
Towards a SYCL API for Approximate

Computing

Lorenzo Carpentieri, University of Salerno (UNISA)

Biagio Cosenza, University of Salerno (UNISA)

▷ Approximate computing introduction
▷ Software techniques
▷ SYprox: a SYCL API for approximate computing

o Perforation Schema
o Reconstruction schema
o Host and device perforation

▷ Experimental evaluation

2

Overview

Introduction t0 Approximate Computing

▷ Data/computation can be inaccurate and
still produce acceptable results

▷ Trade accuracy for higher speedup or
smaller energy consumption

▷ Many applications:
○ machine learning, neural networks
○ computer vision, image processing
○ signal processing

▷ Many techniques:
○ Hardware: approximate and faulty

hardware, memoization etc.;
○ Software: perforation, mixed

precision, synchronization elision;

3

Image Processing

Neural Networks

Mixed precision methods combine the use of different numerical formats in one computational
workload.

4

1 bit 11 bits 52 bits

FP64

FP32

1 bit 8 bits 23 bits

FP16

bfloat16

1 bit 5 bits 10 bits

…

1 bit 8 bits 7 bits

Sign Exponent Mantissa

Lower-precision pros:
▷ Faster computation and less

memory footprint
▷ Transmit more numbers
▷ Use less energy

Cons:
▷ Limits the range of values we can

represent
▷ Introduce quantization error

Mixed precision

▷ Loop perforation (coarse grained approach):
○ skips loop iterations to reduce computation;
○ k is the skip factor used for tuning accuracy vs. performance

▷ Code perforation (fine grained approach):
○ skips loop instructions to reduce computation

5

// original loop

for (i = 0; i < N; i++){

Instruction_1

Instruction_2

Instruction_3

}

// loop_perforation1

for (i = 0; i < N; i += k){

Instruction_1

Instruction_2

Instruction_3

}

// code_perforation2

for (i = 0; i < N; i++){

Instruction_1

// skipped instruction

Instruction_3

}

[1] Sidiroglou-Douskos, Stelios, et al. "Managing performance vs. accuracy trade-offs with loop perforation.“ Proceedings of the 19th ACM SIGSOFT symposium
[2] Li, Shikai, Sunghyun Park, and Scott Mahlke. "Sculptor: Flexible approximation with selective dynamic loop perforation." (SC 2018)

Loop and code perforation

6

▷ Many applications are memory-bound
○ computation is cheap, memory access

is expensive

▷ Data often contains redundancy
○ many applications can deal with some

amount of error

▷ Data perforation:
○ skip the loading of redundant parts in

input data
○ exploit data locality to reconstruct

perforated data, reducing the final
error

a) Original b) Perforated c) Reconstructed

From loop to data perforation

7

// original loop

for (i = 0; i < n; i ++) {

output[i] = calc(input[i]);

}

for (i = 1; i < n; i += 3) {

output[i] = calc(input[i]);

// output_reconstruction1

output[i+1] = output[i];

output[i+2] = output[i];

}

for (i = 0; i < n; i += 3) {

x0 = input[i];

x2 = input[i+2];

// input_reconstruction2

x1 = (x0+x2)/2;

output[i] = calc(x0);

output[i+1] = calc(x1);

output[i+2] = calc(x2);

}

A reconstruction phase is needed in
order to reduce the error introduced by
the data perforation:

▷ output reconstruction1 (high error);

▷ input reconstruction2 (less error).

Input and output reconstruction

[1] Samadi, Mehrzad, et al. "Paraprox: Pattern-based approximation for data parallel applications." Proceedings of the 19th international conference on Architectural support for programming
languages and operating systems. 2014.

[2] Maier, Daniel, Biagio Cosenza, and Ben Juurlink. "Local memory-aware kernel perforation." Proceedings of the 2018 International Symposium on Code Generation and Optimization.

8

SYprox a portable SYCL API for
developing approximate computing
techniques:

▷ New perforation approach:
○ Host perforation
○ Device perforation

▷ Different perforation schemes

▷ Input and output reconstruction

▷ Data perforation + mixed precision

pbuffer<half, 2, pcol<half> buf_a(a,range<2>{N,N});

// output reconstruction with lerp

pbuffer <half,2,pcol::lerp>out_buf(out,range<2>{N,N});

// global size and work group size

range<2> gl{N,N/2}, ws{32, 32};

q.submit([&](handler &h){

paccessor<float,2,prow<float> > perf_acc{buf_a, h, read};

h.parallel_for(nd_range<2>{gl,ws},

[&](nd_item<2> it){

id<2> id = it.get_global_id();

// acc_a data are perforated host side

out_acc[id*2] = acc_a[id] * 2;

// perf_acc data are perforated device side

out_acc[id*2] = perf_acc[id] * 2;

});

}

SYprox: a SYCL API for Approximate Computing

9

Input

Buffer
Computation

Output

Buffer

Input
Buffer

Computation
Input

Reconstruction

Output

Buffer

Perforation
Schema

Output

Reconstruction

a) Accurate execution

b) SYprox approach

SYprox approach

10

Row
skip factor 2

Column
skip factor 2

Chess

1D
skip factor 2

▷ Perforation schemes define which data
should be not computed.

▷ SYprox provides 4 built-in perforation
schemes.

▷ The skip factor for the 1D/Row/Column
schemes defines the number of
elements/rows/columns to skip.

1D
skip factor 3

Row
skip factor 3

Column
skip factor 3

Perforation Schemes

11

▷ Data perforation happens before
sending data on the device;

▷ Less data transfer between host
and device;

▷ All the perforation schemes
adopted are aligned with memory
architecture

pbuffer<half, 2, prow<half>

buf_a(a, range<2>{N,N});

buffer<half, 2>

out_buf(out, range<2>{N,N});

range<2> gl{N/2,N}, ws {32, 32};

q.submit([&](handler &h){

h.parallel_for(nd_range<2>{gl,ws},

[&](nd_item<2> it){

id<2> id = it.get_global_id();

out_acc[id*2] = acc_a[id] * 2;

});

}

Host DevicePerforation

Host perforation (pbuffer)

12

▷ Data perforation happens on the
device;

▷ Send all data from host to device;

▷ Perforation schemes can be
affected by the array memory
layout (e.g. row-major, column
major)

buffer<half, 2> buf_a(a, range<2>{N,N});

buffer<half, 2>

out_buf(out, range<2>{N,N});

range<2> gl{N/2,N}, ws {32, 32};

q.submit([&](handler &h){

paccessor<half, 2, prow<float>>

perf_acc{buf_a, h, read};

h.parallel_for(nd_range<2>{gl,ws},

[&](nd_item<2> it){

id<2> id = it.get_global_id();

out_acc[id*2] = perf_acc[id] * 2;

});

}

Host Device
Send data

Device perforation (paccessor)

13

Nearest neighbour Linear Stencil

SYprox provides two reconstruction
strategies:

▷ Output reconstruction approximates
perforated data after computation;

▷ Input reconstruction: perforated
elements are reconstructed in local
memory before computation.

SYprox provides 3 built-in way to
reconstruct data:

▷ Nearest neighbour;

▷ Basic linear interpolation;

▷ Stencil interpolation;

Input
data Computation

Input
Reconstruction

Output
Buffer

Data
perforation

Input
data Computation Output

Reconstruction
Output
Buffer

Data
perforation

Reconstruction strategies

14

▷ Implemented 3 image processing
applications using SYprox;

▷ Combined different approximate
computing techniques:
○ Data perforation;
○ Input and output reconstruction;
○ Mixed precision using half

precision floating point.

▷ Run applications on NVIDIA V100 GPU;

▷ Measure run time and error:
○ Speedup 1.2x to 6x;
○ Average error less than 10%.

• Box blur

• Median filter

• Sobel filter

Applications

Evaluation

15

Results

better

Box blur

Median

Sobel

16

Input
Buffer

Computation
Input

Reconstruction
Output
Buffer

Perforation
Schema

Output
Reconstruction

SYprox: a SYCL API for approximate computing

▷ Combined different approximate computing techniques:
○ Data perforation;
○ Input and output reconstruction;
○ Mixed precision using half precision floating point.

▷ Speedup 1.2x to 6x;

▷ Average error less than 10%.

Summary

Contacts:

Lorenzo Carpentieri: lcarpentieri@unisa.it

Biagio Cosenza: bcosenza@unisa.it

mailto:lcarpentieri@unisa.it
mailto:bcosenza@unisa.it

	Slide 1
	Slide 2
	Slide 3: Introduction t0 Approximate Computing
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

