
Evaluation of SYCL Suitability for

High-Performance Critical Systems

Leonidas Kosmidis, Barcelona Supercomputing Center

(BSC) and Universitat Politècnica de Catalunya (UPC)

Co-authors: Cristina Peralta, Matina Maria Trompouki

Introduction and Motivation

Background

Software Porting

Experimental Setup

Evaluation

Conclusions and Future Work

Outline

2

Safety Critical systems

used in avionics, automotive and aerospace industries

correct and timely execution is important

any malfunction may be dangerous

traditionally rely on very old and simple single core processors

Cannot provide the performance required for new advanced

functionalities

Introduction and Motivation

3

Automotive Industry Examples:

Advanced Driving Assistance Systems (ADAS)

Autonomous parking, heads-up (HUP) windshield displays and smart

mirrors

Avionics

Automatic Taxi, Take-Off and Landing (ATTOL)

Need for higher performance in Safety Critical Systems

4

Space:

Φ-Sat-1

ESA’s technology demonstration mission, launched in 2020

AI accelerator, Intel Movidius Myriad 2

First demonstration of AI for earth observation on

Hyperspectral Images

Need for higher performance in Safety Critical Systems

5

OPS-SAT-1

ESA’s technology demonstration mission launched in 2019

Intel/Altera Cyclone V SoC, Multicore CPU and FPGA

Several High Performance Applications, including AI

Both Φ-Sat-2 and OPS-SAT 2 are under development

Legacy hardware used for safety critical systems cannot provide the

required performance

Embedded Systems on Chip (SoC) with multicore and Graphics

Processing Units (GPUs) are

designed to comply with safety critical functional safety standards

e.g. ISO 26262

very attractive candidate platforms for safety critical systems

Need for higher performance in Safety Critical Systems

6

The adoption of multicore and GPU platforms in safety critical systems

require not only high performance but also ease of programmability

Automotive functionalities are assigned a criticality level

Automotive Safety Integrity Level (ASIL)

Highest Criticality software (ASIL-D) needs to comply with certain rules:

Restricted use of Pointers

No dynamic memory allocation

Static verification of program properties

Resilience to faults

Fault propagation

Need for high level programming models in safety critical

systems

7
[1] Trompouki and Kosmidis, Brook Auto: High-Level Certification-Friendly Programming for GPU-powered Automotive

Systems, DAC 2018

Khronos Safety Critical Systems Programming Models

8

Vulkan SC 1.0 – 2022

Explicit Graphics, Compute

and Display safety-critical subset

OpenVX SC Extension – 2017
Graph-based vision and

inferencing

OpenVX 1.3 – 2019
SC Extension integrated into
core OpenVX specification

SYCL 2020
C++-based heterogeneous

parallel programming

March 2023
SYCL SC WG Created

Evaluate the applicability of SYCL for programming safety critical

systems

Performance comparison with other parallel programming models on

a candidate embedded platform

Assessment of programmability trade-offs

Objectives

9

Focus on two safety critical industries, aerospace and automotive

The selected software needed to be:

Computationally demanding

Representative of the respective domains

Already available in other parallel programming models

Open Source in order to ensure reproducibility

Only software complying with this requirements were previously

developed at BSC/UPC:

GPU4S Bench/OBPMark Kernels → aerospace

Pedestrian Detection Application → automotive

High Performance Safety Critical Software Selection

10

Developed during the ESA funded GPU4S

(GPU for Space) project coordinated by BSC

Partnership with Airbus Defence and Space

Investigate the applicability of embedded

GPU for space missions

Main focus

Study the feasibility and potential

benefits of using embedded GPUs for

space applications

Benchmark several embedded GPUs

Implement a demonstrator of a space

case study on an embedded GPU

GPU4S Bench / OBPMark Kernels

11

Lack of benchmarks for Space

Proprietary code, export restrictions

Lack of GPU benchmarks for critical systems

Definition of an open source GPU Benchmark suite: GPU4S Bench [1]

Building blocks from many domains identified in a space sw survey

ESA GPL-3 compatible license, released together with OBPMark [2]

Official Benchmarking suites of ESA for all types of new devices

Required to be used by new projects funded by ESA

HiPEAC Technology Transfer Award 2021

GPU4S Bench / OBPMark Kernels

12

[1] GPU4S Bench: Design and Implementation of an Open GPU Benchmarking Suite for Space On-board

Processing: https://www.ac.upc.edu/app/research-reports/public/html/research_center_index-CAP-2019,en.html

[2] OBPMark (On-Board Processing Benchmarks) – Open Source Computational Performance Benchmarks for

Space Applications, OBDP 2021, http://OBPMark.org

https://www.ac.upc.edu/app/research-reports/public/html/research_center_index-CAP-2019,en.html
http://obpmark.org/

Identified building blocks and the domains they represent

GPU4S Bench Overview

13

Domains

Building Block

Fast Fourier Transform GENEVIS ADS-B, NGDSP

Finite Impulse Response Filter ADS-B, NGDSP

Integer Wavelet Transform CCSDS 122

Pairwise Orthogonal Transform CCSDS 122

Predictor CCSDS 123

Matrix computation GENEVIS (Solver) Image classification

Convolution Kernel OpenCV GO3S,GENEVIS Image classification

Correlation OpenCV GO3S,GENEVIS ADS-B

Max detection GO3S Image classification ADS-B

Synchronization mechanism GENEVIS EUCLID NIR, GO3S TensorFlow ADS-B, NGDSP

Memory Allocation CERES Solver , OpenCV EUCLID NIR, GO3S TensorFLow ADS-B, NGDSP

Compression Vision Based Navigation Image Processing Neural Network Processing Signal Processing

Sequential reference version for functional verification

3 parallel versions: naïve, optimised, vendor optimised libraries:

Evaluate programmability: programming effort vs performance

Implementations available in CUDA, OpenCL, HIP, OpenMP

Port benchmarks in SYCL

Both SYCL Memory Models: Unified Shared Memory (USM) and

Buffers

Naïve and Optimised versions

Same organization with existing GPU4S Bench ports in other parallel

programming models

All programming models use the same program drivers and have

the same overhead

Programming model section takes place at compile time

Open source implementation [1]

To be merged in the next GPU4S Bench / OBPMark Kernels release

GPU4S Bench / OBPMark Kernels contributions in this work

14[1] Cristina Peralta Quesada. GPU4S Bench SYCL Implementation: https://github.com/crispq95/GPU4S_Bench

https://github.com/crispq95/GPU4S_Bench

Open Source application [1] developed at BSC/UPC

Developed as Multi-CPU Multi-GPU benchmark for Automotive Systems [2]

Original implementation achieved 88x times speedup over the sequential

version on a server class CPU

Used 4 x86 CPUs and 2 GPUs

Ported to an embedded platform (NVIDIA Xavier) and used as a research

use case and demonstrator in the UP2DATE H2020 project

Pedestrian Detection

15

[1] M. M. Trompouki. 2013. Pedestrian Detection Source Code Repository.

https://github.com/mtrompouki/pedestrian_detection

[2] M. M. Trompouki, L. Kosmidis, and N. Navarro. An Open Benchmark Implementation for Multi-CPU Multi-GPU

Pedestrian Detection in Automotive Systems. ICCAD 2017

https://github.com/mtrompouki/pedestrian_detection

Pedestrian detection on camera images

Necessary functionality required for automatic emergency breaking,

mandatory since 2022 in all vehicles sold in the European Union

Implementation based on a classic vision algorithm (Viola-Jones method)

instead of deep neural networks

Explainable, easier to be used in a certified context

Original application [1][2] written in CUDA, hand optimized to achieve high

performance

Pedestrian Detection

16

[1] M. M. Trompouki. 2013. Pedestrian Detection Source Code Repository.

https://github.com/mtrompouki/pedestrian_detection

[2] M. M. Trompouki, L. Kosmidis, and N. Navarro. An Open Benchmark Implementation for Multi-CPU Multi-GPU

Pedestrian Detection in Automotive Systems. ICCAD 2017

https://github.com/mtrompouki/pedestrian_detection

Code ported in SYCL

Implementations in both SYCL Memory Models: Unified Shared Memory

(USM) and Buffers

3 implementations

Naïve

In-order queues

Out-of-order queues

Code available as open source [1]

Will be merged in the original repository

Pedestrian Detection contributions in this work

17

[17] Cristina Peralta Quesada. 2022. Pedestrian Detection in SYCL.

https://github.com/crispq95/pedestrian_detector

https://github.com/crispq95/pedestrian_detector

Two platforms

A high performance platform

Initial target

Mainly for development

Known to support SYCL

An embedded GPU platform

NVIDIA Xavier

Candidate platform for safety critical systems

Unknown support for SYCL at the beginning of the project

Experimental Setup

18

Hardware

CPU: AMD Ryzen 7 1800 Eight-Core processor

GPU: NVIDIA GeForce GTX 1080 Ti

Software

Ubuntu 18.04.6 LTS

CUDA, OpenCL, OpenMP

hipSYCL v0.9.3 compiled from source

Experimental Setup: High Performance Platform

19

NVIDIA Xavier

8-core Caramel ARM v8.2 64-bit CPU

Volta GPU with 8 Streaming Multiprocessors

32 GB of memory

ISO 26262 ASIL-D Certified for use in automotive

One of the target platforms for GPU4S project

Main platform in H2020 UP2DATE project

Experimental Setup: Embedded Platform

20

Different Power Modes available

Power budget limited to 15W due to thermal

dissipation limitations in space

Selected mode: Mode 2, 15W

Software:

Ubuntu 18.04.6 LTS

CUDA and OpenMP

hipSYCL v0.9.3 compiled from source

No differences w.r.t. high performance

platform setup

No issues encountered

Experimental Setup: NVIDIA Xavier

21

SYCL Buffers

Easier to use when development starts from scratch

No need for the programmer to worry about data transfers or

dependencies

Low code complexity

Important for safety critical systems certification

Less LOC compared to USM

Low performance compared to USM

No programmability benefit for experienced programmers with low

level GPU programming models

Programmability

22

Unified Shared Memory (USM)

Uses pointers and dynamic memory allocations

their use is discouraged in safety critical systems

Major advantage of USM compared to low-level GPU programming

models for safety critical systems

Automatically computed indices eg. in parallel_for constructs

Correct-by-construction

Reduces programming mistakes

USM LOC similar to the lower level GPU programming models but

portable across architectures

USM provides a good trade-off between performance and

programmability required for safety critical systems

Programmability

23

GPU4S Bench Multicore CPU: SYCL vs OpenMP / High Performance Server

24

GPU4S Bench Multicore CPU: SYCL vs OpenMP / High Performance Server

25

GPU4S Bench Multicore CPU: SYCL vs OpenMP / NVIDIA Xavier

26

GPU4S Bench Multicore CPU: SYCL vs OpenMP / NVIDIA Xavier

27

GPU4S Bench Multicore GPU: SYCL vs CUDA / High Performance Server

28

GPU4S Bench Multicore GPU: SYCL vs CUDA / High Performance Server

29

GPU4S Bench Multicore GPU: SYCL vs CUDA / NVIDIA Xavier

30

GPU4S Bench Multicore GPU: SYCL vs CUDA / NVIDIA Xavier

31

GPU4S Bench GPU Results on Xavier

32

Pedestrian Detection Results

33

15 FPS GOAL

High performance platformNVIDIA Xavier

Ported open source software from two safety critical domains to SYCL

GPU4S Bench from the aerospace domain

Pedestrian detection application from the automotive domain

Compared performance with implementations in other parallel programming

models, OpenMP and CUDA

Evaluated on a high performance and embedded multicore and GPU platform,

NVIDIA Xavier

Conclusions 1/2

34

Our work confirms that SYCL is a suitable programming model for safety critical

systems

the amount of code required for the SYCL version is less than the CUDA one

significantly less effort is required for SYCL code development

SYCL provides a less error prone abstraction for safety critical software

development

SYCL is portable among devices from different vendors

SYCL provides a good trade-off of programmability and obtained performance

We can confirm that the on-going work in Khronos for the definition of the Khronos

SYCL SC working group is a step towards the right direction

Conclusions 2/2

35

Compare with Intel’s DPC++ Compatibility Tool on the same software

Compare performance with Intel’s DPC++ SYCL implementation

Investigate why hipSYCL’s performance of the pedestrian detection application on

NVIDIA Xavier is not as competitive with CUDA as in the case of the high

performance platform

Compare performance and programmability with other high level programming

models such as OpenACC

Preliminary comparison results available in

https://upcommons.upc.edu/handle/2117/380697

Port ESA’s Open source OBPMark Applications and ML to SYCL

Explore the use of SYCL SC preview in the Horizon Europe METASAT project on a

RISC-V based open platform GPU

Open source multicore CPU and GPU

Future work

36

https://upcommons.upc.edu/handle/2117/380697

This work was funded by the Ministerio de Ciencia e Innovacion - Agencia Estatal

de Investigación (PID2019-107255GB-C21 and IJC-2020-045931-I

MCIN/AEI/10.13039/501100011033)

the European Commission’s Horizon 2020 programme under the UP2DATE

project (grant agreement 871465) and the HiPEAC Network of Excellence

Acknowledgments

37

Thank you!

Questions?

leonidas.kosmidis@bsc.es

Pedestrian Detection data flow graph

39

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

