
Adapting the LLVM SPIR-V Backend for use in SYCL 
implementations

Alexey Sachkov, Intel

Vyacheslav Levytskyy, Intel.



IWOCL 2025 2

• Brief recap of key concepts

– SPIR-V itself

• How and why, SPIR-V is used in SYCL (and other places)

– Problems with the existing approach

• SPIR-V backend today

– What is it and why does it exist

– Comparison with the translator

– State of things: progress and quality

– Technical challenges

• Summary / Next steps



IWOCL 2025 3

What is SPIR-V and Why It Matters

• SPIR-V is a binary intermediate language for representing graphical-shader stages and 
compute kernels

– Both and IR and portable binary format serving as a programming interface for heterogeneous 
accelerators

– Rich ecosystem of high-level languages and APIs

• OpenCL, SYCL, GLSL, HLSL, Vulkan, OpenGL

– Cross-vendor unifying intermediate representation

• The specification is defined by the Khronos Group

– Vendors can add extension and client API environment specifications



IWOCL 2025 4

SPIR-V Language Ecosystem: khronos.org

https://www.khronos.org/spirv/#spir-ecosystem


IWOCL 2025 5

SPIR-V and Heterogeneous Computing

intel/llvm: Compiler and Runtime architecture design
intel/intel-xpu-backend-for-triton: Architecture

https://github.com/intel/llvm/blob/sycl/sycl/doc/design/CompilerAndRuntimeDesign.md
https://github.com/intel/intel-xpu-backend-for-triton/blob/main/docs/ARCHITECTURE.md


IWOCL 2025 6

SPIRV-LLVM-Translator

• Tool and a library for bi-directional translation between SPIR-V and LLVM IR

– Focuses on support of compute kernels (OpenCL, Level Zero), i.e. Kernel capability

– Doesn’t support graphic/shader SPIR-V flavor, i.e. Shader capability

• Outside of the llvm/llvm-project tree!

– Harder to integrate into a project

– Extra effort to keep it in sync with the upstream LLVM

– See also SPIR-V support in LLVM and Clang, 2021 LLVM Developer's Meeting

– Multiple failed attempts

• Integration through call to an external binary wasn’t the ideal way: 0045d01a

https://llvm.org/devmtg/2021-11/slides/2021-SPIR-V-SupportinLLVMandClang.pdf
https://github.com/intel/llvm/commit/0045d01af96ff56c5b62d133be076020a33867ff


IWOCL 2025 7

SPIR-V Backend to the Rescue

• An official LLVM target that provides code generation for the SPIR-V format

– It converts LLVM IR into SPIR-V either in text, or binary form

– Uses LLVM code generation utilities and frameworks

– Provides an alternative to the SPIRV-LLVM-Translator for LLVM IR -> SPIR-V path

• Why is it important?

– The ultimate goal of getting first-class SPIR-V support into LLVM is achieved!

– Being in LLVM makes everyone else in LLVM responsible for *not* breaking you

– Works out-of-the box without external dependencies

– Opens lots of opportunities for everyone:

• Heterogeneous computing (e.g. OpenCL, SYCL)

• AI (e.g. OpenAI Triton backend for Intel GPUs)

• Other programming models, including graphical-shader stages (e.g. HLSL, Vulkan)



IWOCL 2025 8

SPIR-V Backend to the Rescue

• It is being developed by engineers from companies-members of Khronos Group

– Intel, Microsoft, Google

• It is built to serve both compute kernels and graphic shaders developers equally

• The team closely collaborates with OpenCL, SPIR and Vulkan Khronos working groups

– To ensure that backend development aligns with the needs of the broader community

• Already has users outside of Khronos APIs:

– DirectXShaderCompiler – the reference compiler for HLSL

• Adds SPIR-V generation via the backend to enable HLSL as a frontend for Vulkan

– Microsoft announced that DirectX will be adopting SPIR-V as an IR format of the future

– In general, a good candidate for a cross-vendor unifying IR for smaller hardware vendors

https://devblogs.microsoft.com/directx/directx-adopting-spir-v/


IWOCL 2025 9

SPIR-V Backend vs SPIRV-LLVM-Translator

• The backend is good enough to pass SYCL & OpenCL CTS tests with it

– It allows to specify target SPIR-V version, as well as select extensions that can be used

• The main difference is in the list of supported extensions, built-ins and intrinsics

– The backend is behind the translator here

• Missing features

– Support for NonSemantic Shader DebugInfo instructions

– SPV_INTEL_joint_matrix is implemented, but haven’t been properly tested with SYCL

– Some features available in Intel’s SYCL implementation are intentionally unsupported

• FPGA-specific things, for example



IWOCL 2025 10

SPIR-V Backend Progress in 2024/2025: Serious Uplift

• Massive refactoring and new features

– Support for 36 SPIR-V extensions was added, and more to come

– Revisited and uplifted interaction with the LLVM

• Rework of instruction patterns and virtual register types and classes

• Improved interaction with GlobalISel and Machine Verifier

– Ramped up support for different optimization levels

• Everything works with -O2/-O3 now, not only -O0

• Identified some bugs in the SPIRV-LLVM-Translator

– And provided fixes, of course!

• Established good contact with the LLVM community



IWOCL 2025 11

SPIR-V Backend: Quality Assurance

• SPIR-V Backend test suite

– Constantly growing

• 600+ tests today

– Fragments of bigger test suites are being embedded to ensure validity of the output

• Functional testing

– A comprehensive set of use cases along several axis:

• SPIR-V features, type inference and aggregates, compute-centric and graphical use cases

– SPIR-V validator is being used as well!

– Everything is automated using GitHub Actions



IWOCL 2025 12

SPIR-V Backend: Quality Assurance

• External testing

– SYCL-CTS are being regularly run through SPIR-V backend in intel/llvm GitHub repository

– Intel XPU backend for Triton project has CI workflows using SPIR-V backend

– It is sometimes hard to keep the pass rate stable:

• Lots of moving pieces, i.e. all components are changing rapidly

• Some time lag is involved between different projects (including upstream/downstream)

• Non-functional testing

– Compile-time performance tracking

• Two major reworks brought 25x speedup between Dec 2024 and Mar 2025

– Run-time performance of the produced SPIR-V

• Doing some _preliminary_ small scope testing (GROMACS on PVC GPU) performance is on par 
with the SPIRV-LLVM-Translator



IWOCL 2025 13

SPIR-V Backend: More Integrations Work in Progress

• Intel Extensions for OpenXLA

– Run JAX models on Intel GPUs

• Intel MLIR-based Graph Compiler

• Intel’s SYCL compiler end-to-end test suite

– Stable high pass rates around 94-99%

– Not everything is supported yet (intentionally, or temporarily)



IWOCL 2025 14

SPIR-V Backend: Community

• Maintained by a team of dedicated contributors

• Regular LLVM SPIR-V working group meetings

– See LLVM: Getting Involved

• Regular conference coverage

– LLVM Developer’s Conference 2022 (video, slides) and 2024 (video, slides)

– IWOCL 2025 (this talk)

– LLVM Developer’s Conference 2025 (next week)

• Comprehensive documentation

– User Guide for SPIR-V Target, SPIR-V support in Clang

https://llvm.org/docs/GettingInvolved.html#online-sync-ups
https://youtu.be/qte1OJdpgkY
https://llvm.org/devmtg/2022-11/slides/TechTalk16-SPIR-V-Backend-in-LLVM.pdf
https://youtu.be/oLuTsD4mLXE
https://llvm.org/devmtg/2024-10/slides/techtalk/Paszkowski-Levytskyy-AdvancingSPIR-V-BackendStability.pdf
https://llvm.org/docs/SPIRVUsage.html
https://clang.llvm.org/docs/UsersManual.html#spir-v-support


IWOCL 2025 15

SPIR-V Backend Technical Challenges: Causes

• Concepts of the SPIR-V language

– Cannot be easily represented in LLVM’s Machine IR

– Not fully supported by the standard GlobalISel translation schema

– Have definitions conflicting with Machine Verifier requirements

• SPIR-V is a semantically rich language

– About the same level as LLVM IR

– But LLVM CodeGen expects its target to be a low-level language



IWOCL 2025 16

SPIR-V Backend Technical Challenges: Examples

• Semantics mismatch

– There is no way to encode if (Cond) then Stmt logic, only full if-then-else is supported

• By OpBranchConditional in SPIR-V
– OpLabel is not a traditional assembler label as in LLVM’s ASMPrinter

• Aggregates lowering

– Mismatch between LLVM’s virtual register and SPIR-V’s identifier concepts

– LLVM low level types are limited by scalars, pointer and vector types

• Aggregates are decomposed, but SPIR-V supports aggregates!
– The backend emits internal intrinsics to map virtual register to original aggregate values

• To preserve original names and data types

• LLVM uses opaque pointers

– But SPIR-V’s pointers are typed

• And consumers are quite sensitive to those pointer type changes



IWOCL 2025 17

SPIR-V Backend: Summary

• Is an official (*non*-experimental) target since January 2025 (RFC)

– Functionally- & Performance-wise isn’t drastically different from the SPIRV-LLVM-Translator

• Grows faster than the SPIRV-LLVM-Translator

– Common core benefits from contributions of compute and shader flavors of SPIR-V

– Lots of different use cases and contributors

• Presence in the upstream ensures tighter integration, making it easier to influence LLVM

– That also means that OpenCL & SYCL have better influence through the backend

– An opportunity to harden SPIR-V as an industry standard interchange format

• For both compute and graphics

https://discourse.llvm.org/t/rfc-promoting-spir-v-to-an-official-target/83614


IWOCL 2025 18

Next steps

• Continue to enhance the SPIR-V backend

– Support for more extensions, built-ins, intrinsics

– Be aligned with the SPIRV-LLVM-Translator

• Incorporate feedback from SPIR-V backend users

– And grow userbase

• Further improve quality and amount of testing

– Automate non-functional testing

– Port over reaming relevant parts of the SPIRV-LLVM-Translator testing

• Release oneAPI DPC++ compiler with SPIR-V Backend enabled by default

– Aim to flip the switch this year

• Still allowing to fallback to the SPIRV-LLVM-Translator if necessary



IWOCL 2025 19

Thank you!
Questions?




	Main
	Slide 1
	Slide 2
	Slide 3: What is SPIR-V and Why It Matters
	Slide 4: SPIR-V Language Ecosystem: khronos.org
	Slide 5: SPIR-V and Heterogeneous Computing
	Slide 6: SPIRV-LLVM-Translator
	Slide 7: SPIR-V Backend to the Rescue
	Slide 8: SPIR-V Backend to the Rescue
	Slide 9: SPIR-V Backend vs SPIRV-LLVM-Translator
	Slide 10: SPIR-V Backend Progress in 2024/2025: Serious Uplift
	Slide 11: SPIR-V Backend: Quality Assurance
	Slide 12: SPIR-V Backend: Quality Assurance
	Slide 13: SPIR-V Backend: More Integrations Work in Progress
	Slide 14: SPIR-V Backend: Community
	Slide 15: SPIR-V Backend Technical Challenges: Causes
	Slide 16: SPIR-V Backend Technical Challenges: Examples
	Slide 17: SPIR-V Backend: Summary
	Slide 18: Next steps
	Slide 19: Thank you!
	Slide 20


