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Overview

• kernel_compiler extension

• In-memory compilation of SYCL code

• Preliminary performance results

• Conclusion
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kernel_compiler extension



Motivation for runtime compilation

• Runtime (or online) compilation is useful when code is generated or 
specialised at runtime
• Template metaprogramming, code generated from domain-specific language, etc.
• Going beyond specialisation constants

• Canonical example: GEMM library
• Highly optimised implementation picked specifically for target and shape of operation
• Intractable to enumerate & precompile all combinations

• Orthogonal to JIT vs. AOT compilation modes in SYCL implementations
• Kernels are not known at compile time of the application
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kernel_compiler extension

• Presented last year at IWOCL

• This talk is an update on the 
SYCL language support

• Extension also handles OpenCL 
and SPIR-V
• Ninja-optimised implementations, 

new hardware features without 
SYCL extension, etc.
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Example – Kernel

• Source string using free-function kernel syntax
• Marker property
• Function arguments == kernel arguments, order matters
• Free function to get iteration index
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auto constexpr SYCLSource = R"""(
#include <sycl/sycl.hpp>

namespace syclext = sycl::ext::oneapi;
namespace syclexp = sycl::ext::oneapi::experimental;

extern "C"
SYCL_EXT_ONEAPI_FUNCTION_PROPERTY((syclexp::nd_range_kernel<1>))
void iota(int start, int *ptr) {
 size_t id = syclext::this_work_item::get_nd_item<1>().get_global_linear_id();
 ptr[id] = start + id;
}
)""";
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Example – Build
• Extension uses kernel 

bundle infrastructure

• Check availability of 
runtime compilation

• Create bundle in new state 
ext_oneapi_source from 
string

• Build into executable state

Note: create_bundle_from_source(…) 
and build(…) take additional arguments 

and may throw exceptions
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#include <sycl/sycl.hpp>

using namespace sycl;
namespace syclexp = sycl::ext::oneapi::experimental;

int main() {
 auto lang = syclexp::source_language::sycl;

 queue q; 
 assert(q.get_device().ext_oneapi_can_compile(lang));

 kernel_bundle<bundle_state::ext_oneapi_source>
    kbSrc = syclexp::create_kernel_bundle_from_source(
      q.get_context(), lang, SYCLSource);

 kernel_bundle<bundle_state::executable>
    kbExe = syclexp::build(kbSrc);

  // cont’d on next slide ...
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Example – Run
• Obtain kernel object from 

bundle by name
• NB: Kernel function was declared 

as extern “C”
• Will revisit in a moment

• Set arguments by index and 
invoke kernel

• No special flags required to 
compile and run the application
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 kernel k = kbExe.ext_oneapi_get_kernel("iota");

 constexpr size_t N = 128;
 int *buffer = sycl::malloc_shared<int>(N, q);
 
 q.submit([&](sycl::handler &cgh) {
  cgh.set_arg(0, 42);
  cgh.set_arg(1, buffer);
  cgh.parallel_for(range{N}, k);
 }).wait();
 
 sycl::free(buffer, q);

 return 0;
}

$ clang++ -fsycl iota.cpp –o iota
$ ./iota

1 1

2

2

3

3



Properties
• Application controls the 

compilation via properties

• include_files
• Define virtual headers that can be 

included in the source string

• save_log
• Request the full compilation log 

(e.g. to see warnings)

• build_options
• Pass supported DPC++ options to 

the runtime compiler
• E.g.: add include paths
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auto constexpr SYCLSource = R"""(
#include <sycl/sycl.hpp>
#include "foo/bar.h"
#include "mylibrary.h"

extern "C" SYCL_EXT_ONEAPI_FUNCTION_PROPERTY(( 
sycl::ext::oneapi::experimental::single_task))
void mytask(int x, int *ptr) { *ptr = func(x) + MY_MACRO; }
)""";

syclexp::include_files includes{"foo/bar.h",
    "int func(int x) { return x * x; }"};
auto kbSrc =
  syclexp::create_kernel_bundle_from_source(ctx,
 lang, SYCLSource, syclexp::properties{includes});

std::string log;
auto kbExe = syclexp::build(kbSrc, syclexp::properties{
    syclexp::save_log{&log}, syclexp::build_options{
    std::vector<std::string>{"-DMY_MACRO=3",
                             "-Imylib/include"}}
});
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Source code names
• SYCL compilation is challenging

• C++ function names are mangled in an 
implementation-specific way, e.g.:
foo::bar() becomes _ZN3foo3barEv

• Name is not sufficient to resolve 
overloads

• And what about templates?

• registered_names property accepts 
list of C++ expressions that reference 
a free-function kernel
• Use for ext_oneapi_[has|get]_kernel
• Triggers template instantiation
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auto constexpr SYCLSource = R"""(
#include <sycl/sycl.hpp>

#define STK SYCL_EXT_ONEAPI_FUNCTION_PROPERTY((        \
 sycl::ext::oneapi::experimental::single_task_kernel))

namespace mykernels {
  STK void K1() {}
  STK void K2(int x) {}
  STK void K2(float x) {}
  template<typename T> STK void K3(T x) {}
}
)""";

std::vector<std::string> kernelNames{
  "mykernels::K1", 
  "(void(*)(int))mykernels::K2",
 "(void(*)(float))mykernels::K2",
  "mykernels::K3<short>"};

auto kbExe = syclexp::build(kbSrc, syclexp::properties{
  syclexp::registered_names{kernelNames}});

for (auto &kn : kernelNames)
 assert(kbExe.ext_oneapi_has_kernel(kn));
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How to try it out yourself

• SYCL runtime compilation included in DPC++ daily builds
• Planned to be part of the upcoming oneAPI 2025.2 release
• Refer to the extension specification for more information and current 

limitations
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https://github.com/intel/llvm/releases https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions
/experimental/sycl_ext_oneapi_kernel_compiler.asciidoc

https://github.com/intel/llvm/releases
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_kernel_compiler.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_kernel_compiler.asciidoc


In-memory compilation of SYCL code



Invoke-based RTC implementation
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JIT-based RTC implementation
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Leveraging modular compiler technology

• Clang’s LibTooling interface works with DPC++ and offers very high-level 
interface
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Preliminary performance results



Methodology

• Use simple vector addition kernel to compare compilation time of different 
implementations
• Small kernel allows to assess the constant overhead

• Findings here do not only apply to SYCL-RTC, also hold for DPC++ SYCL 
compilation in general
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Configuration details
DPC++ daily build 2025/03/14 (Git commit ID 61cb6d7)
https://github.com/intel/llvm/releases/tag/nightly-2025-03-14
CPU: 12th Gen Intel(R) Core(TM) i9-12900K
GPU: Intel(R) UHD Graphics 770
Environment:
  ONEAPI_DEVICE_SELECTOR=level_zero:gpu
  NEO_CACHE_PERSISTENT=0
Reported runtimes are averaged over 10 calls to sycl_exp::build(…).

Performance varies by use, configuration and other factors. 
Performance results are based on testing on 2025-03-31 and may not 
reflect all publicly available updates. No product or component can be 
absolutely secure. Your cost and results may vary. Intel technologies 
may require enabled hardware, software or service activation.

https://github.com/intel/llvm/commit/61cb6d7a5dcc39404bc1274c42525d2432780caf
https://github.com/intel/llvm/releases/tag/nightly-2025-03-14
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1632 ms

3571 ms

2.2x Improvement

Notices and Disclaimers: Performance varies by use, configuration and other factors. Performance results are based on testing on 2025-03-31 and may not reflect all publicly available updates. See slide 
“Methodology” for configuration details. No product or component can be absolutely secure. Your cost and results may vary. Intel technologies may require enabled hardware, software or service activation.



Compilation time breakdown

• Almost all time is spent in frontend
• Time spent in runtime compiler: 1811 ms

• Frontend: 1785 ms (98.5%)
• Link, finalise and translate: 7 ms (0.4%)
• SPIR-V to device binary translation: 19 ms (1.1 %)

• Two major contributing phases in frontend
• Parsing sycl.hpp: 1556 ms (85.9%)

• ≈ 250 ms associated with extensions
• Perform pending instantiations: 180 ms (9.9%)

• Mere number of instantiations makes this phase so slow
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Parse sycl.hpp

Perform pending instantiations

Link, finalise and translate

SPIR-V to device binary

Tracing 
overhead

Notices and Disclaimers: Performance varies by use, configuration and other factors. Performance results are based on testing on 2025-03-31 and may not reflect all publicly available updates. See slide 
“Methodology” for configuration details. No product or component can be absolutely secure. Your cost and results may vary. Intel technologies may require enabled hardware, software or service activation.



Avenues for faster compilation
• Use pre-compiled headers to process sycl.hpp faster

• AST serialised into binary format, all-but-eliminates parsing step
• Supported by clang, but not yet for DPC++

• Modularise sycl.hpp to process fewer headers
• Do not include all extensions by default, maybe even skip core features (e.g. accessors)
• Specification work and user opt-in required

• Use persistent cache
• Caches the LLVM module obtained from frontend invocation
• Cache hit: 115 ms (7% of 1632 ms) for vector add example
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Notices and Disclaimers: Performance varies by use, configuration and other factors. Performance results are based on testing on 2025-03-31 and may not reflect all publicly available updates. See slide 
“Methodology” for configuration details. No product or component can be absolutely secure. Your cost and results may vary. Intel technologies may require enabled hardware, software or service activation.



Conclusion



Conclusion

• RTC extends SYCL’s toolbox for runtime specialisation
• Wrap header-only libraries and instantiate templates on demand
• Generate the best kernel for given input data and target device
• Fuse user-supplied code-snippet into kernel
• …
• More generic/powerful than existing specialisation approaches

• (Almost) no limitations for kernel complexity or extension usage
• Implemented as thin layer on top of DPC++ codebase

• Available to play around with!
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Performance varies by use, configuration and other factors.

Performance results are based on testing as of dates shown in 
configurations and may not reflect all publicly available updates. See 
backup for configuration details. 

No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service 
activation.
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