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The future (and present) of HPC is heterogeneous

Position Name Processor
Linpack

(PFlop/s)

#1 Frontier AMD EPYC 64 cores
AMD Instinct MI250X

1,102

#2 Fugaku Fujitsu A64FX 48C 442

#3 Lumi AMD EPYC 64 cores
AMD Instinct MI250X

309

#4 Leonardo Xeon Platinum 8358 
32C
Nvidia A100 SMX4

174

#5 Summit IBM POWER9 22C
Nvidia V100 

148

#7 Taihulight Sunway SW26010 260C 93

#10 Tianhe-2A Intel Xeon E5-2692v2 
12C MATRIX-2000

61

Top 500 list November 2022

And upcoming Intel GPUs, Nvidia CPUs, RISC-V, FPGAs, …

Source: https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data


Large number of HPC applications use Fortran

Source: https://cpufun.substack.com/p/is-fortran-a-dead-language - Jim Cownie
https://www.archer2.ac.uk/support-access/status.html#:~:text=0.0-,Historical%20usage%20data,-Period

https://cpufun.substack.com/p/is-fortran-a-dead-language
https://www.archer2.ac.uk/support-access/status.html#:~:text=0.0-,Historical%20usage%20data,-Period


Software Sustainability

• HPC scientific applications are large and complex software projects.
• Coupling of many different areas of expertise.
• Large number of contributors from multiple institutions.
• Some have millions of LOC.

• Productivity, readability, maintainability are essential for the sustainability of 
large software projects.

• Community effort: hard to maintain multiple implementations.

Ideally single source, with performance and parallelisation details abstracted.



Performance Portability Strategies

• Maintain multiple implementations: e.g., CUDA, HIP, OpenCL. Requires re-implementing 
the application in a new programming model and maintaining it over time.

• Compiler hints/keywords: e.g., OpenMP, OpenACC. Provide descriptive constructs. The 
compiler has flexibility to decide how to implement them for the target architecture.

• Compile-time abstractions: e.g., SYCL, Kokkos, Raja. Use C++ template metaprogramming 
to abstract the parallelisation API, the parallel execution order, how data structures are laid out in 
memory and on which space data resides.

• Task-based parallelism: e.g., Legion, Cabana, OmpSs, DaCe. Data-centric programming. The 
developer describes the dependencies between tasks and a runtime system decide how to 
execute them.



and what about Fortran?

Fortran has limited heterogeneous programming capabilities and lacks the 
powerful compile-time mechanisms that C++ performance portability frameworks 
use.

• OpenMP 5 and OpenACC: Still used differently on CPU and GPUs. Irregular 
vendor and compiler support.

• CUDA Fortran: Proprietary, single vendor and compiler support.

• HPF/do concurrent: Not widely adopted. Irregular compiler support.

• Pre-processor macros: Sometimes used in HPC codes but impacts software 
sustainability.

Can performance portability be achieved by source-to-source transformations?



PSyclone: a code generation and transformation system 
for weather and climate Fortran applications
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This work: a new PSyclone backend for OpenCL
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Portability != Performance Portability

• A direct mapping to a portable language backend is not enough!

• CPU, GPUs and especially FPGAs require different implementations.

• Performance portability can be improved by providing a list of code 
transformations (a PSyclone recipe) specific to each target platform.



PSyIR: PSyclone Intermediate Representation

• It is a mutable representation intended to be programmatically 
manipulated through transformations or PSyclone scripts.

• It provides utilities like DAG visualisations and automatic insertion of 
performance/debugging calipers to aid HPC experts.

• It gracefully supports incomplete code information like unsupported 
Fortran features and unresolved datatypes.

• It is itself domain-agnostic, but it is extensible to create the domain-
specific DSLs that will be used by the applications.
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PSyKAl: a kernel-based model for Fortran

• Used in LFRic and NemoLite2D Algorithm

Kernel

Parallel System
Natural 
Science



Mapping PSyKAl to OpenCL
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Simple example without optimisations

$ psyclone […options…] –s opencl_trans.py source.f90

*simplified representation of the generated OpenCL code



OpenCL Optimisations

• Kernel Blocking

• Boundary Masking



NemoLite2D (https://github.com/stfc/PSycloneBench/tree/master/benchmarks/nemo/nemolite2d)

• A vertically-averaged version of the free-surface component of the NEMO model.

• Implements a continuity equation for the update of the sea-surface height and 
two vertically-integrated momentum equations for the two velocity components.



Performance Results

• 48-core AMD EPYC 7643 CPU using the Intel OpenCL Runtime for CPUs and compiled with gfortran 9.4
• NVIDIA A100 SMX4 GPU using the NVIDIA OpenCL drivers and compiled with nvfortran 22.5
• AMD Instinct MI250 GPU using the ROCM 5.4 OpenCL drivers and compiled with gfortran 9.4

Performance comparison of NEMOLite2D (size 20482 ) with

multiple parallel programming models on multiple devices 

Strong scalability of NEMOLite2D (size 60002 ) with hybrid
MPI and OpenCL

Best results for each device corresponds to 63, 60, 32 % of peak 
bandwidth respectively



Dynamic Evaluation of Runtime Invariants

The generated OpenCL code replaces ct1 and 
ct2 with undeclared file scope symbols



Dynamic Evaluation of Runtime Invariants

Number of bytes sent by clSetKernelArg Execution time of the test kernel on 
an 8-core Intel Xeon Silver 4215



Targeting FPGAs: the EuroEXA project

• Required significant transformations from CPU/GPU code:

• Functional parallelism (OCL queues)

• Duplicate kernels

• Inline loops into kernel (taskify)

• Buffer burst memory operations to local memory.

This research has received funding from the European Union’s Horizon 2020 research and 
innovation programme under Grant Agreement no. 754337.



Performance on Xilinx U200 FPGA

Current limitations:
- Only using 1 DDR memory bank and 1 

SLR in the Xilinx U200 (out of 4 DDR 
memory banks and 3 SLR) 

- Not using OpenCL pipes for faster 
communication between kernels.

- Not using OpenCL vendor extensions 
such as xcl_dataflow, 
xcl_pipeline_loop or 
xcl_pipeline_workitems.

Figure: Execution time (Y axis) and slowdown compared to 1 Xeon Silver 4215 
core (inverse of speedup - top of the bars) of multiple OpenCL optimizations 
on a Xilinx U200 FPGA. Solid bars are as generated by PSyclone, dashed bars 
required manual tweaks.

This research has received funding from the European Union’s Horizon 2020 research and 
innovation programme under Grant Agreement no. 754337.



General applicability of Fortran-to-OpenCL

• NemoLite2D

• PSyKAl

• Any Numerical Operations

Application specific

Standard Fortran

NEMO example:
• Infer kernels from Fortran array notation and 

dependency analysis
• Deduces domain specific knowledge from 

loop patterns and naming conventions of the 
code style-guide

Today



Conclusion

PSyclone enables automatic Fortran to OpenCL transformation for codes 
adhering to the PSyKAl kernel-based parallelism model. Separation of 
concerns and performance-portability are achieved by providing a recipe of 
code transformations.

Future work

• Generalise solution to support any numerical operations

• More performance portability IR transformations

• SYCL backend
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