Arm Mali GPUs and OpenCL in the mobile and embedded space

Kevin Petit
2024/04/10
About me

GPU Compute software architect at Arm
 - Working on Mali GPUs

Participating in Khronos working groups since 2016
 - Mostly OpenCL, SPIR, Vulkan
A little quizz

- Who has heard of Arm?
- Who has heard of Arm Mali GPUs?
- Who has programmed an Arm Mali GPU?
Mali GPUs

Arm Mali is the most widely used GPU in the world

*Billions of units!"
Agenda

+ A very brief history of Mali GPUs
+ Introduction to the architecture of Mali GPUs
+ OpenCL in mobile and embedded
+ Some challenges for OpenCL in mobile/embedded space
Mali GPUs – A brief history

- 2005: Falanx announces Utgard architecture and Mali-200 GPU
- 2006: Arm acquires Falanx
- 2010-2014: Midgard architecture
 o Unified shaders, VLIW engine
 o https://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored
- 2016-2018: Bifrost architecture
 o Warp engine, thread-level parallelism
 o https://www.anandtech.com/show/10375/arm-unveils-bifrost-and-mali-g71
- 2019 onwards: Valhall architecture
 o See next slide
- To learn more
 o https://www.youtube.com/watch?v=DO_68Hjs2UI&list=PLKjl7FAwc4QUJejaX2vplwXstbgf8Ik7&index=5
Mali Valhall 5th gen architecture

- Command-stream frontend
 - Flexible, good fit for modern APIs

- 16-wide warp engine
 - Superscalar, matrix multiplication acceleration, etc

- Compression
 - AFBC, AFRC, etc

- Ray tracing

- ... and a lot more
Anatomy of a modern Valhall GPU
Zooming into a shader core

- Thread creator
- Warp manager
- Execution Engine
- Message fabric
- Load/Store Unit
- Texture Unit
- Cache
- Cache
- L2 cache

Incoming work
OpenCL in mobile and embedded

- People often ask: where/how is OpenCL used in the mobile and embedded space?
- The short answer: it's everywhere!

- From the phone you take your holiday pictures with
- ... to your electric car
- ... with a detour by your TV and/or set top box
- ... not forgetting your security cameras
- ... who said Machine Learning?
- ... and more!
Some challenges for OpenCL: compression

- Mobile platforms have stringent power constraints (typically 1-3 W)
- Memory bandwidth costs power, say 100mW / GB/s as a rule of thumb
- Compression is important to reducing power
- Cleanly integrating image compression technologies will require overhauling some aspects of image support
 - OpenCL lagging behind in terms of application control
 - See image tiling control, DRM format modifier extensions
Some challenges for OpenCL: latency

- Many use cases are very sensitive to end-to-end latency
 - OpenCL used in a longer processing pipeline
- OpenCL has provided good improvements recently
 - Command buffers
 - External semaphores
- ... but there's more to do.
Some challenges for OpenCL: Android

• OpenCL is ubiquitous on Android phones
 o Many key product value adds in shipping devices
• ... but not supported officially
• This status-quo is removing opportunities for GPU Compute on mobile devices
• Steer application developers towards Vulkan (officially supported)
 o ... but Vulkan is complex
 o ... and migration is not free
• Layering on top of Vulkan could help
 o Reduce cost for applications and reuse investments in OpenCL
Any questions?

Looking forward to interesting discussions.

Join us :)
Thank You
Danke
Gracias
Grazie
谢谢
ありがとう
Asante
Merci
감사합니다
धन्यवाद
شكرًا
ধন্যবাদ
תודה
ధన్యవాదము