
Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Introduction to the Qualcomm®
AdrenoTM Optimized OpenCLTM

backend for Llama.cpp

Engineer, Principal/Manager

Qualcomm Technologies, Inc.

Hongqiang Wang

@qualcomm

For 13th International Workshop on
OpenCL and SYCL (2025 IWOCL)

Agenda

2

Who are we?

What and why llama.cpp + OpenCL?

Llama.cpp workflow and software arch

Our contributions: kernels, ops, and perf

Status and work in progress

Future work

Summary

33

Who Are We?

Our team

Part of Qualcomm GPU Research Team (GRT)
• Work on GPGPU and AI/ML projects for

Adreno GPUs
• Focus on architecture
• Participate in open-source projects like

TVM/MLC and Llama.cpp
Two technical presentations for IWOCL 2025

• This one: Llama.cpp on Adreno GPUs
• TVM/MLC for llm on WoS (coming next)

Long term contributors for IWOCL

IWOCL 2025 @ Heidelberg, Germany

Key contributors for the project

Li He
Staff Engineer

Shangqing Gu
Senior Engineer

Skyler Szot
Engineer

Alex Angus
Senior Engineer
*former team member

Shaofei Qi
Engineer

Alex Bourd
Senior Director,
Technology

4

• Public Llama.cpp git repo: https://github.com/ggerganov/llama.cpp
• OpenCL PR: Introducing experimental OpenCL backend with support for Qualcomm Adr… ·

ggerganov/llama.cpp@a76c56f
• How to build: https://github.com/ggml-org/llama.cpp/blob/master/docs/backend/OPENCL.md
• OpenCL kernels: https://github.com/ggml-org/llama.cpp/tree/master/ggml/src/ggml-

opencl/kernels
• Llama.cpp at CodeLinaro: typically, first upstreamed here and then merged into Llama.cpp mainline

• Blogs about the work:
• Introducing the new OpenCL GPU backend in llama.cpp for Qualcomm Adreno GPUs
• How to run DeepSeek models on Windows on Snapdragon – Llama.cpp and MLC-LLM tutorial

• Adreno OpenCL SDK, and programming guide and best practices:
https://qpm.qualcomm.com/#/main/tools/details/Adreno_OpenCL_SDK

IWOCL 2025 @ Heidelberg, Germany

Resources/References

https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp/commit/a76c56fa1a3d27467eb97468d8c3b2fe1243b61a
mailto:ggerganov/llama.cpp@a76c56f
https://github.com/ggml-org/llama.cpp/blob/master/docs/backend/OPENCL.md
https://github.com/ggml-org/llama.cpp/tree/master/ggml/src/ggml-opencl/kernels
https://github.com/ggml-org/llama.cpp/tree/master/ggml/src/ggml-opencl/kernels
https://github.com/CodeLinaro/llama.cpp
https://www.qualcomm.com/developer/blog/2024/11/introducing-new-opn-cl-gpu-backend-llama-cpp-for-qualcomm-adreno-gpu
https://www.qualcomm.com/developer/blog/2025/02/how-to-run-deepseek-windows-snapdragon-tutorial-llama-cpp-mlc-llm
https://qpm.qualcomm.com/#/main/tools/details/Adreno_OpenCL_SDK

5IWOCL 2025 @ Heidelberg, Germany

What is Llama.cpp

• An open-source project written in C/C++ for inference
of Large Language Models (LLM):
• The main goal of llama.cpp is to enable LLM

inference with minimal setup and state-of-the-
art performance on a wide range of hardware -
locally and in the cloud.

• Support many models: 80K+ models from
Huggingface (UUGF formats) as of today.

• Mainly for text generation, also support multi-
modal (vision), e.g., LLaVA

• Supports GPU/CPU/NPU via backends – CUDA,
OpenCL, Metal, Vulkan, SYCL, etc.
• Backend like Huawei Ascend NPU
• Some assembly optimized code (ARM CPU

assembly)
• Runs on Android, Linux, MacOS, Windows (x86/WoS)

https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md#metal-build
https://github.com/ggerganov/llama.cpp/blob/master/docs/backend/SYCL.md
https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md#cuda
https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md#hip
https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md#vulkan
https://github.com/ggml-org/llama.cpp/blob/master/docs/backend/OPENCL.md
https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md#musa
https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md#blas-build
https://github.com/ggerganov/llama.cpp/blob/master/docs/backend/BLIS.md
https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md#cann

6

• Simplicity and flexibility
• Easy to work with – both runtime and kernels, as it entirely implemented in C/C++
• Handwritten kernels (OpenCL C, CUDA, Metal shading language, GLSL, SYCL)
• Support of libraries, e.g., cuBLAS

• Cross platform support
• Can be easily built on Android, Windows, Linux and MacOS via CMake with minimal

dependencies
• Industry traction: very active and popular project

• 77.8k stars at GitHub, as of 4/8/25.
• Support from AMD, ARM, Intel, Huawei, Qualcomm, etc.

• Decent performance

IWOCL 2025 @ Heidelberg, Germany

Why Llama.cpp?

77

Why OpenCL and Adreno for Llama.cpp?

Why OpenCL?

Mature APIs
• Supported by almost all major GPU vendors
• Easy to program, debug, profile, and port
• Best for mobile and embedded systems

Availability of GPU on Snapdragon SoCs
• Supported on all tiers of Snapdragon SoCs
• Availability of other computing cores may vary
• GPU is often idle or under-utilized

 Llama.cpp had an OpenCL backend
• Only MatMul is offloaded to GPU via CLBlast
• Kernels are not highly optimized for some GPUs
• Deprecated by the community last year

IWOCL 2025 @ Heidelberg, Germany

How we started the project?

Brief history:
• Started as a side project by one engineer
• Gain tractions gradually
• Lately, strong interest from customers in IoT,

automobile, embedded, and compute
(Windows on Snapdragon)

Our goal:
• Have an OpenCL backend optimized for Adreno

GPUs
• Can be easily extended to other vendors’ GPUs

8

Llama.cpp Workflow

IWOCL 2025 @ Heidelberg, Germany

• Converter tool
• Written in Python
• Parses Torch checkpoint files and Hugging face

model files, converts GGML format in fp16

• Quantization tool
• Written in C++ (uses the same infrastructure as

llama.cpp)
• Quantizes fp16 GGML model files using specified

quantization (e.g., Q4_0)

• Llama.cpp executable
• The llama.cpp main executable runs the

quantized model

Model
(Pytorch/Hugging

face,
fp32/fp16/bf16)

GGML model
(fp16)

GGML model
(Q4_0)

Llama.cpp
executable

9

Backends

IWOCL 2025 @ Heidelberg, Germany

High level Llama.cpp Software Architecture

• llama.cpp
• Shared logic for LLMs, e.g., model loader/writer, tokenizer,

quantizers
• Builds graph for various LLM models

• GGML – an ML library in C
• Tensors, memory management interface, threading
• Ops and ops dispatch, CPU runtime

• Backends
• Backends implement (all or part of) the ops and target

specific memory management

• OpenCL
• Adreno backend supports all the ops for typical LLMs

GGML
Tensor, Ops, Graph, CPU runtime

CPU Runtime and
Ops

Metal
Runtime
and Ops

CLBlast +
custom
kernels

cuBLAS +
custom
kernels

Metal
kernels

libllama
Model loader, graph composer, tokenizer,

quantizer

OpenCL
Runtime
and Ops

CL
kernels

…

10IWOCL 2025 @ Heidelberg, Germany

Our Contributions to the Llama.cpp Project

• Full set of OpenCL kernels (50+) and the host code
• A lot of debug and optimization work done
• Primarily optimized for Q4_0 quantization format

A new OpenCL backend upstreamed to
the mainline Llama.cpp project

• Support Android/Linux and Snapdragon® Elite and Snapdragon X Elite (WoS)
• Support selected Adreno 600 devices (like the Qualcomm Robotics RB5)
• Ongoing optimization and porting for low tiers

Performance tuned for premium Adreno
GPUs (Adreno 700 and 800): Snapdragon

Gen 1, 2, 3, Elite and X Elite (WoS)

• Smaller models are more sensitive to numerical errors caused by precisions: FP32, FP16,
denorm

Options to use different version of key
kernels

• How to expose ILA to customer is under discussion
• Need the Khronos’ OpenCL Working Group to move forward the extension like cooperative

matrix.

An internal version that uses inline
assembly (ILA)

https://www.qualcomm.com/developer/hardware/robotics-rb5-development-kit

11IWOCL 2025 @ Heidelberg, Germany

Optimizations of the OpenCL Backend

Host: minimizing
data movement,
better memory
management

Use vector data
types

Flatten structs that
represent quantized
values into separate

arrays

Use of image vs
buffer Unroll loops

Mixed precision: use
of FP16 vs FP32

Tune parameters like
blocking size

Good use of
constant memory Subgroup functions

Careful design of
MatMul/MatVec

kernels

Adreno OpenCL Programming guide: https://qpm.qualcomm.com/#/main/tools/details/Adreno_OpenCL_SDK

https://qpm.qualcomm.com/#/main/tools/details/Adreno_OpenCL_SDK

12IWOCL 2025 @ Heidelberg, Germany

LLM Models Supported with the Backend

Model Company Sizes

DeepSeek Distilled R1 DeepSeek 1.5B, 3B

Llama 2, 3 Meta 7B, 3B

Qwen Alibaba 7B, 3B, 1.5B, 0.5B

Phi-2/3/4 mini Microsoft 3.8B, 5.6B

Mistral Mistral AI 7B

Gemma Google 2B

13IWOCL 2025 @ Heidelberg, Germany

Metrics for Measuring the Perf of LLM Models, and Bottleneck

Encoder Decoder

Terms Pre-fill, prompt processing, encoding Token generation, decoding

Acronym TTFT=Time To First Token TPOT=Time Per Output Token

Meaning How long it takes to process the prompt/file before
generating new text.

Total tokens generated divided by the total time to generate the
output

Numbers The higher the better The higher the better

Example Prompt of 100 tokens, perf is 200 tokens/sec, it takes
0.5 seconds to generate the 1st token

Total tokens generated is 1000, total time is 100 seconds, speed
is 10 tokens/second

Important
when:

For long prompt use cases: email summary, continuous
chat with previous output

After 1st token is generated

Main
bottleneck

Generally, compute bound, a lot of matrix multiplication
ops.

Generally, memory bound, a lot of matrix vector multiplication:
7B model: With 4-bit quantization, 3.5GB is required for every
token, e.g., for a device with memory BW of 60GB, 17 tokens/sec
is the peak perf.

14IWOCL 2025 @ Heidelberg, Germany

Performance of Selected Models

Model Adreno GPUs/Device Pre-fill (tokens/sec) Token Generation
(tokens/sec)

Llama-2 7B Adreno in Snapdragon X Elite 151 18

Adreno 830 (Snapdragon 8 Elite) 155 15

Adreno 750 120 12

Llama-3 8B Adreno in Snapdragon X Elite 116 13

Adreno 830 (Snapdragon 8 Elite) 114 11

Adreno 750 107 10

Gemma 2 2B Adreno in Snapdragon X Elite 345 27

Adreno 830 (Snapdragon 8 Elite) 314 21

Adreno 750 198 9

Deepseek R1 1.5B Adreno in Snapdragon X Elite 510 62

Adreno 830 (Snapdragon 8 Elite) 384 43

Adreno 750 495 42

1515

Key Kernel for Pre-fill and Token Generation
Pre-fill/encoding: Matrix Multiplication (MatMul)
Typically, compute/ALU bound

IWOCL 2025 @ Heidelberg, Germany

Token gen/decoding: Matrix vector Multiplication (MatVec)
Typically, memory bandwidth bound

Link to the MatMul kernel Link to the MatVec kernel

https://github.com/ggml-org/llama.cpp/blob/master/ggml/src/ggml-opencl/kernels/ggml-opencl_mul_mat_Ab_Bi_8x4.cl
https://github.com/ggml-org/llama.cpp/blob/master/ggml/src/ggml-opencl/kernels/ggml-opencl_gemv_noshuffle.cl

16IWOCL 2025 @ Heidelberg, Germany

Discussions

Quality

• Perplexity score (not
always accurate)

• Math 500 Benchmark
with CPU vs GPU
• Closely matching
• Distill Qwen2 1.5b

v3:
• CPU: 83.1%,

232/279
• GPU: 83.09%,

231/278

OpenCL Versions and
Features

• The backend targeted
OpenCL 2.0/3.0

• Require the subgroup
features

• Could port to OpenCL
1.x without subgroups

Data type,
quantization, precision

• Depends on models
and sizes.

• Some models are
more sensitive than
the others.

• Ideally should have
different kernels for
different models with
different sizes

• FP16 denorm

Experience with open-
source project

• Pro: big community
support, very actively
updated, mature
framework, lots of
features/functionality

• Con: sometime not
flexible to add
features, e.g., debug
features, or
kernel/ops fusion

For OpenCL standard

• Missing cl_float
support for
read_imageh
function;
• Proposal to add it as

an KHR extension
• Work in progress

• Need to have
cooperative matrix
extension

17IWOCL 2025 @ Heidelberg, Germany

Ongoing Efforts/Plans for the Project

Ollama

• Greatly
facilitate the
deployment of
Llama.cpp

• Lack of
OpenCL
support today

• Upstreaming
in progress

Multi-Modal
support

• Hybrid of
language and
vision models

• Stable
diffusion: Unet
or transformer
based

Algo/API/SW
features

• Flash attention
• Dynamic

quantization
• Dynamic

kernel
selection

• MoE (Mixture
of Experts)

• Other key
features that
Metal/CUDA
supports

OpenCL
extensions

• Int8 dot
product

• On-Chip global
memory

• Recordable
command
buffer

• Constant
memory (small
model)

Other topics

• How to expose
ILA kernels:
Qualcomm
OpenCL
ML(CLML)?

• Optimized
Vulkan
backend for
Adreno?

18IWOCL 2025 @ Heidelberg, Germany

Two Open-Source Projects on LLM for Adreno GPUs

MLC based (TVM derived) Llama.cpp

Links https://llm.mlc.ai/
https://github.com/mlc-ai/mlc-llm

https://github.com/ggerganov/llama.cpp

Programming
model/language

Machine learning compiler and deployment engine for
LLM

Pure C/C++ based. Manually written/optimized kernels.

Backend OpenCL, CUDA, Vulkan, Apple’s Metal, WebGPU CUDA, OpenCL, Metal, Vulkan, SYCL, HIP, BLAS, etc.

Format MLC-LLM format GGUF format

Qualcomm
CLML integration

Yes, via BYOC (Bring your own codegen) Not yet

Features,
Characteristics

*The AI compiler does a lot of things automatically
*Have graph abstraction and auto kernel fusions
*Enablement is quick.
*Do not need to understand low level HW details.

*Purely C/C++ based
*No graph handling or auto kernel fusion
*Can easily plug in highly optimized kernels
*More features, e.g., more quantizations

https://llm.mlc.ai/
https://github.com/mlc-ai/mlc-llm
https://github.com/ggerganov/llama.cpp

19IWOCL 2025 @ Heidelberg, Germany

Summary

• We contributed a new OpenCL backend to Llama.cpp
• Well-optimized for high end Adreno GPUs: decent performance for pre-fill

and token generation
• Ported to old devices: performance being optimized (Adreno 600 serials)

Our contribution:

• Try to use more OpenCL extensions, including KHR and vendor extensions
• Advanced algorithms/applications: flash attention, MoE, multi-modal etc.
• Coverage and optimization for low end and old devices

A lot of features are in plan

20IWOCL 2025 @ Heidelberg, Germany

Final Words

Llama.cpp project is very
active; Welcome contributions
from all GPU vendors to
enhance the OpenCL backend

A great opportunity to
demonstrate OpenCL’s
capability and potentials

21

• OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

• Vulkan and the Vulkan logo are registered trademarks of the Khronos Group Inc.

• SYCL and the SYCL logo are trademarks of the Khronos Group Inc.

• Khronos and the Khronos Group logo are registered trademarks of the Khronos Group Inc.

Disclaimer

IWOCL 2025 @ Heidelberg, Germany

22

Thank you
Nothing in these materials is an offer to sell any of the components or devices referenced herein.

© Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm and Snapdragon are trademarks or registered trademarks of Qualcomm Incorporated.
Other products and brand names may be trademarks or registered trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm Incorporated,
Qualcomm Technologies, Inc., and/or other subsidiaries or business units within
the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes our licensing business, QTL,
and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated,
operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and
substantially all of our products and services businesses, including our QCT semiconductor business.

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries.
Qualcomm patents are licensed by Qualcomm Incorporated.

Follow us on:
For more information, visit us at qualcomm.com & qualcomm.com/blog

	Introduction to the Qualcomm® AdrenoTM Optimized OpenCLTM backend for Llama.cpp
	Slide Number 2
	Who Are We?
	Resources/References
	What is Llama.cpp
	Why Llama.cpp?
	�Why OpenCL and Adreno for Llama.cpp?
	Llama.cpp Workflow
	High level Llama.cpp Software Architecture
	Our Contributions to the Llama.cpp Project
	Optimizations of the OpenCL Backend
	LLM Models Supported with the Backend
	Metrics for Measuring the Perf of LLM Models, and Bottleneck
	Performance of Selected Models
	Key Kernel for Pre-fill and Token Generation
	Slide Number 16
	Ongoing Efforts/Plans for the Project
	Two Open-Source Projects on LLM for Adreno GPUs
	Summary
	Final Words
	Slide Number 21
	Slide Number 22

