
SYCL SC State of the Union

Lukas Sommer, Codeplay Software
On behalf of the SYCL SC working group



© The Khronos® Group Inc. 2025 - Page 2This work is licensed under a Creative Commons Attribution 4.0 International License

Agenda

• SYCL SC Working Group
• SYCL SC Motivation
• Past Year Overview
• Ecosystem & Engagement



© The Khronos® Group Inc. 2025 - Page 3This work is licensed under a Creative Commons Attribution 4.0 International License

Co-Chair & Spec Editor Co-Chair & Outreach Officer

Leonidas KosmidisAndriy Byzhynar

SYCL SC Working Group Officers



© The Khronos® Group Inc. 2025 - Page 4This work is licensed under a Creative Commons Attribution 4.0 International License

SYCL SC Working Group Regular Members



© The Khronos® Group Inc. 2025 - Page 5This work is licensed under a Creative Commons Attribution 4.0 International License

Khronos Safety Critical Standards Evolution

OpenGL ES 1.0 - 2003
Fixed function graphics

OpenGL ES 2.0 - 2007
Programmable Shaders

OpenGL SC 1.0 - 2005
Fixed function graphics 

safety-critical subset

OpenGL SC 2.0 - 2016
Programmable Shaders

Safety-critical subset

Vulkan 1.2 - 2020
Explicit Graphics and Compute 

and Display

Vulkan SC 1.0 - 2022
Explicit Graphics, Compute and 

Display safety-critical subset

SYCL 2020
C++-based heterogeneous 

parallel programming

March 2023SYCL SC Working Group created to 
develop C++-based heterogeneous parallel compute programming 

framework for safety-critical systems

Khronos has 20 years experience in 
standards for safety-critical markets 
Leveraging proven mainstream standards 

with shipping implementations and 
developer tooling and familiarity

A choice of abstraction levels to suit 
different markets and developer needs

OpenVX SC Extension – 2017
Graph-based vision and 

inferencing 

OpenVX 1.3 – 2019
SC Extension integrated 

into core OpenVX 
specification



© The Khronos® Group Inc. 2025 - Page 6This work is licensed under a Creative Commons Attribution 4.0 International License

Agenda

• SYCL SC Working Group
• SYCL SC Motivation
• Past Year Overview
• Ecosystem & Engagement



© The Khronos® Group Inc. 2025 - Page 7This work is licensed under a Creative Commons Attribution 4.0 International License

• A system is safety-critical if its failure could result in harm to people or property
• SC industries: automotive, avionics, medical, rail, atomic
• Often certified according to standards

- Automotive: ISO 26262
- Avionics: DO-178C
- Medical: IEC 62304

• Standards define safety levels: ASIL A-D / DAL A-E / Class A-C
• Require functional safety

- Absence of unreasonable risk caused by malfunction
- Use cases must be defined
- Risks must be analyzed and mitigated to a reasonable level

- A property of the whole system, not just an individual component
- Only somewhat related to programming language safety
- Engineering processes & paper trails

What is “Safety-Critical”?



© The Khronos® Group Inc. 2025 - Page 8This work is licensed under a Creative Commons Attribution 4.0 International License

What Hardware are SC Industries Using?
• Automotive leads performance requirements

- Tesla FSD 2: 50 TOPS
- Intel A760A Automotive: 229 TOPS
- Nvidia DRIVE Thor: 1000 TOPS

• Desktop-class GPUs

TOPS = Operations / second x 1012 Sources:
● https://www.autopilotreview.com/tesla-hardware-4-rolling-out-to-new-vehicles/
● https://download.intel.com/newsroom/2024/automotive/Intel-auto-dGPU-fact-sheet.pdf
● https://blogs.nvidia.com/blog/drive-thor/

https://www.autopilotreview.com/tesla-hardware-4-rolling-out-to-new-vehicles/
https://download.intel.com/newsroom/2024/automotive/Intel-auto-dGPU-fact-sheet.pdf
https://blogs.nvidia.com/blog/drive-thor/


© The Khronos® Group Inc. 2025 - Page 9This work is licensed under a Creative Commons Attribution 4.0 International License

Why C++ for Functional Safety?
• The C++ language and C++ best practice are mature and under continuous 

improvement
• Programming language safety is only one of many concerns that need to be 

balanced
• Other concerns:

- Development tools are needed for productivity
- Analysis tools are needed to support safety arguments

- Static analyzers
- Sanitizers
- Performance analysis

- Optimized libraries are needed for performance & portability
- Coding guidelines are required by functional safety development processes
- Many experienced developers are required to produce quality software at scale

The C++ ecosystem is very attractive to SC industries



© The Khronos® Group Inc. 2025 - Page 10This work is licensed under a Creative Commons Attribution 4.0 International License

What do SC Industries Need?
“Software-Defined Vehicle”

• Automotive trend
• Many small devices consolidated into few large devices
• Software increasingly important product differentiator
• Software increasingly important as value-add

Hardware Acceleration
• Greater maximum performance
• Better performance-per-power

Determinism
• The software behaves predictably
• The software does the same thing in the 

same way every time

Code Portability & Reuse
• As amount of code grows, economics of 

rewriting become less feasible
• Vendor lock-in a big risk

Safety Arguments
• Structured evidence to show that a system 

is sufficiently safe for the intended uses
• For software, coding guidelines (e.g., 

MISRA) are crucial to argumentation

???



© The Khronos® Group Inc. 2025 - Page 11This work is licensed under a Creative Commons Attribution 4.0 International License

Goals of SYCL SC
Software-Defined Vehicle

• Applications include ADAS/AD, infotainment, etc.
• Benefits from C++ tooling & ecosystem
• Many experienced C++ developers
• See also: AUTOSAR SYCL Demonstrator

Hardware Acceleration
• Exposes GPUs & other accelerators
• Focused on productivity

Determinism
• Identify sources of non-determinism
• API support to mitigate non-determinism

Code Portability & Reuse
• Portable across vendors & backends
• Improved ability to use libraries

Safety Arguments
• MISRA compliance with published 

deviations
• API features to simplify arguments (e.g., 

“Bug X cannot happen because of …”)



© The Khronos® Group Inc. 2025 - Page 12This work is licensed under a Creative Commons Attribution 4.0 International License

What SYCL SC is
• Derived from SYCL 2020
• Improved compatibility with functional 

safety
- On the code level (e.g., MISRA 

compatibility)
- As a component of a safe system 

(e.g., support safety arguments)
• Core philosophies:

- Robustness
- Determinism
- Simplification

• Removals, modifications, & additions to 
SYCL 2020 in support of core 
philosophies

Robust
• Comprehensive error handling
• Remove ambiguity
• Clarify undefined behavior

Deterministic
• Execution time
• Resource utilization
• Results

Simplified
• Easier to certify runtime
• Easier to certify applications



© The Khronos® Group Inc. 2025 - Page 13This work is licensed under a Creative Commons Attribution 4.0 International License

What SYCL SC is Not
SYCL SC will not

• Tell you how to implement a “safe” application
• Guarantee a safe application
• Tell you how to implement a “safe” SYCL SC runtime
• Guarantee a safe runtime
• Tell you how to apply any industry process or standard
• Be certified (as a standard)
• Make your hardware safe

• SYCL SC will be compatible with you doing the above, but it cannot do it for you
• Functional safety is a system property; SYCL SC is only one component

- A safe system includes many other components, e.g., redundant hardware, EDC/ECC, 
hardware & software monitors, compliant development process, etc.



© The Khronos® Group Inc. 2025 - Page 14This work is licensed under a Creative Commons Attribution 4.0 International License

Agenda

• SYCL SC Working Group
• SYCL SC Motivation
• Past Year Overview
• Ecosystem & Engagement



© The Khronos® Group Inc. 2025 - Page 15This work is licensed under a Creative Commons Attribution 4.0 International License

Topics from the Past Year
• Error model ⭐

- How to handle errors without C++ exceptions
• Object model & dynamic memory ⭐

- How to ensure determinism
• C++ std containers … ⊕
• Device selection … ⊕
• Host-side thread safety
• Fallback queue
• Introspection

- E.g., kernel queries
• Alignment with Base SYCL vs. changes to support certifiability

- Often a spectrum of possible solutions with various trade-offs
• Specification management

- Git workflows

⭐ = Headline feature
⊕ = More later



© The Khronos® Group Inc. 2025 - Page 16This work is licensed under a Creative Commons Attribution 4.0 International License

Example Topic: C++ std Containers
• Base SYCL uses std::vector for both inputs and outputs
• Problematic for functional safety:

- May throw
- Amortized complexity

- SC cares about worst-case behavior
- May allocate

- Non-deterministic time
- Non-deterministic space
- Fragmentation in underlying allocator

• C++ allocators & polymorphic allocators do not solve problems
• Require clearly specified rules on:

- Containers’ & contained objects’ lifetimes
- Usage & ownership of underlying memory

• C++26 std::inplace_vector has some beneficial features
- Doesn’t address all issues with std::vector
- SYCL SC must use C++17 because MISRA guidelines available



© The Khronos® Group Inc. 2025 - Page 17This work is licensed under a Creative Commons Attribution 4.0 International License

Example Topic: Device Selection
• Base SYCL uses selectors
• Select devices based on a score
• Implementation-defined behavior in case of ties

- Under-specified for SC requirements
• Default selector called by various Base SYCL functions
• Particularly problematic when a system has two or more identical GPUs

- Default selector is allowed to always return the same one
- Default selector is allowed to return one at random
- Potential source of non-determinism



© The Khronos® Group Inc. 2025 - Page 18This work is licensed under a Creative Commons Attribution 4.0 International License

Agenda

• SYCL SC Working Group
• SYCL SC Motivation
• Past Year Overview
• Ecosystem & Engagement



© The Khronos® Group Inc. 2025 - Page 19This work is licensed under a Creative Commons Attribution 4.0 International License

Khronos AUTOSAR Liaison: SYCL Demonstrator

19

Thank you to AUTOSAR and Intellias

The main aim: creation of generic API in 
AUTOSAR, which allows to utilize hardware 
acceleration for computation efficiency 
improvement. SYCL is the best candidate to be 
used under the hood. Moreover, SYCL SC 
will potentially add required safety compatibility.



© The Khronos® Group Inc. 2025 - Page 20This work is licensed under a Creative Commons Attribution 4.0 International License

• www.khronos.org/syclsc
• sycl_sc_chair@lists.khronos.org
• SYCL SC working group welcomes new members

- Open to Khronos members
- Khronos membership is available to all companies

- Individual contributors possible in special circumstances
• Advisory panel for IP-free, non-Khronos discussions
• See also UXL Safety-Critical Special Interest Group (SC SIG)

- https://github.com/uxlfoundation/foundation#special-interest-groups-sigs
- Khronos liaison organization
- Open for IP-free community presentations & discussions

Get Involved!

http://www.khronos.org/syclsc
mailto:sycl_sc_chair@lists.khronos.org
https://github.com/uxlfoundation/foundation#special-interest-groups-sigs


SYCL SC State of the Union

Lukas Sommer, Codeplay Software
On behalf of the SYCL SC working group


