, Oxl, exl}

accl = {6x1, Ox1, Oex1l, exl, Oxl, &xl, Oxl, exl}

acc2 = {ex1, Ox1, 6x1, oxl, ex1l, Oxl, Oxl, oxl}

acc3 = {Ox1, ox1, B6x1, &x1l, Ox1l, &xl, Oxl1l, exl}

mme® = {0x8, Ox0, Ox0, 0x0, Oxfb7afffe, OxfafSblf9, ©xbafad978, exdefofbbé}
mmel = {6x8, 6x0, Ox0, Ox0, Oxfb7afffe, OxfafSblf9, Oxbafad978, ©xdefofbbé}
mme2 = {6x0, Ox0, 6x0, Ox0, Oxfb7afffe, OxfafSblf9, Oxbafad978, 6xdefofbbé}
mme3 = {6x0, ©x0, 6x8, Oxe, exfb7afffe, Oxfaf5blf9, Oxbafad978, exdefofbbe}
mmed = {6x0, Ox0, 6xO, Ox0, Oxfb7afffe, OxfafSblf9, Oxbafad978, exdef9fbbe}
mmeS = {0x0, OxB, OxO, Ox0, OxfbTafffe, Oxfaf5blf9, Oxbafad978, ©xdefofbb6}
mme6 = {6x0, Ox8, Ox0, Ox8, Oxfb7afffe, OxfafSblf9, Oxbafad978, exdefofbbe}
mme7 = {6x8, Ox0, Ox0, OxB, Oxfb7afffe, OxfafS5blf9, Oxbafad978, ©xdef9fbbe}

dbgl = {6x55555555, ©x2168c0}

90 % v

Locals Registers Compile.. Compile.. CallStack Breakpoi... «. Comma.. Immedia... Output ErrorList

Below is a view of GRF Registers.

Registers
ro = {6x190303, Ox1, Ox4016402, BxO, Ox0, 0x1002, Ox0, Ox6}
rl = {6x410640, Ox430042, OxUSEOLY, OxUT7E0U6, Ox4906uUS, OxubBBUa, OxuUdeedc, Oxufeede}
r2 = {0x198, exffffffff, Ox19a, OxFFffffff, Ox19c, exffffffff, ox19e, Oxffffffff}
r3 = {0xla®, exffffffff, Oxla2, OxFFffffff, Oxlad, exffffffff, oxla6, Oxffifffff}
r4 = {0x188, Ox0, Ox18a, Ox0, Ox18c, ©xO, Ox18e, Ox0}
r5 {6x190, ©x8, Ox192, Oxe, ex194, exe, 6x196, 6x6}
r6 = {0xcO, Oxcl, Oxc2, Oxc3, Oxcd, Oxc5, Oxc6, OxcT}
r7 = {0xc8, Oxc9, Oxca, Oxcb, Oxcc, Oxcd, Oxce, Oxcf}
r8 = {0x8, O6x0, Ox0, 6x8, Ox0, 6x8, Ox68, 6xe}
r9 = {ox0, Ox0, 6x0, Ox6, Ox0, Ox0, 6x8, oxe}
rl8 = {Oxce, Oxd8, ©xd®, Oxd2, Oxd2, ©xd4, Oxd4, ©exdé6}
{0xd6, ©xd8, ©xd8, Oxda, Oxda, @xdc, Oxdc, Oxde}
rl2 {0x147a268, Oxffffbs802, Ox147a264, Oxffffb8e2, Ox147a268, Oxffffb882, Ox147a26c, Oxffffbse2}

m o unuwnn

rl13 = {ex147a276, Oxffffb802, Ox147a274, Oxffffb8e2, Ox147a278, Oxffffb8e2, ©x147a27c, Oxffffbse2}

rly {0x147a2808, Oxffffbs802, Ox147a284, Oxffffb8e2, Ox147a288, Oxffffb882, Ox147a28c, Oxffffbse2}
90 % b
Locals Registers iler... mpiler... Call Stack Br yman... |mmediat.. Output Error List

Memory View

We can view the memory view by selecting Debug > Window > Memory > Memory 1. We can specify the memory address we want to inspect and enter it
in the address field.

Memory 1

eeee 8126 812c eeee 812f eeee @eee 133
eeee 8136 3 813c eeee 813f eeee eeee eiu3
FFff 818a 819e £ FHFF FEFF aeee ffff
fff 819a [T £ fFEE £EHF eeee ffff
0000 e6cf eed2 eeee eeee eeee eeee eeee
eeee eed7 g8da eeee eeee eeee geee eee8
ffff Bese 8fle £ b8e2 fFff @147 bee2
ffff 9856 9116 £ b8e2 ffff F @147 bae2
ffff 9258 9316 fHf bsez ffff 8147 bsez
ffff 9use 9516 fHHf b8e2 ffff 8147 bsez
ffff 9c18 9c3e fFff b8e2 ffff @147 bae2
ffff 9c58 9c7e fFff b8e2 ffff @147 bae2
Ffff 9c98 9che £ b882 ffff @147 bsez
ffff 9cds 9cfe fFHf b8e2 ffff @147 bse2
4

Memory 1 i iler Inlin ot i imizati ot 3 ints i i i mmedi put Error List

Debug Toolbar

The default debug toolbar available with Visual Studio can also be used when the kernel is offloaded to the GPU. The functionality provided by the debug
toolbar are:

e Continue (F5)

e Pause (Ctrl+Alt+Break)

e Stop (Shift+F5)

e Restart (Ctrl+Shift+F5)

e Show Next Statement (Alt+Num*)
e Step Into (F11)

e Step Over (F10)

e Step Out (Shift+F11)

ntinue -

Immediate Window

For sycl developers who are more comfortable with command line interface, there is an immediate window where we can type gdb MI commands and see
the results.

D e OO S
]

a

o oo

ELEETEMS
ELEETEMS

Linux — Visual Studio Code:
Debugging Environment and Setup

The full guide to getting started with Intel® Distribution for GDB on Linux can be found on the Intel’s webpage online.

Prerequisites
Before we can debug our SYCL application on VS Code, we must ensure the following prerequisites are met:

e Resizable BAR or Smart Access Memory must be enabled for debugging applications using Intel® Arc™ Graphic cards. Please follow
the instructions to enable the Resizable BAR.

e If youintend to debug on a GPU, first check whether your device is supported for debugging kernels offloaded to GPU by checking the list of
supported accelerators. If your GPU device is not listed above, then a breakpoint inside the kernel won’t be hit. In that case, you can still debug the
offload to CPU. For more information, go to the GPU Driver Page.

Software Installation
The following software is required to debug a SYCL application on VS Code:
e Install VS Code on the host machine. We can also download VS Code on our Windows host and ssh to Linux target with the hardware accelerator.

e Install the Intel GPU drivers.

e Install Intel® oneAP| Base Toolkit.

e Install GDB with GPU Debug Support for Intel® oneAPI Toolkits extension on the VS Code. This needs to be installed on the target device.
e Install Environment Configurator for Intel Software Developer Tools on the target device optionally.

Set Up the GPU debugger
After installing Intel GPU drivers, we must take care of a few more things before we can start debugging our sample application on VS Code.

e We must enable i915 debug support in the Kernel. We can do this by setting the value of prelim_enable_eu_debug flag to 1 on the machine we
want to debug by typing the following command:

https://www.intel.com/content/www/us/en/docs/distribution-for-gdb/get-started-guide-linux/2025-0/overview.html
https://www.intel.com/content/www/us/en/support/articles/000090831/graphics.html
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/gdb/2025.html#inpage-nav-2-1
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/gdb/2025.html#inpage-nav-2-1
https://dgpu-docs.intel.com/devices/hardware-table.html#graphics-processor-table
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/windows
https://dgpu-docs.intel.com/driver/installation.html
https://www.intel.com/content/www/us/en/docs/oneapi/installation-guide-linux/2025-0/online-offline-installer-004.html#BASE-ONLINE-OFFLINE
https://marketplace.visualstudio.com/items?itemName=intel-corporation.oneapi-gdb-debug
https://marketplace.visualstudio.com/items?itemName=intel-corporation.oneapi-environment-configurator

for f in /sys/class/drm/card*/prelim_enable_eu_debug; do echo 1 | sudo tee "$f"; done

QUTPUT DEBUG COMSOLE TERMIMAL

for f in /sys/class/drm/card®*/prelim enable eu debug; do echo 1 | sudo tee "§f"; done

We must enable i915 debug support in the kernel persistently. Also, by default, the GPU driver does not allow workloads to run on a GPU longer
than a certain amount of time. To ensure that the driver does not kill long-running workloads by resetting the GPU to prevent hangs, we must
disable hang check. Follow the below steps to enable i915 debug support and disable hang check:
o Navigate to /etc/default and open the grub file in an editor.
o Find the line GRUB_CMDLINE_LINUX_DEFAULT="".
o Enter the following text between the quotes (""):
i915.debug_eu=1
i915.enable_hangcheck=0

TERMIMAL PORTS GITLENS CO 5 @ nano - default —‘,—

GNU nano 6.2

GRUB_DEFAULT=1

GRUB_TIMEOUT STYLE="menu”

GRUB_TIMEQUT=5

GRUB_DISTRIBUTOR="1lsb release -i -s 2> fdev/null || echo Debian

GRUB_CMDLINE_LINUX DEFAULT="net.ifnames=0 biosdevname=8 i915.debug eu=1 drm.debug=8xa i1915.debugger timeout ms=8 i915.enable hangcheck=8"
GRUB_CMDLINE_LINUX=""

o Update GRUB and reboot for these changes to take effect by running the following command on the terminal:
sudo update-grub
sudo reboot now
e Setup oneAPI development environment by typing the following the terminal:
source /opt/intel/oneapi/setvars.sh

Note: This can be also done by using the Environment Configurator for Intel Software Developer Tools. We must open the command palette
(Ctrl+Shit+P) and type Intel oneAPI to view the options. Then click Intel oneAPI: Initialize default environment variables and provide the path to
setvars.sh (/opt/intel/oneapi/setvars.sh). The advantage of using Environment Configurator is that the change now applies to all tasks, launch and
new terminals, regardless of which folder it was originally associated with.

e Set up debug environment variables. Use the following environment variable to enable debugger support for Intel® oneAPI Level Zero:
export ZET_ENABLE_PROGRAM_DEBUGGING=1

Note: This can be also done later in the launch.json of the application we want to debug. This ensures that the variable is applicable only to the
scope of the debug session.

e Perform system check to confirm system configuration is reliable by running the following command:
sycl-Is

SOLE TERMINAL

~ o osycl-1s

ro:gpu][level_zero:@] Intel(R) oneAPI Unified Runtime over Level-Zero, Imtel(R) Arc(TM) Pro A48/A58 Graphics 12.56.5 [1.6.3
. 44+14]

Build the application

We should be now ready to debug a SYCL application on our Linux system. Here we shall use the sample array-transform application that is provided with
the oneAPl Samples. Follow the steps to set up a sample application:

https://marketplace.visualstudio.com/items?itemName=intel-corporation.oneapi-environment-configurator

Open a new terminal in a VS Code instance. Navigate to the folder where you want to place the source code and clone the oneAPI sample repository
with the following command:

git clone https://github.com/oneapi-src/oneAPl-samples.git

Open the array-transform application in VS Code by navigating to File > Open Folder and specifying the path to array-transform application. It is in
oneAPIl-samples/Tools/ApplicationDebugger/array-transform. We can then see the folder structure of the application in the explorer view.

File Edit Selection View Go Run Terminal Help Open Folder

@ New Text File Ctri+N /home/rganesh/sources/oneAPI-samples/Tools/ApplicationDebugger/]
New File... Ctri+Alt+Windows+N

New Window Ctri+Shift+N array-transform

New Window with Profile guided_matrix_mult_BadBuffers

_) . guided_matrix_mult_Exceptions

Open File... Ctr+0O :))
guided_matrix_mult_Inv:

Open Folder... Ctrl+K Ctrl+O

Open Workspace from File...

Open Recent

£ array-trans

array-transform.

https://github.com/oneapi-src/oneAPI-samples.git

e Build your SYCL application by navigating to oneAPl-samples/Tools/ApplicationDebugger/array-transform from your terminal and running the

following command:
icpx -fsycl -g -00 src/array-transform.cpp -o build/array-transform

This shall place the array-transform ELF inside the build folder.

e Open the command palette (Ctrl+Shift+P) and type Intel oneAPI. Select Intel oneAPI: Generate launch configurations. Follow the prompts to add a
SYCL launch configuration. If no environment variables were specified, we can specify them in the launch configuration.

{} launch.json .
I
L
"configurations™: [

"environment™: [

"name"
"value

"name": "
"value

Debug Health Check

Similar to Windows, there is also a Debugger Health Check for Linux. We can run this to identify any setup and configuration issues. To run the health check,
click the stethoscope icon in the status bar or click the stethoscope icon in the activity bar and click Run.

The tests will automatically execute, and results will be displayed in a tree format. Each check will show whether it passed, failed, or requires attention
(warning). Hover over each test result to view additional information about the specific check, including version numbers and recommendations on how to
resolve issues.

File Edit Selection View Go Run Terminal Help

01 using script version 0.5.0

the ZE_AFFINITY_MASK environment variable to filter a device

3 55H: 1021117750 ¢ 947 Launchpad

Debugging a GPU application

Now that we have already built our sample application and specified the path to built ELF in the launch.json file, we are ready to debug our SYCL application
on VS Code. Place a breakpoint inside the kernel offloaded to the GPU which is indicated in the sample application code. Click Run and Debug from the
activity bar, select the launch config we just created and click Start Debugging.

File Edit Selection --- =

Y HUL > | LaunchGdbOneApi ~ | &
°e > VARIABLES LaunchGdbOneApi
> WATCH
> CALL STACK Nodejs...
BREAKPOINTS CMake Debugger...
B All C++ Exceptig ©NeAPI C++ (gdb-oneapi)...

¥ array-transform, Add Configuration...

We should be able to hit the kernel breakpoint.

array-transform.cpp =
main{
cry
q-submit([&](&h) {
in{butter_in, h, read_only);
out({buffer out, h, write only);

1.parallel for(data_range, index :ireqd sub group size(32)]
size t id@ = GetDim(index, 8)
element = in[in
result = element + 58;
if (ide % 2 == @) {
result = result + 58;

Features
Intel oneAPI GPU Threads

Once we hit the kernel breakpoint, expand (if not already expanded) the ONEAPI GPU THREADS from the primary side bar. We should be able to see the
active threads and SIMD lanes by default.

~ OMNEAPI GPU THREADS
Target ID [Thread ID] Location Work-... SIMD Lanes (D
2.193 (ZE 0.1.8.0) [195] amray-transform.c... : 0,00
2.201 (ZE 0.1.9.0) [203] amray-transform.c... : 0,00
2.385 (ZE 0.3.0.0) [287] amray-transform.c... : 1,00
(ZE 0.3.1.0) [395] amray-transform.c... : 1,00
2449 (ZE 0.3.8.0) [451] amray-transform.c... : 1,00

2457 (ZE 0.3.9.0) [459] amray-transform.c... : 1,00

@extintel-corporation.oneapi-gdb-debug

User Remote [SSH: 10.102.47.149] Workspace

Intel One API » Debug: SHOW_ALL

v Show inactive threads.

~ ONEAP1 GPU THREADS
Target ID [Thread 1D] Location Work-... SIMD Lanes @
2.192 ([ZE 0.1.7.7) [194] -
2.193 (7E 0.1.8.0) [195] array-transform.cpp :54
2.194 (ZE 0.1.8.1) [196]

2.195 (ZE 0.1.8.2) [197]

(ZE 0.1.8.3) [198]

(ZE 0.1.8.4) [199]
2.198 (ZE 0.1.8.5) [200]
2.199 (ZE 0.1.8.6) [201]
2.200 (ZE 0.1.8.7) [202]

2.201 (ZE 0.1.9.0) [203] array-transform.cpp :54

It is possible to view workgroup and location information for each active thread. We can also expand THREAD INFO, SELECTED LANE and HARDWARE INFO
from the primary side bar. The Thread Info section contains the ID, Active Lanes Mask and the SIMD Width of the selected thread. The selected lane displays
info about the Lane Index, State, Work-item Global ID, Work-item Local ID and the Execution Mask. The hardware info displays information regarding the
current device used for offloading, such as Device Name, Number, Cores, Location, Sub device, Vendor ID and Target ID.

~ HARDWARE INFO
*~ THREAD INFO ~ SELECTED LAMNE v [i2] Intel(R) Arc(TM) AT70 Graphics

1T 2 Lane Index: 0 Number: 1
312

Active Lanes Mask: State: Active - have met breakpoint conditions Cores:
SIMD Width: Work-item Global 1D (y,2): 64.0,0 -)
i y Sub device:
Work-item Local ID (xy,z): 64,0,0 vendor ID:
Execution Mask: [Aiiiiiiii Target ID:

Location: 0000:03:00.0

Ox36a0

Just like in Visual Studio, it is also possible to switch to another active SIMD lane that does not meet the breakpoint condition by clicking it and see all the
variable information for that lane on VARIABLES/WATCH window.

~ WARIABLES

~ Locals

» Registers

~ DMEAPI GPU THREADS
Target ID [Thread ID] Location Work-... SIMD Lanes (D
2.1 (ZE 0.0.0.0) [3] amray-transform.c... ¢ 400
29 ZE0.DA.00[11] amray-transform.c... ¢ 400
2,65 (ZE 0.0.8.0) [67] aray-transform.c... :f 400
2.73 (ZE 0.0.9.0) [75] aray-transform.c... :f 400

2129 (ZE0.1.0.0) [121] armay-transform.c... 6 0,00

We can identify the SIMD lane colour scheme for the current VS Code theme by clicking the information button next to SIMD Lanes column in the ONEAPI
GPU Threads window. This opens a popup that signifies the meaning of each colour

Work-... SIMD Lanes (@

Color Thread State

Active - have met breakpoint conditions

Active

Inactive

This colour scheme helps us identify conditions where some of the SIMD lanes are inactive in the ONEAPI GPU Threads window.

~ ONEAPI GPU THREADS

Target ID [Thread ID] Location Work-... SIMD Lanes (@

2.193 (ZE 0.1.8.0) [195] amay-transform.c... : 0,00
2.201 (ZE 0.1.9.0) [203] amay-transform.c... : 0,00
2.385 (ZE 0.3.0.0) [387] amray-transform.c... : 1,0,0
2.393 (ZE 0.3.1.0) [395] array-transform.c... : 1,0,0

2.449 (E 0.3.8.0) [451] amay-transform.c... : 1,0,0

Intel oneAPI SIMD Variable Watch

The SIMD Variable Watch, when expanded, functions like the classic Watch panel but displays values for all SIMD lanes, making it convenient to compare
values without the need for switching between lanes. We can add expressions that we want to be evaluated for active lanes, however GDB convenience
variables are usually available for inactive lanes as well. For instance, values for S_workitem_global_id or $_workitem_local_id are evaluated for all the SIMD
lanes in the current thread.

“ SIMD VARIABLE WATCH

exffffaeabff

2]

Scheduler-locking

Buttons in the debug toolbar provide quick access to turning scheduler-locking on or off for step and continue flags. Scheduler-locking controls how GDB
handles other threads during debugging.

e step: When on, the scheduler is locked for stepping commands during normal execution and record modes. While stepping, other threads may not
pre-empt the current thread, so that the focus of debugging does not change unexpectedly. This setting is off by default.

e continue: When on, the scheduler is locked for continuing commands during normal execution and record modes. For continuing commands other
threads may not pre-empt the current thread. This setting is off by default.

The overall status of scheduler-locking is displayed in the status bar.

array-transform.cpp 2y To90 @3B «©

main(argc, DAq

out[index] = result;
" continue: on

eval: on

replay continue: on

) cout Stepion

G Scheduler-locking: step, continue | Linux Active environ

SIMD Lane specific breakpoint

We can also add a SIMD Lane specific breakpoint inside a kernel in VS Code, which respects the SIMD Lane conditions. To place SIMD lane specific
breakpoint inside a kernel, we place an ordinary breakpoint. Once we hit this breakpoint, we must right-click on the desired line and select Add Conditional
Breakpoint.... Choose Expression from the dropdown and use the following commands:

-break-insert -p <Threadld> -1 <SIMD Lane>

allel for(data_range,
> t id8 = GetDi
element = in[i

) == 8) { - result = element + 58;

1
= result + 58; if (ide % 2 == @) {
= result + 58;

Add Breakpo rasult 1;
Add Conditional Breakpoint...
Expression ~ -break-insert -p

Add Logpoint...

The new condition breakpoint can be inspected then in the Ul by hovering on it.

result = result + 58;
Click to add a breakpoint

Condition “- 3 rt -p 2 11" : No symbol "t
current conte;

result + 56;
C -1;

Exception has occurred. =
Hit breakpoint 3 at @xffff2eeeffeo5508.

The same is reflected by a single SIMD Lane being active in the oneAPI GPU Thread view.

~ OMNEAPI GPU THREADS
Target ID [Thread ID] Location Work-... SIMD Lanes @
2.137 (ZE 0.1.1.0) [129] array-transform.c... :5 0,00

2.193 (ZE 0.1.8.0) [195] array-transform.c... : 0,0,0

2.201 (ZE 0.1.9.0) [203] array-transform 0,00

0.0) [387] array-transform, 1,00

It is also possible to add a SIMD Lane specific breakpoint by right clicking on the line where we want to place the breakpoint (not the line number) and
selecting Intel oneAPI: Add SIMD lane conditional breakpoint. We shall then be prompted to specify the Thread ID and the SIMD Lane where we want to
break. This method does not require us to remember any breakpoint specific syntaxes and provides the same result.

array-trar Intel oneAPI: Add SIMD lane conditional breakpoint

Go to Definition F12
tr Go to Declaration
Go to Type Definition _

Go to References Shift+F12

Peek > Press 'Enter’ to confirm your input or 'Escape’ to cancel

To remove or disable the conditional breakpoint, click on the breakpoint and perform the desired action.
Visual Studio Code X

This breakpeint has a condition that will get lost on remove, Consider disabling the
breakpoint instead.

Remave Breakpoint][Disable Breakpoint Cancel

Registers

Viewing GPU registers possible inside VS Code by expanding the VARIABLES in the Primary Side Bar and scrolling down and expanding Registers. The various
GPU registers are grouped together as GRF, ARF, Virtual and Other Registers. These can be further expanded and viewed.

“+ VARIABLES 7 VARIABEES
. > Locals
» Locals Registers

~ Registers

Memory View

We can view the memory view by viewing the address of a variable in the watch/variables window and clicking View Binary Data. This will prompt us to
install Hex Editor extension from Microsoft. When installed, it will open a memory.bin, in which is possible to inspect conveniently large pieces of data. This
functionality enables users to examine the memory space of Intel® GPU kernels.

“ ONEAPI GPU THREADS Install Extension

Target ID [Thread ID] Location
Would you like to install ‘Hex Editor’ extension

2.129 (ZE 0.1.0.0) [131] array-transform.... JRigelss I N ielgetlol rad

Inspecting binary data requires this extension.

0.1.8.0) [195] array-transform

CALL STACK B Sync this extension Install Extension Cancel

= memory.bin

84 o0 ©
8C 00 o
94 @@ ©
9C o0 o
EE @0 ©
Fo @@ ©
F& @@ ©
el e
00 8
32 @8 ©
00 8
00 8
B
ec
eD
BE
oF
18
11
12
84
84
84
84
84
84

R~ -]
[T}
@
-]
@
-]

EEEEEEEEEEEEEESS8S8S8S888

EEEEEEEEEEEEEES 8888
EEEEEEEEEEEEEES S S
EEEEEEEEEEEEEEBS 88
€ € € € € € € € € € € € < <
f s s s € € € € € € € € € <
< € € € € €£ € €£ € € € € € <
€c € €< € < < < < < < < < < <

Debug Toolbar

The debug toolbar available with VS Code by default. This can also be used when the kernel is offloaded to the GPU. The functionality provided by the debug
toolbar are:

e Continue (F5)

e Step Over (F10)

e Step Into (F11)

e Step Out (Shift+F11)

e Restart (Ctrl+Shift+F5)

e Stop (Shift

e Scheduler-locking continue (Intel oneAPI GDB extension)
e Scheduler-locking step (Intel oneAPI GDB extension)

Immediate Window

Again, for SYCL developers who are more comfortable with command line interface, there is Debug Console where we can type gdb MI commands and see
the results.

DUTPUT DEBUG CONSOLE TERM

-exec info threads -stopped

Conclusion

The Intel® Distribution for GDB delivers a Ul-rich debugging experience tailored for SYCL developers, integrating seamlessly with Visual Studio on Windows
and VS Code on Linux. By abstracting away complex GDB commands, it enables developers to focus on writing high-performance SYCL code rather than
struggling with low-level debugging intricacies. Features such as GPU state analysis using GPU Thread Window, variable inspection using SIMD Lane Variable
Watch, in addition to Watch, Locals and Autos, Disassembly and Registers view, Memory view and kernel debugging, provide deep insights into SYCL
execution, helping developers identify bottlenecks and optimize performance efficiently. As Intel continues to enhance its debugging ecosystem, future
updates will further refine SYCL debugging workflows, empowering developers with cutting-edge tools for heterogeneous computing.

