13th International Workshop on OpenCL and SYCL

IWOCL 2025 o

S0 You Want to Support SYCL.:

An OpenCL Perspective

Ben Ashbaugh, Intel

April 7-1,2025 | Heidelberg, Germany | iwocl.org

GGGGG

Background

* SYCL 1.2.1 was developed as a “high level model” for OpenCL

 SYCL 2020 added support for multiple SYCL “backends”
* Expanded SYCL beyond the OpenCL ecosystem

* OpenCL @ SYCL
* OpenCL remains a popular implementation choice for SYCL

OpencL KHRONOs (SYCL.

IWOCL 2025 2

If | have an OpenCL
Implementation,

what do | need to
support SYCL?

222222222

Good news!

* Not much!
* In theory, at least.

* You can get by with a fairly basic
OpenCL 3.0 implementation.

* Remember: SYCL 1.2.1 targeted
OpenCL 1.2!

IWOCL 2025

In practice....

* You need a bit more
* Mostly in the form of optional OpenCL 3.0 features
* Mostly on the device side (kernels, generated by the SYCL compiler)
* Alittle on the host side (APls, called by the SYCL runtime)

IWOCL 2025

Caveats

* | am most familiar with the oneAP| DPC++ implementation
* Although, | will try to describe Adaptive CPP also

* There may be bugs... in the presentation or in the SYCL
Implementations!

tsds,

AdaptiveCpp

IWOCL 2025

oneAPI

o LLVM IR
DPC++ Compilation Flow:

compiler
another source compiled

eeeeee

llvm-link

tsds,

Host object file g
‘ \ P I B
rappar object file

Diagram Source: https://github.com/intel/llvm/blob/sycl/sycl/doc/design/CompilerAndRuntimeDesign.md

IWOCL 2025 7

https://github.com/intel/llvm/blob/sycl/sycl/doc/design/CompilerAndRuntimeDesign.md

(tiveCpp compilation Flow:

User application code

- ‘ -

AdaptiveCpp compiler driver
(library-only)

nvc++ OpenMP ST S'n.gle’pass clang HIP toolchain clang CUDA toolchain OpPTnMPJrCUSiom

compiler compiler acceleration
ARl CPUs AMD GPUs NVIDIA GPUs
GPUs

Host JIT PTX JIT amdgen JIT SPIR-V JIT

AdaptiveCpp compiler driver

LLVM-supported CPUs

OpenMP / Intel CPU OpenCL

LLvM-supported I NviDIA GPus | AMD GPUS i
CPUs EMICES Intel GPU OpenCL

Other suitable OpenCL
implementations

Compilation Takeaways

* For JIT, you will probably want to support SPIR-V (kernel flavor):

SPIR-V.

 Don’t support SPIR-V yet? Lots of open source tools can help!
* https://github.com/KhronosGroup/SPIRV-LLVM-Translator/

* Not a strict requirement, but a strong recommendation

IWOCL 2025

https://github.com/KhronosGroup/SPIRV-LLVM-Translator/

Compilation: Practical Requirements

* Support the Generic Address Space
* Most SYCL pointers are not qualified with an address space
* Address space inference is brittle and error-prone

* Support Sub-groups

* Possible implementation: sub-group size equals work-group size (or one)
* Nice-to-Haves:
* Work-group Scan and Reduction functions

* Program Scope Global Variables
* May need work if unsupported...

IWOCL 2025

10

Host APls

* Very little is required™
* If you are OpenCL 3.0 conformant, then you should be good

* Required is doing a lot of work here! Hold that thought...

IWOCL 2025 11

bashbaug@raspberryp1

bashbaug@raspberrypi) Ls
[opencl:cpu:@] Portable Computing Language, pthread-cortex-a72 1.2 [3.2-pre master-8-g¢

bashbaug@raspberrypi
bashbaug@raspberrypl

e

. b e ¢ B EE ®E B

SYCL on Raspberry Pivia PoCL OpenCL 1.2 (CPU), Early 2023

IWOCL 2025 12

Using oneAPI Construction Kit to Enable Open Standards Programming
for the Metis AIPU

Related products: Al Software

6 months ago - O replies « 9 views -

A
\

‘ Manuel

(g Manuel Mohr | Staff Sofiware Engineer at AXELERAAI
Y

https://community.axelera.ai/product-updates/
using-oneapi-construction-kit-to-enable-open-standards-programming-for-the-metis-aipu-128

IWOCL 2025

13

https://community.axelera.ai/product-updates/using-oneapi-construction-kit-to-enable-open-standards-programming-for-the-metis-aipu-128
https://community.axelera.ai/product-updates/using-oneapi-construction-kit-to-enable-open-standards-programming-for-the-metis-aipu-128

f you think the bare mihﬁtum

» is enough, then ok.

But some people choose to
do more and we
encourage that..,

IWOCL 2025

14

Unified Shared Memory

OOOOOOOOO

SYCL and Pointers

- Aksel Alpay
ﬁ. : @illuhad

Replying to @illuhad @karolherbst and @FelixCLC_

.. Also, SYCL 2020 USM pointers (which is a big part of

USM extensions too. USM is used by a lot of
applications now, so supporting this will be almost
mandatory.

5:51 AM - Oct 14, 2022 - Twitter Web App

(https://twitter.com/illuhad/status/1580904229702881280)

IWOCL 2025

16

https://twitter.com/illuhad/status/1580904229702881280

add cl_khr _unified svm extension #1282

[] []
‘ I l | I l I I e S V m ja¥el:CLl bashbaug wants to merge 5 commits into KhronosGroup:mein from bashbaug:cl_khr_unified_svm [_[;]
— — —

L) Conversation 14 o Commits 5 Fl Checks 1 [®) Files changed 3

f@ bashbaug commented on Mov 8, 2024 Member =~ =s=

This PR contains the draft specification for <1 khr_unified svm . [t is intended to provide early access for review and community

Exte n S i O n G O a lS : feedback, and it is not a ratified specification.

cl_khr_unified_svm adds additional types of Shared Virtual Memory (SVM) to OpenCL. Compared to Coarse-Grained and Fine-
Grained 5VM in OpenCL 2.0 and newer, the additional types of SVM added by this this extension provides:

[]
* Sufficient functionality to implement “Unified Shared Memeory” (USM) in other APls, such as SYCL.

* Additional contrel over the ownership and accessibility of SVM allocations, to more precisely choose between application
performance and programmer convenience,

L] L]
* API Consistency with SVM
* A simpler programming model, by automatically migrating more SVM allocations between devices and the host, or by

accessing more SVM allocations on the host without needing to map er unmap the allocation.

Specifically, this extension provides:

L] L] L] L] L]
 Compatibility with Intel Extension
* [xtensible interfaces to support many types of SVM, including the SVM types defined in core OpenCL in this extension, and

additional SVM types defined by other combinations of SVM capabilities.

* Explicit control over memory placement and migration by supporting device-owned SVM allocations for best performance,

L] L] L]
o EXt e n S I b I l I ty fo r t h e F u t u re host-owned SVYM allocations for wide visibility, and shared S¥M allocations that may migrate between devices and the host.

* The ability to query detailed SWM capabilities for each SVM allocation type supported by a platform and device.

Additional properties to control how memory is allocated and freed, including properties to associate an SVM allocation with

All Features Tested (Test Plan

* A mechanism to indicate that a kernel may access SVYM allocations indirectly, without passing a set of indirectly accessed S5VM
allocations to the kernel, improving usability and reducing driver overhead for kernels that access many SVM allocations.

* Many Implementations! ¢ vt st 5 eion

* A new function to suggest an SVM allocation type for a set of 5VM capabilities.

Because the interfaces defined by this specification are not final and are subject to change they are not intended to be used
shipping software products. If you are interested in using this feature in your software product, please let us know!

https://github.com/KhronosGroup/OpenCL-Docs/pull/1282

IWOCL 2025 17

https://github.com/KhronosGroup/OpenCL-CTS/pull/2150
https://github.com/KhronosGroup/OpenCL-Docs/pull/1282

Howcl khr unified svmWorks:

* Platform Query: Returns an array of SVM capabilities supported by
devices in the platform

Index Capabilities

0 Coarse Grain SVM
clGetPlatformInfo(

platform, 1 Fine Grain SVM
CL_PLATFORM_SVM_TYPE_CAPABILITIES_KHR, 5 Device USM

numSVMTypes * sizeof(cl svm capabilities khr),

allSVMTypes, 3 Host USM

hullptr); <some completely new SVM capabilities

combination>
5 System SVM

IWOCL 2025 18

Howcl khr unified svmWorks:

* Device Query: Returns a parallel array of SVM capabilities
supported by the specific device
* May add to platform capabilities

* Or be zero, if unsupported
Index Capabilities

0 Coarse Grain SVM

clGetDeviceInfo(
device, 1 Fine Grain SVM (with atomics!)
CL_DEVICE_SVM_TYPE_CAPABILITIES_KHR, 2 Device USM
numSVMTypes * sizeof(cl svm capabilities khr),
allSVMTypes, 3 Host USM
nullptr);

<some completely new SVM capabilities
combination>

5 0 (System SVM not supported)

IWOCL 2025 19

Howcl khr unified svmWorks:

* Allocation: Pass an SVM Type Index
* Guaranteed to have the capabilities described in the platform array
* May have additional capabilities on some devices

Capabilities

0 Coarse Grain SVM

N

void* ptr = clSVMAllocWithPropertiesKHR(

context, 1 Fine Grain SVM (with atomics!)
nullptr, /* properties */ 2 Device USM
9, /* SVM type index */
size, 3 Host USM
&errorCode); q <some completely new SVM capabilities
combination>
5 0 (System SVM not supported)

IWOCL 2025 20

Howcl khr unified svmWorks:

* Additional Functionality:
* SVM Type Helper: suggest an SVM type based on required capabilities
* SVM Introspection: query properties of a pointer
* SVM Free Properties: extensibility for the future
* Improved SVM Usability: simplified indirect access

For everything else: Use existing SVM APIs!

IWOCL 2025 21

cl khr unified svmLinks for Reference:

PR with the extension specification, best place to provide feedback:
https://github.com/KhronosGroup/OpenCL-Docs/pull/1282

Draft PR with header changes:
https://github.com/KhronosGroup/OpenCL-Headers/pull/269

Branch with extension loader changes:
https://github.com/bashbaug/opencl-extension-loader/compare/cl khr unified svm

Branch with emulation layer and some basic test apps:
https://github.com/bashbaug/SimpleOpenCLSamples/compare/cl khr unified svm

* (note, needs the updated headers and extension loader to build!)

PR with CTS test plan:
https://github.com/KhronosGroup/OpenCL-CTS/pull/2150

Development branch with CTS tests:
https://github.com/KhronosGroup/OpenCL-CTS/tree/cl khr unified svm

IWOCL 2025

22

https://github.com/KhronosGroup/OpenCL-Docs/pull/1282
https://github.com/KhronosGroup/OpenCL-Headers/pull/269
https://github.com/bashbaug/opencl-extension-loader/compare/cl_khr_unified_svm
https://github.com/bashbaug/SimpleOpenCLSamples/compare/cl_khr_unified_svm
https://github.com/KhronosGroup/OpenCL-CTS/pull/2150
https://github.com/KhronosGroup/OpenCL-CTS/tree/cl_khr_unified_svm

Graphs and Command Buffers

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc

IWOCL 2025 23

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc

Problem Statement: llama.cpp (SYCL)

| Record | Save | Load | clintercept_trace json Flow events || Processes || View O

| . . , . 9,250 ms) . .) 9,300 ms) .) , |9.35l
» llama-bench (pid 22535)

» 10Q 0x2f9865a0.0.0 Intel(R) G _ZT8Z.. _ZTSZ.

o D il B D n i

~15K OpenCL API Calls --- and, repeat...

IWOCL 2025 24

Problem Statement: llama.cpp (OpenCL)

‘ Record | Save | Load | clintercept_trace json

| Flow events H Proce

* llama-bench (pid 36019) : ' B ' : ' B ' ' ' |15 140 s ‘ ‘ ‘ |15.160 ms 15,180 ms
» 10Q 0x562132f5f910.0.0 Intel(ker... ker...
v Host Thread 36019 clFinish (chrome ... clFinish (chrome ...
~11K OpenCL API Calls - and, repeat...
* Too Many Calls!
* |dle Device, Too Much Power, Potential Host Bottleneck
IWOCL 2025 25

SYCL-Graph

* Replace Individual Kernel Submissions

_— R A A —

* With one SYCL-Graph Submission

SYCL-Graph

K, — K — K — .. — K

IWOCL 2025

SYCL-Graph = OpenCL Command Buffer

* Replace Individual Kernel Enqueues

_— R A A —

* With one Command Buffer Enqueue

Command Buffer

K, — K — K — .. — K

IWOCL 2025

27

Command Buffer Extension Status

* Two Command Buffer Extensions are Provisionally Released:

* Note: Provisional extensions are subject to change!
e c1 khr command buffer: Base-level extension, supports creating and
executing static command buffers

e cl khr command buffer mutable dispatch: Layered extension,
supports modifying command buffer dispatches (e.g. kernel args)

IWOCL 2025 28

https://registry.khronos.org/OpenCL/sdk/3.0/docs/man/html/cl_khr_command_buffer.html
https://registry.khronos.org/OpenCL/sdk/3.0/docs/man/html/cl_khr_command_buffer_mutable_dispatch.html

Command Buffer Extension Status

* Other Command Buffer Features in (Public) Development:

e cl khr command buffer mutable memory commands: Layered
extension, supports modifying command buffer memory operands

* Host access? Additional dispatch mutability (kernels)? Nested enqueue?

* CTS coverage is good
* For both command buffers and mutable dispatch

* Implementations are starting to appear

Please provide feedback!

(For SYCL-Graph or Command Buffers!)

IWOCL 2025 29

https://github.com/KhronosGroup/OpenCL-Docs/pull/1065

Summary and Wrap Up

OOOOOOOOO

Summary

* You don’t need to implement SYCL to support SYCL!
* Allyou need is OpenCL 3.0 with a few optional features.
* Many open source resources exist to help out or get started!

* Two extensions are needed for many use-cases in practice:
* Unified SVM: to support SYCL 2020 USM
e Command Buffers: to support SYCL-Graph
* Both extensions are still in development - please provide feedback!

* Thankyou!

IWOCL 2025 31

Backup

IWOCL 2025

32

Value distribution for CL_DEVICE SVM_CAPABILITIES

All platforms E® Windows A Linux Android

What about SVM?

* Application support for SVM is low, despite
support from many devices:

* No SVM support: Layered implementations
(CLon12, clvk), (some mobile GPUs?)

Coarse Grain SVM: NVIDIA GPUs, many Intel Value It Reports
GPUs, (some mobile GPUs, Mesa/rusticl?) 1429

CL_DEVICE_SVM_COARSE_GRAIN_BUFFER 1593

Fi ne G ra i n SVM . AM D G P U S Cl_DEVICE_SVM_COARSE_GRAIN_BUFFER 277
. . . CL_DEVICE_SVM_FINE_GRAIN_BUFFER
Fine Grain SVM + Atomics: Some Intel GPUs,
CL_DEVICE_SVM_COARSE_GRAIN_BUFFER 308
Q ua l.C omm G P U S CL_DEVICE_SVM_FINE_GRAIN_BUFFER

CL_DEVICE_SVM_ATOMICS

SySte m SVM : C P U S CL_DEVICE_SVM_COARSE_GRAIN_BUFFER 26

CL_DEVICE_SVM_FINE_GRAIN_BUFFER
CL_DEVICE_SVM_FINE_GRAIN_SYSTEM

(SnapShOt from Apr'll 9, 2025’ CL_DEVICE_SVM_COARSE_GRAIN_BUFFER 263
https://opencl.gpuinfo.org/displaydeviceinfo.php?name=CL_DEVICE_SVM_CAPABILITIES) EtggiﬁgmﬂEﬁﬁiﬁ:ﬁb’gﬁﬁ

IWOCL 2025 CL_DEVICE_SVM_ATOMICS

https://opencl.gpuinfo.org/displaydeviceinfo.php?name=CL_DEVICE_SVM_CAPABILITIES

	Slide 1
	Slide 2: Background
	Slide 3
	Slide 4: Good news!
	Slide 5: In practice….
	Slide 6: Caveats
	Slide 7: DPC++ Compilation Flow:
	Slide 8: Compilation Flow:
	Slide 9: Compilation Takeaways
	Slide 10: Compilation: Practical Requirements
	Slide 11: Host APIs
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Unified Shared Memory
	Slide 16: SYCL and Pointers
	Slide 17: cl_khr_unified_svm
	Slide 18: How cl_khr_unified_svm Works:
	Slide 19: How cl_khr_unified_svm Works:
	Slide 20: How cl_khr_unified_svm Works:
	Slide 21: How cl_khr_unified_svm Works:
	Slide 22: cl_khr_unified_svm Links for Reference:
	Slide 23: Graphs and Command Buffers
	Slide 24: Problem Statement: llama.cpp (SYCL)
	Slide 25: Problem Statement: llama.cpp (OpenCL)
	Slide 26: SYCL-Graph
	Slide 27: SYCL-Graph  OpenCL Command Buffer
	Slide 28: Command Buffer Extension Status
	Slide 29: Command Buffer Extension Status
	Slide 30: Summary and Wrap Up
	Slide 31: Summary
	Slide 32: Backup
	Slide 33: What about SVM?

