
SYCL Interoperability with DirectX and Vulkan via 

Bindless Images

Duncan Brawley, Codeplay

Duncan Brawley, Przemek Malon, Jack Kirk, Georgi Mirazchiyski,

Peter Žužek, and Gordon Brown



Disclaimer – This is an experimental extension and so is subject to change

2



IWOCL 2024 Bindless Images presentation and slides

• Video Presentation:
• https://www.youtube.com/watch?v=KfxiFRw3yAA

• Slides:
• https://www.iwocl.org/wp-content/uploads/9301-Sean-Stirling-Codeplay.pdf

3

https://www.youtube.com/watch?v=KfxiFRw3yAA
https://www.iwocl.org/wp-content/uploads/9301-Sean-Stirling-Codeplay.pdf


Agenda

• Intro
• Overview of Bindless Images
• Brief catchup of new features

• Importing Vulkan/DX12 memory into SYCL
• Exporting SYCL memory into Vulkan/DX12
• Importing Vulkan/DX12 semaphores into SYCL
• Exporting semaphores from SYCL into Vulkan/DX12
• Problems encountered and interop as separate extension

• Q&A

4



Motivation of Bindless Images

• SYCL 2020 images has too many limitations
• DPC++ implementation not using texture hardware efficiently
• Need to request access through accessors
• Number of images must be known at compile time
• No control over how images are stored on the device (layouts, encodings, USM, etc)
• No mipmaps or cubemaps
• No interop with graphics APIs

5



Highlights of Bindless Images

• Separation of image memory and the actual image object
• Can use device-optimized memory layout, USM allocations from SYCL, or imported 

memory
• RAII wrappers

• Images as opaque handles
• No accessors required, vary number of images at runtime

• Flexible copy functions and flexible on-device access
• Many options for copying and reinterpreting image data

• Additional image types
• Mipmaps, cubemap, image arrays, etc.

6



New features since IWOCL 2024

• Explicit `fetch_image`, `sample_image`, `sample_mipmap`, etc. naming
• Sampled image arrays
• Extended image copies (device to device, image arrays, sub-copies)
• USM host image memory and copies
• Vulkan mipmap interop
• Limited 3 channel image support (Level Zero only)
• `gather_image` to get values used for linear interpolation

7



Backend Support

• CUDA Backend
• Full Support – Everything in the bindless spec is implemented

• Level Zero Backend
• Partial Support – 1-2-3D images, sampling, USM images, image arrays, 

3-channel images

• HIP Backend
• Basic support - 1-2-3D images, sampling

8



Blender using Bindless Images

9

• Initial changes have been pushed to 
Blender to allow SYCL backend use of 
Bindless Images

• Not fully upstreamed yet

• Works on CUDA, Level Zero and HIP

• Effort has been taken to optimize as 
much as possible

• Not currently using interop features

• Has been covered in more detail in 
previous presentation

Blender is a registered trademark (®) of the Blender Foundation in EU and USA

https://www.blender.org/


Importing Vulkan/DX12 memory into SYCL

10



Why is interop between SYCL and Vulkan/DX12 needed?

• No copies!
• Otherwise, would need to 

introduce additional copies

• Easier leveraging of existing 
Vulkan/DX12 libraries in SYCL 
and vice versa

• We have designed the API to be 
generic and applicable to other 
external APIs

11

Vulkan is a registered trademark and the Vulkan Portability logo is a trademark of the Khronos Group Inc.

https://www.vulkan.org


Without SYCL interop

12

Host Process

Device Memory

Request device 
allocation

Vulkan Allocation

Transfer 
data back 
to host

Transfer 
modified data 
to host and 
then back to 
device under 
SYCL context

SYCL Allocation

Transfer 
results back



With SYCL interop

13

Host Process

Device Memory

Vulkan/DX12 
creates and 
transfers 
memory to the 
device

Shared Allocation

Transfer 
results back

Both Vulkan/DX12 and SYCL 
use the same memory allocation



Basic process of importing memory

14

vkGetMemoryOpaqueFdKHR(...)/
vkGetMemoryWin32HandleKHR(...)

create_image(...)

Create sampled or 
unsampled image

Maps to image_mem_handle

import_external_memory(...)

map_external_image_memory(...)

map_external_linear_memory(...)

Maps to void * (USM)

Vulkan

DirectX 12

CreateSharedHandle(...)



Allocate and export Vulkan memory

15

Create memory in 
Vulkan 

Export memory from 
Vulkan making it 
available for SYCL to 
import



Import Vulkan memory into SYCL

16

Describe what kind 
of memory is being 
imported

Import memory 
into SYCL

Create image 
memory handle from 
imported memory

Create image 
as usual



Allocate and export DirectX 12 memory

17

Create memory in 
DX12

Export memory from 
DX12 making it 
available for SYCL to 
import



Import DirectX12 memory into SYCL

18

Describe what 
kind of memory 
is being 
imported

Import memory 
into SYCL

Create image 
memory handle 
from imported 
memory

Create image as 
usual



Same process to import Vulkan and DirectX 12 memory 
into SYCL
Vulkan DirectX 12

19



Importing memory with the CUDA backend

20

DirectX 12

import_external_memorySYCL

User code DPC++ CUDA backend

cuImportExternalMemory(...)

map_external_image_memory/
map_external_linear_memorySYCL

Layout optimized memory:
cuExternalMemoryGetMappedMipmappedArray(...)
cuMipmappedArrayGetLevel(...)
Linear memory (Untested on DX12):
cuExternalMemoryGetMappedBuffer(...)

create_imageSYCL

Unsampled image:
cuSurfObjectCreate(...)
Sampled image:
cuTexObjectCreate(...)

https://github.com/intel/llvm/blob/sycl/sycl/source/detail/bindless_images.cpp
https://github.com/intel/llvm/blob/sycl/unified-runtime/source/adapters/cuda/image.cpp 

Vulkan

CUDA

https://github.com/oneapi-src/unified-runtime/blob/main/source/adapters/level_zero/image.cpp
https://github.com/intel/llvm/blob/sycl/unified-runtime/source/adapters/cuda/image.cpp


Importing memory with the Level Zero backend

21

DirectX 12

import_external_memorySYCL

User code DPC++ Level Zero backend

new struct ur_ze_external_memory_data
new ze_external_memory_import_win32_handle_t

map_external_image_memorySYCL
Layout optimized memory:
zeImageCreate(...)
zeContextMakeImageResident(...)

create_imageSYCL

zeImageViewCreateExt(...) / zeImageCreate(...)

zeContextMakeImageResident(...)
zelLoaderTranslateHandle(...)
zeImageGetDeviceOffsetExp(...)

https://github.com/intel/llvm/blob/sycl/sycl/source/detail/bindless_images.cpp
https://github.com/intel/llvm/blob/sycl/unified-runtime/source/adapters/level_zero/image.cpp 

Level Zero

(Required to work with bindless offsets in 
IGC)

Vulkan

https://github.com/oneapi-src/unified-runtime/blob/main/source/adapters/level_zero/image.cpp
https://github.com/intel/llvm/blob/sycl/unified-runtime/source/adapters/level_zero/image.cpp


Destroying external memory handle

`external_mem` objects 
must be destroyed after 
using external memory in 
SYCL

22



Exporting memory from SYCL into Vulkan/DX12

• Currently being investigated
• We hope to make the proposal public soon
• Different processes and capabilities than importing memory

• Backends handle exporting in different ways

23



Importing Vulkan/DX12 semaphores into SYCL

24



Semaphores

• SYCL having access to memory in Vulkan/DX12 is all well and good, but 
how can we ensure there is no inefficient waiting around?

• Semaphores are synchronization primitives that allow waiting for a 
condition to be met

• In order for semaphores to properly function, the sycl queue must be 
"in_order"

• Otherwise kernel and semaphore execution order is not guaranteed

25



Vulkan/DX12 binary and timeline semaphores

Binary Semaphores

• Has only two states, signaled or 
unsignaled

• Can only be waited upon to switch to the 
signalled state

• Simpler, but can also increase complexity 
due to its simple nature requiring more 
binary semaphores than if a timeline 
semaphore was used

• Supported by opaque_fd and 
win32_nt_handle

Timeline Semaphores

• Has a 64-bit integer value
• Can be waited upon to be a particular 

value
• Slightly more complex but allows for 

repeated use – use multiple waits and 
signals

• Supported by win32_nt_dx12_fence, 
timeline_fd and 
timeline_win32_nt_handle

26



Types of Semaphores in SYCL

27

• Binary Semaphores
• opaque_fd
• win32_nt_handle

• Timeline Semaphores
• win32_nt_dx12_fence
• timeline_fd
• timeline_win32_nt_handle



Basic process of importing and using semaphores

28

q.ext_oneapi_signal_external_semaphore(syclExternalSemaphore);
q.ext_oneapi_wait_external_semaphore(syclExternalSemaphore);

q.ext_oneapi_signal_external_semaphore(syclExternalSemaphore, value);
q.ext_oneapi_wait_external_semaphore(syclExternalSemaphore, value);

win32_nt_dx12_fence, timeline_fd, timeline_win32_nt_handle

opaque_fd, win32_nt_handle
VkCreateSemaphore(...)
VkGetSemaphoreFdKHR(...)

dx12Device->CreateFence(...)
dx12Device->CreateSharedHandle(...)

import_external_semaphore(...)

DirectX 12

Vulkan



Allocate and export Vulkan semaphore

29

Export semaphore from 
Vulkan making it 
available for SYCL to 
import

Create exportable 
semaphore



Import Vulkan semaphore into SYCL

30

Describe what kind 
of semaphore is 
being imported

Import semaphore 
into SYCL



Allocate and export DirectX 12 semaphore

31

Create semaphore

Export semaphore from 
Vulkan making it 
available for SYCL to 
import



Import DirectX 12 semaphore into SYCL

32

Describe what kind 
of semaphore is 
being imported

Import semaphore 
into SYCL



Destroying external semaphore handle

`external_semaphore` objects 
must be destroyed after using 
external semaphores in SYCL

33



Exporting semaphores from SYCL into Vulkan/DX12

• There is currently no capability to create semaphores in SYCL
• Neither CUDA or Level Zero have capabilities to create and export 

semaphores

34



Problems encountered when mapping CUDA interop API

• There are legacy APIs that are not generic, making mapping difficult at 
times

• Using CUDA, interop with OpenGL requires using CUDA graphics 
interoperability API, instead of CUDA external resource interoperability API

• This former API is very specific to CUDA, making mapping difficult so we favour the 
latter

• If we really need to, we will need a separate SYCL extension that is only applicable to 
CUDA and OpenGL interop

35



SYCL interop as separate extension

• Planning to have SYCL interop as a separate extension from SYCL Bindless 
Images extension

• Possibly multiple separate extensions i.e. separate ones for importing and exporting 
memory

36



Future Work

• Exporting memory from SYCL into Vulkan/DX12
• Splitting external memory and semaphores into their own extension
• DX11 interop
• Additional image formats
• SYCL buffer and USM interop
• Additional synchronization primitives 
• Use imported object with `host_task` to directly access interop resources 

with the backend API such as CUDA and Level Zero
• i.e. pass an imported `CUarray` directly to a CUDA function using `host_task`

37



No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service 
activation.

© Codeplay Software Ltd.. Codeplay, Intel, the Intel logo, and other 
Intel marks are trademarks of Intel Corporation or its subsidiaries. 

Other names and brands may be claimed as the property of others.

Disclaimers

A wee bit of legal



Q&A
Thank You!


	Slide 1
	Slide 2: Disclaimer – This is an experimental extension and so is subject to change
	Slide 3: IWOCL 2024 Bindless Images presentation and slides
	Slide 4: Agenda
	Slide 5: Motivation of Bindless Images
	Slide 6: Highlights of Bindless Images
	Slide 7: New features since IWOCL 2024
	Slide 8: Backend Support
	Slide 9: Blender using Bindless Images
	Slide 10: Importing Vulkan/DX12 memory into SYCL
	Slide 11: Why is interop between SYCL and Vulkan/DX12 needed?
	Slide 12: Without SYCL interop
	Slide 13: With SYCL interop
	Slide 14: Basic process of importing memory
	Slide 15: Allocate and export Vulkan memory
	Slide 16: Import Vulkan memory into SYCL
	Slide 17: Allocate and export DirectX 12 memory
	Slide 18: Import DirectX12 memory into SYCL
	Slide 19: Same process to import Vulkan and DirectX 12 memory into SYCL
	Slide 20: Importing memory with the CUDA backend
	Slide 21: Importing memory with the Level Zero backend
	Slide 22: Destroying external memory handle
	Slide 23: Exporting memory from SYCL into Vulkan/DX12
	Slide 24: Importing Vulkan/DX12 semaphores into SYCL
	Slide 25: Semaphores
	Slide 26: Vulkan/DX12 binary and timeline semaphores
	Slide 27: Types of Semaphores in SYCL
	Slide 28: Basic process of importing and using semaphores
	Slide 29: Allocate and export Vulkan semaphore
	Slide 30: Import Vulkan semaphore into SYCL
	Slide 31: Allocate and export DirectX 12 semaphore
	Slide 32: Import DirectX 12 semaphore into SYCL
	Slide 33: Destroying external semaphore handle
	Slide 34: Exporting semaphores from SYCL into Vulkan/DX12
	Slide 35: Problems encountered when mapping CUDA interop API
	Slide 36: SYCL interop as separate extension
	Slide 37: Future Work
	Slide 38
	Slide 39: Q&A

