
Accelerating Simulink/Matlab projects

with SYCL

Uwe Dolinsky, Codeplay Software Limited

© 2023 Codeplay Software Ltd2

C++ platform via the SYCL™
open standard, enabling vision
& machine learning e.g.
TensorFlow™

Enabling AI & HPC
to be Open, Safe &

Accessible to All
Markets

High Performance Compute (HPC)
Automotive ADAS, IoT, Cloud Compute

Smartphones & Tablets
Medical & Industrial

Technologies: Artificial Intelligence
Vision Processing

Machine Learning
Big Data Compute

Company

Leaders in enabling high-performance
software solutions for new AI processing
systems

Enabling the toughest processors with tools
and middleware based on open standards

Established 2002 in Scotland, now with ~90
employees. Acquired by Intel in 2022.

Supported Solutions

The heart of Codeplay's
compute technology enabling
OpenCL™, SPIR-V™, HSA™ and
Vulkan™

And many more!

Collaborations

An open, cross-industry, SYCL based,
unified, multiarchitecture, multi-
vendor programming model that
delivers a common developer
experience across accelerator
architectures

© 2023 Codeplay Software Ltd.3

• Many Automotive/Avionics/Defence/Embedded software projects are
entirely written in Simulink/Matlab
• Companies have large Simulink/Matlab legacy code bases
• Engineers have mainly expertise in Matlab/Simulink using specialised commercial Matlab

Simulink tool boxes
• Targeting Safety Critical

• Taking advantage of open source tool chains and acceleration ecosystems
• Ability to accelerate on more types of platforms via SYCL
• Use different open libraries as backends (Eigen, Armadillo etc)
• Ability to apply more and different verification tools to Simulink/Matlab projects

• Matlab/Simulink are widely taught in engineering and sciences

• Many research projects/codes in engineering are based on Matlab (or
Matlab-like software like Octave, COMSOL, SciLab, …)

Why accelerating Simulink/Matlab with SYCL

© 2023 Codeplay Software Ltd.4

Context 1/2: Building novel High-Performance
Hybrid Batteries for Electric Vehicles

IUK-funded project (WIZer Batteries, grant no. 104427)

Collaboration led by Williams Advanced Engineering.

Codeplay’s role: Accelerating Battery Models via SYCL.

Embedded MPSoC platform running the
BMS on the Battery. (Image from
https://www.xilinx.com/products/boards-
and-kits/zcu106.html)

Experimental Battery Test rig at Imperial.
(Image from www.imperial.ac.uk)

Project partners

Context 2/2: SYCL Acceleration flow for Simulink/Matlab

Battery Model Architecture
maintained by WAE in

MatLab/Simulink format

Matlab/Simulink Coder C/C++

Normal Matlab flow

BMS Software
Architecture

Open Accelerated
SYCL Libraries Eigen

WIZer Coder

C/C++ with
SYCL bindings

SYCL flow

SYCL support
(CPU, FPGA)

• Simulink/Matlab translation to
SYCL/C++

• SYCL code acceleration on
CPU/FPGAIntegrating open source libraries (Eigen) and tools to read Matlab/Simulink file formats.

Matlab/Simulink/Mathworks images © The Mathworks Inc
Eigen logo from https://eigen.tuxfamily.org
SYCL logo © The Khronos Group

https://eigen.tuxfamily.org/

© 2023 Codeplay Software Ltd.6

• Enables building/testing complex programs/models using
a graphical environment

• Models are graphs of blocks – blocks can be simple
arithmetic operations up to complex subsystems, dealing
with data/storage/constants, StateFlow, Control flow,
Math Operations
• Frequently used block types: From, Goto, Inport, Outport,
Reference, SubSystem, Selector, Concatenate,
Terminator, Switch, RelationalOperator, MinMax,
UnitDelay, Product, Sum

• Each block has inports, outports and block parameters
• Matlab/Simulink Interactions

• Blocks can have Matlab code attached to them:
• expressions or whole programs with multiple functions referencing external

functions
• Matlab configures workspace and can call/query Simulink model

What is Simulink/Matlab?

Image from:
https://www.mathw
orks.com/help/sps/u
g/smartphone-
charging.html

© 2023 Codeplay Software Ltd.7

• One or several Simulink solution files (*.slx, *mdl)
• Simulink libraries

• Matlab source files (*.m, workspace setup, free functions,
embedded/anonymous functions)

• Matlab data files
• Matlab data files (*.dat, workspace data, simulation data, variables)

• Data dictionaries (*.sld)

A typical Simulink/Matlab project contains

© 2023 Codeplay Software Ltd.8

• Converting Simulink/Matlab solutions into C++ code (the model
step) that uses an API that can be accelerated via SYCL.

• Taking advantage of open source projects to
• Import Matlab data files (*.mat)
• Import Simulink Solution files (*.mdl, *.slx)
• Provide efficient Vector/Matrix/Math operations (via Eigen)

• No dependencies on MATLAB® installation
• Non-disruptive: Enabling engineers to continue to develop in

Simulink/Matlab
• Option to run entire model step or individual blocks as SYCL

kernels
• Only functionality required by BMS use case was implemented

Our approach (technical and user targeted)

© 2023 Codeplay Software Ltd.9

Integrating Intel® Data Analytics Acceleration Library with Matlab
https://www.intel.com/content/www/us/en/developer/articles/technical/using-intel-
data-analytics-acceleration-library-on-matlab.html

CoCoSim: Open-Source verification tool for Simulink Models
• Requires MATLAB® Installation

https://github.com/NASA-SW-VnV/CoCoSim

m2cpp: Open-source tools to convert process Matlab/Simulink files
• converts Matlab files only (research project)

https://github.com/emc2norway/m2cpp

Other/Related MATLAB projects

https://github.com/NASA-SW-VnV/CoCoSim
https://github.com/emc2norway/m2cpp

© 2023 Codeplay Software Ltd.10

• Integrating output from various open tools/libraries to process
• Simulink solutions files
• Data files (and dictionaries)
• Matlab files (workspace setup files, Matlab functions (free, embedded, anonymous)

• Support different block types
• Models consist of the main model, sub models, model references, subsystems (virtual or atomic)

and are connected by ports

• Generating model step which evaluates the entire model
• Determine execution order of blocks
• Requires block scheduling to flatten model graph for execution

• Outputting the model and data as C++ code and integrating with backend
(Eigen)

• Targeting SYCL
• Provide flexibility/configurability to enable performance tuning

Challenges of our Integration

© 2023 Codeplay Software Ltd.11

• Simulink files read by the ConQAT project
https://github.com/vimaier/conqat/

• Matlab data files read by MAT File Library
https://github.com/HebiRobotics/MFL

Open-source projects used to help translate
Simulink and Matlab files

https://github.com/vimaier/conqat/
https://github.com/HebiRobotics/MFL

© 2023 Codeplay Software Ltd.12

Model architecture rendered by
open-source ConQAT library
https://github.com/vimaier/conqat/

Example Simulink model translated into C++

model inports

model outports

Writing model outports

model step function

Example model (25 blocks) from
https://sourceforge.net/projects/sim2c/

API header

https://github.com/vimaier/conqat/

© 2023 Codeplay Software Ltd.13

Simulink model translated into C++ - verbose
block information

Example model from
https://sourceforge.net/projects/sim2c/

Outputting detailed parameters of each block as C++
comments improves model introspection and debugging.

© 2023 Codeplay Software Ltd.14

Integration of Eigen for math operations

Eigen is imported through API header

Overloads with Eigen operations selected if block
argument types are types from Eigen Library

Defined inside matlab_includes.h

cp_matrix is a core data type
encapsulating Eigen::Matrix

© 2023 Codeplay Software Ltd.15

• Targeting Simulink For Each Subsystems:
https://www.mathworks.com/help/simulink/slref/foreachsubsystem.html

• Subsystem containing a ForEach block with control parameters (Dimension)
• Essentially turns a subsystem into an array of subsystems (duplicating state)

• A subsystem is a set of blocks
• Apply SYCL’s parallel_for to the array to evaluate each subsystem

• Targeting SYCL (dealing with Matlab “persistent” and “global” data inside
functions – requires transforming code to hoist these variables out of the
function).

SYCL Integration

Image taken from above URL
© The MathWorks, Inc.

https://www.mathworks.com/help/simulink/slref/foreachsubsystem.html

© 2023 Codeplay Software Ltd.16

Each ForEach
system generates
an array of
subsystem
structs/functors.

In SYCL mode Each
subsystem in the
array is evaluated
in parallel.

SYCL Integration

Kernel
name

Array of
SubSystems

SYCL state
(queue)

Kernel
launch

Concatenating
results

g++ file.cpp –o cpp_app

clang++ -fsycl –DUSE_SYCL file.cpp –o sycl_app

Building as C++ application

Compiling for SYCL

© 2023 Codeplay Software Ltd.17

• Running all For Each systems as SYCL kernels may not improve
performance.

• Generated model file provides option to selectively compile
functions as normal CPU functions instead.

Configuring SYCL integration

Names of the kernels generated for each For Each
system

An autotuner could determine which kernels need to be SYCL kernels or
CPU functions to maximise performance.

© 2023 Codeplay Software Ltd.18

• Only a subset of Simulink Blocks are supported
• On supported blocks only a subset of block parameters are supported
• Supported Simulink/Matlab file formats

• Simulink solution files need to be in Matlab 2020 format (or older)
• Open source project could be extended to provide more recent file formats
• Many Simulink projects can be converted – requires Matlab installation

• Matlab data files need to be in format version 5 (OpenSource Octave can be used to convert
data files)

• No GUI or Simulink commands supported in Matlab code
• Backend limitations: Eigen does not support all of Simulink/Matlab

operations (interpolations, etc), using some unsupported Eigen modules
• Currently using synchronous execution to evaluate subsystems
• Task parallelisation opportunities not exploited yet

Limitations of current Simulink support

© 2023 Codeplay Software Ltd.19

• Targeting new (updated) use-case

• Auto-tuning to decide which kernel runs where (C++, CPU, GPU,) and with what
parameters

• Asynchronous execution of SYCL kernels

• Eigen SYCL backend integration

• Generate different block schedules for performance

• Task parallelisation

• Improve Buffer creation, support USM

• Targeting SYCL to other block types

• Targeting SYCL for Safety Critical Systems

• Potentially open sourcing

• Writing paper with performance numbers on open-source use case

Future ideas

© 2023 Codeplay Software Ltd.20

• Presented open-source- based tool flow to translate
Simulink/Matlab into C++ - no dependency on Matlab tools

• Enables acceleration via SYCL (For Each systems)
• Generates static model structure – deterministic model

evaluation (at least in C++ without SYCL)
• Required for automotive use case

• Successfully applied to industrial use case (Battery Models
running on embedded platform)
• Non-disruptive – enables Simulink engineers to take advantage of SYCL

• Generated C++/SYCL code provides options to:
• evaluate the entire model step or just (For Each blocks) as SYCL kernel
• selectively enable SYCL per individual block

Wrap

© 2023 Codeplay Software Ltd.21

• This work was partly supported by the Innovate UK WIZer
project (grant no. 104427)

Notices & Disclaimers

Technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.
© Codeplay Software Ltd.. Codeplay, Intel, the Intel logo, and other Intel marks are trademarks of
Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of
others.

Acknowledgements and disclaimer

@codeplaysoft codeplay.cominfo@codeplay.com

Thank You!

	Slide 1
	Slide 2
	Slide 3: Why accelerating Simulink/Matlab with SYCL
	Slide 4: Context 1/2: Building novel High-Performance Hybrid Batteries for Electric Vehicles
	Slide 5
	Slide 6: What is Simulink/Matlab?
	Slide 7: A typical Simulink/Matlab project contains
	Slide 8: Our approach (technical and user targeted)
	Slide 9: Other/Related MATLAB projects
	Slide 10: Challenges of our Integration
	Slide 11: Open-source projects used to help translate Simulink and Matlab files
	Slide 12: Example Simulink model translated into C++
	Slide 13: Simulink model translated into C++ - verbose block information
	Slide 14: Integration of Eigen for math operations
	Slide 15: SYCL Integration
	Slide 16: SYCL Integration
	Slide 17: Configuring SYCL integration
	Slide 18: Limitations of current Simulink support
	Slide 19: Future ideas
	Slide 20: Wrap
	Slide 21: Acknowledgements and disclaimer
	Slide 22: Thank You!

