
Fast In-Memory Runtime Compilation of SYCL Code

Julian Oppermann – Codeplay Software

Lukas Sommer, Mehdi Goli – Codeplay Software

Chris Perkins, Greg Lueck – Intel

Established 2002 in
Edinburgh, Scotland.

Grown successfully to around
100 employees.

In 2022, we became a wholly
owned subsidiary of Intel.

Committed to expanding the
open ecosystem for
heterogeneous computing.

Through our involvement in
oneAPI and SYCL
governance, we help to
maintain and develop open
standards.

Developing at the forefront
of cutting-edge research.

Currently involved in two
research projects - SYCLOPS
and AERO, both funded by
the Horizon Europe Project.

Enabling AI & HPC To Be Open, Safe & Accessible To All

2

Overview

• kernel_compiler extension

• In-memory compilation of SYCL code

• Preliminary performance results

• Conclusion

3

kernel_compiler extension

Motivation for runtime compilation

• Runtime (or online) compilation is useful when code is generated or
specialised at runtime
• Template metaprogramming, code generated from domain-specific language, etc.
• Going beyond specialisation constants

• Canonical example: GEMM library
• Highly optimised implementation picked specifically for target and shape of operation
• Intractable to enumerate & precompile all combinations

• Orthogonal to JIT vs. AOT compilation modes in SYCL implementations
• Kernels are not known at compile time of the application

5

kernel_compiler extension

• Presented last year at IWOCL

• This talk is an update on the
SYCL language support

• Extension also handles OpenCL
and SPIR-V
• Ninja-optimised implementations,

new hardware features without
SYCL extension, etc.

6

Example – Kernel

• Source string using free-function kernel syntax
• Marker property
• Function arguments == kernel arguments, order matters
• Free function to get iteration index

7

auto constexpr SYCLSource = R"""(
#include <sycl/sycl.hpp>

namespace syclext = sycl::ext::oneapi;
namespace syclexp = sycl::ext::oneapi::experimental;

extern "C"
SYCL_EXT_ONEAPI_FUNCTION_PROPERTY((syclexp::nd_range_kernel<1>))
void iota(int start, int *ptr) {
 size_t id = syclext::this_work_item::get_nd_item<1>().get_global_linear_id();
 ptr[id] = start + id;
}
)""";

1

2

3

1
2
3

Example – Build
• Extension uses kernel

bundle infrastructure

• Check availability of
runtime compilation

• Create bundle in new state
ext_oneapi_source from
string

• Build into executable state

Note: create_bundle_from_source(…)
and build(…) take additional arguments

and may throw exceptions

8

#include <sycl/sycl.hpp>

using namespace sycl;
namespace syclexp = sycl::ext::oneapi::experimental;

int main() {
 auto lang = syclexp::source_language::sycl;

 queue q;
 assert(q.get_device().ext_oneapi_can_compile(lang));

 kernel_bundle<bundle_state::ext_oneapi_source>
 kbSrc = syclexp::create_kernel_bundle_from_source(
 q.get_context(), lang, SYCLSource);

 kernel_bundle<bundle_state::executable>
 kbExe = syclexp::build(kbSrc);

 // cont’d on next slide ...

1
2

3

1

3
2

Example – Run
• Obtain kernel object from

bundle by name
• NB: Kernel function was declared

as extern “C”
• Will revisit in a moment

• Set arguments by index and
invoke kernel

• No special flags required to
compile and run the application

9

 kernel k = kbExe.ext_oneapi_get_kernel("iota");

 constexpr size_t N = 128;
 int *buffer = sycl::malloc_shared<int>(N, q);

 q.submit([&](sycl::handler &cgh) {
 cgh.set_arg(0, 42);
 cgh.set_arg(1, buffer);
 cgh.parallel_for(range{N}, k);
 }).wait();

 sycl::free(buffer, q);

 return 0;
}

$ clang++ -fsycl iota.cpp –o iota
$./iota

1 1

2

2

3

3

Properties
• Application controls the

compilation via properties

• include_files
• Define virtual headers that can be

included in the source string

• save_log
• Request the full compilation log

(e.g. to see warnings)

• build_options
• Pass supported DPC++ options to

the runtime compiler
• E.g.: add include paths

10

auto constexpr SYCLSource = R"""(
#include <sycl/sycl.hpp>
#include "foo/bar.h"
#include "mylibrary.h"

extern "C" SYCL_EXT_ONEAPI_FUNCTION_PROPERTY((
sycl::ext::oneapi::experimental::single_task))
void mytask(int x, int *ptr) { *ptr = func(x) + MY_MACRO; }
)""";

syclexp::include_files includes{"foo/bar.h",
 "int func(int x) { return x * x; }"};
auto kbSrc =
 syclexp::create_kernel_bundle_from_source(ctx,
 lang, SYCLSource, syclexp::properties{includes});

std::string log;
auto kbExe = syclexp::build(kbSrc, syclexp::properties{
 syclexp::save_log{&log}, syclexp::build_options{
 std::vector<std::string>{"-DMY_MACRO=3",
 "-Imylib/include"}}
});

1

2

3

1

2 3

1

44

4

Source code names
• SYCL compilation is challenging

• C++ function names are mangled in an
implementation-specific way, e.g.:
foo::bar() becomes _ZN3foo3barEv

• Name is not sufficient to resolve
overloads

• And what about templates?

• registered_names property accepts
list of C++ expressions that reference
a free-function kernel
• Use for ext_oneapi_[has|get]_kernel
• Triggers template instantiation

11

auto constexpr SYCLSource = R"""(
#include <sycl/sycl.hpp>

#define STK SYCL_EXT_ONEAPI_FUNCTION_PROPERTY((\
 sycl::ext::oneapi::experimental::single_task_kernel))

namespace mykernels {
 STK void K1() {}
 STK void K2(int x) {}
 STK void K2(float x) {}
 template<typename T> STK void K3(T x) {}
}
)""";

std::vector<std::string> kernelNames{
 "mykernels::K1",
 "(void(*)(int))mykernels::K2",
 "(void(*)(float))mykernels::K2",
 "mykernels::K3<short>"};

auto kbExe = syclexp::build(kbSrc, syclexp::properties{
 syclexp::registered_names{kernelNames}});

for (auto &kn : kernelNames)
 assert(kbExe.ext_oneapi_has_kernel(kn));

4

4

1

2

3

1

2

3

How to try it out yourself

• SYCL runtime compilation included in DPC++ daily builds
• Planned to be part of the upcoming oneAPI 2025.2 release
• Refer to the extension specification for more information and current

limitations

12

https://github.com/intel/llvm/releases https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions
/experimental/sycl_ext_oneapi_kernel_compiler.asciidoc

https://github.com/intel/llvm/releases
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_kernel_compiler.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_kernel_compiler.asciidoc

In-memory compilation of SYCL code

Invoke-based RTC implementation

14

User ApplicationUser Application

libsycl.so (SYCL Runtime)libsycl.so (SYCL Runtime)

Kernel
SPIR-V
Kernel
SPIR-V

Reads
from disk

Kernel
Source
Kernel
Source

Writes
to disk

Execute Kernel

Disadvantages
• Additional overhead for file

I/O to disk
• Files could be manipulated,

potential security risk
• No suitable on-disk format

for additional runtime
information available

• Redundant host compilation
performed due to driver
limitation

clang/icpx executableclang/icpx executable

Calls as
external tool

llvm-linkllvm-link sycl-post-linksycl-post-link llvm-spirvllvm-spirv

JIT-based RTC implementation

15

User ApplicationUser Application

libsycl.so (SYCL Runtime)libsycl.so (SYCL Runtime)

libsycl-jit.so (SYCL JIT)libsycl-jit.so (SYCL JIT)

Execute Kernel

Improvements
• All data exchanged is

kept in memory, no
write to or read from
disk

• RTC kernels ingested
into runtime in the
same way as “normal”
kernels

Kernel
Source
Kernel
Source

clang
(via LibTooling)

clang
(via LibTooling)

LLVM
Module
LLVM

Module

Calls library version via API

next slide

Kernel
SPIR-V +

runtime info

Kernel
SPIR-V +

runtime info
llvm-linkllvm-link sycl-post-linksycl-post-link llvm-spirvllvm-spirv

Leveraging modular compiler technology

• Clang’s LibTooling interface works with DPC++ and offers very high-level
interface

16

Virtual file system
overlay

Compilation
command database Tool action

rtc_42.cpprtc_42.cpp
baz.hbaz.h

bar.hbar.h

Source string include_files
property

rtc_42.cpp:
-fsycl-device-only

+
build_options

property

EmitLLVMOnlyAction

llvm::Module

Preliminary performance results

Methodology

• Use simple vector addition kernel to compare compilation time of different
implementations
• Small kernel allows to assess the constant overhead

• Findings here do not only apply to SYCL-RTC, also hold for DPC++ SYCL
compilation in general

18

Configuration details
DPC++ daily build 2025/03/14 (Git commit ID 61cb6d7)
https://github.com/intel/llvm/releases/tag/nightly-2025-03-14
CPU: 12th Gen Intel(R) Core(TM) i9-12900K
GPU: Intel(R) UHD Graphics 770
Environment:
 ONEAPI_DEVICE_SELECTOR=level_zero:gpu
 NEO_CACHE_PERSISTENT=0
Reported runtimes are averaged over 10 calls to sycl_exp::build(…).

Performance varies by use, configuration and other factors.
Performance results are based on testing on 2025-03-31 and may not
reflect all publicly available updates. No product or component can be
absolutely secure. Your cost and results may vary. Intel technologies
may require enabled hardware, software or service activation.

https://github.com/intel/llvm/commit/61cb6d7a5dcc39404bc1274c42525d2432780caf
https://github.com/intel/llvm/releases/tag/nightly-2025-03-14

0 500 1000 1500 2000 2500 3000 3500 4000

Invoke-based SYCL-RTC

JIT-based SYCL-RTC

Compile Time in ms

Performance comparison

19

1632 ms

3571 ms

2.2x Improvement

Notices and Disclaimers: Performance varies by use, configuration and other factors. Performance results are based on testing on 2025-03-31 and may not reflect all publicly available updates. See slide
“Methodology” for configuration details. No product or component can be absolutely secure. Your cost and results may vary. Intel technologies may require enabled hardware, software or service activation.

Compilation time breakdown

• Almost all time is spent in frontend
• Time spent in runtime compiler: 1811 ms

• Frontend: 1785 ms (98.5%)
• Link, finalise and translate: 7 ms (0.4%)
• SPIR-V to device binary translation: 19 ms (1.1 %)

• Two major contributing phases in frontend
• Parsing sycl.hpp: 1556 ms (85.9%)

• ≈ 250 ms associated with extensions
• Perform pending instantiations: 180 ms (9.9%)

• Mere number of instantiations makes this phase so slow

20

Parse sycl.hpp

Perform pending instantiations

Link, finalise and translate

SPIR-V to device binary

Tracing
overhead

Notices and Disclaimers: Performance varies by use, configuration and other factors. Performance results are based on testing on 2025-03-31 and may not reflect all publicly available updates. See slide
“Methodology” for configuration details. No product or component can be absolutely secure. Your cost and results may vary. Intel technologies may require enabled hardware, software or service activation.

Avenues for faster compilation
• Use pre-compiled headers to process sycl.hpp faster

• AST serialised into binary format, all-but-eliminates parsing step
• Supported by clang, but not yet for DPC++

• Modularise sycl.hpp to process fewer headers
• Do not include all extensions by default, maybe even skip core features (e.g. accessors)
• Specification work and user opt-in required

• Use persistent cache
• Caches the LLVM module obtained from frontend invocation
• Cache hit: 115 ms (7% of 1632 ms) for vector add example

21

Notices and Disclaimers: Performance varies by use, configuration and other factors. Performance results are based on testing on 2025-03-31 and may not reflect all publicly available updates. See slide
“Methodology” for configuration details. No product or component can be absolutely secure. Your cost and results may vary. Intel technologies may require enabled hardware, software or service activation.

Conclusion

Conclusion

• RTC extends SYCL’s toolbox for runtime specialisation
• Wrap header-only libraries and instantiate templates on demand
• Generate the best kernel for given input data and target device
• Fuse user-supplied code-snippet into kernel
• …
• More generic/powerful than existing specialisation approaches

• (Almost) no limitations for kernel complexity or extension usage
• Implemented as thin layer on top of DPC++ codebase

• Available to play around with!

23

Fast In-Memory Runtime Compilation of SYCL Code

Julian Oppermann – Codeplay Software

Lukas Sommer, Mehdi Goli – Codeplay Software

Chris Perkins, Greg Lueck – Intel

Performance varies by use, configuration and other factors.

Performance results are based on testing as of dates shown in
configurations and may not reflect all publicly available updates. See
backup for configuration details.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service
activation.

© Codeplay Software Ltd.. Codeplay, Intel, the Intel logo, and other Intel
marks are trademarks of Intel Corporation or its subsidiaries. Other names
and brands may be claimed as the property of others.

Disclaimers

A wee bit of legal

	Slide 1
	Slide 2
	Slide 3: Overview
	Slide 4: kernel_compiler extension
	Slide 5: Motivation for runtime compilation
	Slide 6: kernel_compiler extension
	Slide 7: Example – Kernel
	Slide 8: Example – Build
	Slide 9: Example – Run
	Slide 10: Properties
	Slide 11: Source code names
	Slide 12: How to try it out yourself
	Slide 13: In-memory compilation of SYCL code
	Slide 14: Invoke-based RTC implementation
	Slide 15: JIT-based RTC implementation
	Slide 16: Leveraging modular compiler technology
	Slide 17: Preliminary performance results
	Slide 18: Methodology
	Slide 19: Performance comparison
	Slide 20: Compilation time breakdown
	Slide 21: Avenues for faster compilation
	Slide 22: Conclusion
	Slide 23: Conclusion
	Slide 24
	Slide 25

