
So You Want to Support SYCL:

An OpenCL Perspective

Ben Ashbaugh, Intel

Background

• SYCL 1.2.1 was developed as a “high level model” for OpenCL
• SYCL 2020 added support for multiple SYCL “backends”

• Expanded SYCL beyond the OpenCL ecosystem

• OpenCL SYCL
• OpenCL remains a popular implementation choice for SYCL

IWOCL 2025 2

IWOCL 2025

If I have an OpenCL
implementation,
what do I need to

support SYCL?

3

Good news!

• Not much!
• In theory, at least.
• You can get by with a fairly basic

OpenCL 3.0 implementation.
• Remember: SYCL 1.2.1 targeted

OpenCL 1.2!

IWOCL 2025 4

In practice….

• You need a bit more
• Mostly in the form of optional OpenCL 3.0 features
• Mostly on the device side (kernels, generated by the SYCL compiler)
• A little on the host side (APIs, called by the SYCL runtime)

IWOCL 2025 5

Caveats

• I am most familiar with the oneAPI DPC++ implementation
• Although, I will try to describe AdaptiveCPP also
• There may be bugs… in the presentation or in the SYCL

implementations!

IWOCL 2025 6

DPC++ Compilation Flow:

IWOCL 2025

Diagram Source: https://github.com/intel/llvm/blob/sycl/sycl/doc/design/CompilerAndRuntimeDesign.md
7

LLVM IR

SPIR-V

Target
Binary

https://github.com/intel/llvm/blob/sycl/sycl/doc/design/CompilerAndRuntimeDesign.md

Compilation Flow:

IWOCL 2025 8

Compilation Takeaways

• For JIT, you will probably want to support SPIR-V (kernel flavor):

• Don’t support SPIR-V yet? Lots of open source tools can help!
• https://github.com/KhronosGroup/SPIRV-LLVM-Translator/

• Not a strict requirement, but a strong recommendation

IWOCL 2025 9

https://github.com/KhronosGroup/SPIRV-LLVM-Translator/

Compilation: Practical Requirements

• Support the Generic Address Space
• Most SYCL pointers are not qualified with an address space
• Address space inference is brittle and error-prone

• Support Sub-groups
• Possible implementation: sub-group size equals work-group size (or one)

• Nice-to-Haves:
• Work-group Scan and Reduction functions
• Program Scope Global Variables
• May need work if unsupported…

IWOCL 2025 10

Host APIs

• Very little is required*
• If you are OpenCL 3.0 conformant, then you should be good

IWOCL 2025 11

* Required is doing a lot of work here! Hold that thought…

IWOCL 2025 12

SYCL on Raspberry Pi via PoCL OpenCL 1.2 (CPU), Early 2023

IWOCL 2025 13

https://community.axelera.ai/product-updates/
using-oneapi-construction-kit-to-enable-open-standards-programming-for-the-metis-aipu-128

https://community.axelera.ai/product-updates/using-oneapi-construction-kit-to-enable-open-standards-programming-for-the-metis-aipu-128
https://community.axelera.ai/product-updates/using-oneapi-construction-kit-to-enable-open-standards-programming-for-the-metis-aipu-128

IWOCL 2025 14

Unified Shared Memory

IWOCL 2025 15

SYCL and Pointers

IWOCL 2025 16

(https://twitter.com/illuhad/status/1580904229702881280)

https://twitter.com/illuhad/status/1580904229702881280

cl_khr_unified_svm

Extension Goals:
• Support SYCL 2020 USM
• API Consistency with SVM
• Compatibility with Intel Extension
• Extensibility for the Future
• All Features Tested (Test Plan)
• Many Implementations!

IWOCL 2025 17

https://github.com/KhronosGroup/OpenCL-Docs/pull/1282

https://github.com/KhronosGroup/OpenCL-CTS/pull/2150
https://github.com/KhronosGroup/OpenCL-Docs/pull/1282

How cl_khr_unified_svm Works:

• Platform Query: Returns an array of SVM capabilities supported by
devices in the platform

IWOCL 2025 18

clGetPlatformInfo(
 platform,
 CL_PLATFORM_SVM_TYPE_CAPABILITIES_KHR,
 numSVMTypes * sizeof(cl_svm_capabilities_khr),
 allSVMTypes,
 nullptr);

Index Capabilities
0 Coarse Grain SVM

1 Fine Grain SVM

2 Device USM

3 Host USM

4 <some completely new SVM capabilities
combination>

5 System SVM

How cl_khr_unified_svm Works:

• Device Query: Returns a parallel array of SVM capabilities
supported by the specific device
• May add to platform capabilities
• Or be zero, if unsupported

IWOCL 2025 19

clGetDeviceInfo(
 device,
 CL_DEVICE_SVM_TYPE_CAPABILITIES_KHR,
 numSVMTypes * sizeof(cl_svm_capabilities_khr),
 allSVMTypes,
 nullptr);

Index Capabilities
0 Coarse Grain SVM

1 Fine Grain SVM (with atomics!)

2 Device USM

3 Host USM

4 <some completely new SVM capabilities
combination>

5 0 (System SVM not supported)

How cl_khr_unified_svm Works:

• Allocation: Pass an SVM Type Index
• Guaranteed to have the capabilities described in the platform array
• May have additional capabilities on some devices

IWOCL 2025 20

void* ptr = clSVMAllocWithPropertiesKHR(
 context,
 nullptr, /* properties */
 0, /* SVM type index */
 size,
 &errorCode);

Index Capabilities
0 Coarse Grain SVM

1 Fine Grain SVM (with atomics!)

2 Device USM

3 Host USM

4 <some completely new SVM capabilities
combination>

5 0 (System SVM not supported)

How cl_khr_unified_svm Works:

• Additional Functionality:
• SVM Type Helper: suggest an SVM type based on required capabilities
• SVM Introspection: query properties of a pointer
• SVM Free Properties: extensibility for the future
• Improved SVM Usability: simplified indirect access

IWOCL 2025 21

For everything else: Use existing SVM APIs!

cl_khr_unified_svm Links for Reference:

• PR with the extension specification, best place to provide feedback:
https://github.com/KhronosGroup/OpenCL-Docs/pull/1282

• Draft PR with header changes:
https://github.com/KhronosGroup/OpenCL-Headers/pull/269

• Branch with extension loader changes:
https://github.com/bashbaug/opencl-extension-loader/compare/cl_khr_unified_svm

• Branch with emulation layer and some basic test apps:
https://github.com/bashbaug/SimpleOpenCLSamples/compare/cl_khr_unified_svm
• (note, needs the updated headers and extension loader to build!)

• PR with CTS test plan:
https://github.com/KhronosGroup/OpenCL-CTS/pull/2150

• Development branch with CTS tests:
https://github.com/KhronosGroup/OpenCL-CTS/tree/cl_khr_unified_svm

IWOCL 2025 22

https://github.com/KhronosGroup/OpenCL-Docs/pull/1282
https://github.com/KhronosGroup/OpenCL-Headers/pull/269
https://github.com/bashbaug/opencl-extension-loader/compare/cl_khr_unified_svm
https://github.com/bashbaug/SimpleOpenCLSamples/compare/cl_khr_unified_svm
https://github.com/KhronosGroup/OpenCL-CTS/pull/2150
https://github.com/KhronosGroup/OpenCL-CTS/tree/cl_khr_unified_svm

Graphs and Command Buffers

IWOCL 2025 23

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc

Problem Statement: llama.cpp (SYCL)

IWOCL 2025 24

~15K OpenCL API Calls … and, repeat…

Problem Statement: llama.cpp (OpenCL)

• Too Many Calls!
• Idle Device, Too Much Power, Potential Host Bottleneck

IWOCL 2025 25

~11K OpenCL API Calls … and, repeat…

SYCL-Graph

• Replace Individual Kernel Submissions

• With one SYCL-Graph Submission

IWOCL 2025 26

K0 K1 K2 … Kn

SYCL-Graph

K0 K1 K2 … Kn

SYCL-Graph → OpenCL Command Buffer

• Replace Individual Kernel Enqueues

• With one Command Buffer Enqueue

IWOCL 2025 27

K0 K1 K2 … Kn

Command Buffer

K0 K1 K2 … Kn

Command Buffer Extension Status

• Two Command Buffer Extensions are Provisionally Released:
• Note: Provisional extensions are subject to change!
• cl_khr_command_buffer: Base-level extension, supports creating and

executing static command buffers
• cl_khr_command_buffer_mutable_dispatch: Layered extension,

supports modifying command buffer dispatches (e.g. kernel args)

IWOCL 2025 28

https://registry.khronos.org/OpenCL/sdk/3.0/docs/man/html/cl_khr_command_buffer.html
https://registry.khronos.org/OpenCL/sdk/3.0/docs/man/html/cl_khr_command_buffer_mutable_dispatch.html

Command Buffer Extension Status

• Other Command Buffer Features in (Public) Development:
• cl_khr_command_buffer_mutable_memory_commands: Layered

extension, supports modifying command buffer memory operands
• Host access? Additional dispatch mutability (kernels)? Nested enqueue?

• CTS coverage is good
• For both command buffers and mutable dispatch

• Implementations are starting to appear

IWOCL 2025 29

Please provide feedback!
(For SYCL-Graph or Command Buffers!)

https://github.com/KhronosGroup/OpenCL-Docs/pull/1065

Summary and Wrap Up

IWOCL 2025 30

Summary

• You don’t need to implement SYCL to support SYCL!
• All you need is OpenCL 3.0 with a few optional features.
• Many open source resources exist to help out or get started!

• Two extensions are needed for many use-cases in practice:
• Unified SVM: to support SYCL 2020 USM
• Command Buffers: to support SYCL-Graph
• Both extensions are still in development – please provide feedback!

• Thank you!

IWOCL 2025 31

Backup

IWOCL 2025 32

What about SVM?

• Application support for SVM is low, despite
support from many devices:
• No SVM support: Layered implementations

(CLon12, clvk), (some mobile GPUs?)
• Coarse Grain SVM: NVIDIA GPUs, many Intel

GPUs, (some mobile GPUs, Mesa/rusticl?)
• Fine Grain SVM: AMD GPUs
• Fine Grain SVM + Atomics: Some Intel GPUs,

Qualcomm GPUs
• System SVM: CPUs

IWOCL 2025 33

(Snapshot from April 9, 2025,

https://opencl.gpuinfo.org/displaydeviceinfo.php?name=CL_DEVICE_SVM_CAPABILITIES)

https://opencl.gpuinfo.org/displaydeviceinfo.php?name=CL_DEVICE_SVM_CAPABILITIES

	Slide 1
	Slide 2: Background
	Slide 3
	Slide 4: Good news!
	Slide 5: In practice….
	Slide 6: Caveats
	Slide 7: DPC++ Compilation Flow:
	Slide 8: Compilation Flow:
	Slide 9: Compilation Takeaways
	Slide 10: Compilation: Practical Requirements
	Slide 11: Host APIs
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Unified Shared Memory
	Slide 16: SYCL and Pointers
	Slide 17: cl_khr_unified_svm
	Slide 18: How cl_khr_unified_svm Works:
	Slide 19: How cl_khr_unified_svm Works:
	Slide 20: How cl_khr_unified_svm Works:
	Slide 21: How cl_khr_unified_svm Works:
	Slide 22: cl_khr_unified_svm Links for Reference:
	Slide 23: Graphs and Command Buffers
	Slide 24: Problem Statement: llama.cpp (SYCL)
	Slide 25: Problem Statement: llama.cpp (OpenCL)
	Slide 26: SYCL-Graph
	Slide 27: SYCL-Graph  OpenCL Command Buffer
	Slide 28: Command Buffer Extension Status
	Slide 29: Command Buffer Extension Status
	Slide 30: Summary and Wrap Up
	Slide 31: Summary
	Slide 32: Backup
	Slide 33: What about SVM?

