The 11th International workshop on OpenCL and SYCL

IWOCL & SYCLCON 2023

Evaluation of SYCL Suitability for
High-Performance Critical Systems

Leonidas Kosmidis, Barcelona Supercomputing Center
(BSC) and Universitat Politecnica de Catalunya (UPC)

Co-authors: Cristina Peralta, Matina Maria Trompouki

April 18-20, 2023 | University of Cambridge, UK iwocl.org

Outline

(€ Introduction and Motivation

(€ Background

(€ Software Porting

(€ Experimental Setup

(€ Evaluation

(€ Conclusions and Future Work

‘-4--]

Introduction and‘l\/thifktio

({ Safety Critical systems
(€ used in avionics, automotive and aerospace industries
({ correct and timely execution is important
(€ any malfunction may be dangerous
(€ traditionally rely on very old and simple single core processors

(€ Cannot provide the performance required for new advanced
functionalities

== 1L = —
—"I

Need for hlgherma ce in Safety Critical System l !

Automotive Industry Examples:
({ Advanced Driving Assistance Systems (ADAS)

(€ Autonomous parking, heads-up (HUP) windshield displays and smart
mirrors

Avionics
(€ Automatic Taxi, Take-Off and Landing (ATTOL)

e B e ———————— i T =
—mm— | —— — —

Need for hlgherﬁ'echTrina ce in Safety Critical System S| ‘ T

Space:

C P-Sat-1
(ESA’s technology demonstration mission, launched in 2020
(€ Al accelerator, Intel Movidius Myriad 2

(€ First demonstration of Al for earth observation on
Hyperspectral Images

OPS-SAT-1
(ESA’s technology demonstration mission launched in 2019
(€ Intel/Altera Cyclone V SoC, Multicore CPU and FPGA

(€ Several High Performance Applications, including Al

Both ®-Sat-2 and OPS-SAT 2 are under development

o '——-——-‘—]—'L__f =S on—ee i e
e— e ——

Need for hlgherﬁ'echTrln ce in Safety Critical System S| ‘ T

(€ Legacy hardware used for safety critical systems cannot provide the
required performance

(€ Embedded Systems on Chip (SoC) with multicore and Graphics
Processing Units (GPUs) are

(€ designed to comply with safety critical functional safety standards
e.g. 1ISO 26262

({ very attractive candidate platforms for safety critical systems

dismcglnahon @ NVIDIA.

Need for high‘ Iev&p@ﬁmﬁga%_r '_

systems

(€ The adoption of multicore and GPU platforms in safety critical systems
require not only high performance but also ease of programmabilitv

(€ Automotive functionalities are assigned a criticality level 6

({ Automotive Safety Integrity Level (ASIL) «\((\'\“%

(€ Highest Criticality software (ASIL-D) need<” Q(o%(a,nm certain rules:
(€ Restricted use of Pointers a(a\\e\

(€ No dynamic memorv =" \e\©

(€ Static verifica*" . %\OJMm properties
. eu®

(Resili- N el L,

" \axed _pdgation

[1] Trompouki and Kosmidis, Brook Auto: High-Level Certification-Friendly Programming for GPU-powered Automotive
Systems, DAC 2018

7

Khronos Safety rltlc

penGL|&Y

OpenGL SC 1.0 - 2005
Fixed function graphics
safety critical subset

penGL|EJ —

OpenGL SC 2.0 - 2016
Shader programmable pipeline
safety critical subset

penGL[ES.——

OpenGLES 2.0 — 2007
Shader programmable pipeline
embedded sistems subset
Immediate mode removed

penGL|ES. —

OpenGLES 1.0 - 2003
Fixed function graphics
embedded sistems subset

penGL.

OpenGL 3.0 - 2009
Vertex and Fragment Shader
programmable pipeline
Immediate mode deprecated

penGL.

OpenGL 1.3 - 2001
Fixed function graphics
ARB assembly added
Immediate mode only

penGL.

OpenGL 2.0 — 2004
Vertex and Fragment Shader
programmas
ALMS assembly removed
Retained mode added

OpenvX Y

OpenVX 1.3 - 2019
&.Extension integrated lnto
core Upan D

OpenvX. —

OpenVX SC Extension - 2017
Graph-based vision and
inferencing

KHRCONOS

R CUP

(Vu likan.

Vulkan 1.0 — 2016
Explicit Graphics and Compute

GreL.

SYCL 2020
C++-based heterogeneous
parallel programming

e RILSC,

Vulkan SC 1.0 - 2022
Explicit Graphics, Compute
and Display safety-critical subget

GreLs

March 2023
SYCL SC WG Created

Objectives

(€ Evaluate the applicability of SYCL for programming safety critical
systems

({ Performance comparison with other parallel programming models on
a candidate embedded platform

(€ Assessment of programmability trade-offs

] —
-—'

High Performance §1@ Critical ¢ Software SEIE&En l l '

(€ Focus on two safety critical industries, aerospace and automotive
(€ The selected software needed to be:

(€ Computationally demanding

({ Representative of the respective domains

({ Already available in other parallel programming models

(€ Open Source in order to ensure reproducibility

(€ Only software complying with this requirements were previously
developed at BSC/UPC:

(GPU4S Bench/OBPMark Kernels - aerospace
(€ Pedestrian Detection Application - automotive

10

————

e — :;j—_—
GPUA4S Bench / Park Kernels -

(€ Developed during the ESA funded GPU4S
(GPU for Space) project coordinated by BSC

(€ Partnership with Airbus Defence and Space

({ Investigate the applicability of embedded
GPU for space missions

(€ Main focus

(€ Study the feasibility and potential
benefits of using embedded GPUs for
space applications

(€ Benchmark several embedded GPUs

(€ Implement a demonstrator of a space
case study on an embedded GPU

'—_'_—]—'_l_**_..

GPU4S Bench /Tﬁl?lark Kernels

(€ Lack of benchmarks for Space
(€ Proprietary code, export restrictions

(€ Lack of GPU benchmarks for critical systems

(€ Definition of an open source GPU Benchmark suite: GPU4S Bench [1]
(€ Building blocks from many domains identified in a space sw survey
(€ ESA GPL-3 compatible license, released together with OBPMark [2]
(€ Official Benchmarking suites of ESA for all types of new devices
({ Required to be used by new projects funded by ESA
(€ HIPEAC Technology Transfer Award 2021

[1] GPU4S Bench: Design and Implementation of an Open GPU Benchmarking Suite for Space On-board
Processing: https://www.ac.upc.edu/app/research-reports/public/html/research_center_index-CAP-2019.en.html
[2] OBPMark (On-Board Processing Benchmarks) — Open Source Computational Performance Benchmarks for
Space Applications, OBDP 2021, http://OBPMark.org 12

https://www.ac.upc.edu/app/research-reports/public/html/research_center_index-CAP-2019,en.html
http://obpmark.org/

(€ Identified building blocks and the domains they represent

Domains

Building Block

Compression

Vision Based Navigation

Image Processing

Neural Network Processing

Signal Processing

Fast Fourier Transform

GENEVIS

ADS-B, NGDSP

Finite Impulse Response Filter

ADS-B, NGDSP

Integer Wavelet Transform

CCSDS 122

Pairwise Orthogonal Transform

CCSDS 122

Predictor

CCSDS 123

Matrix computation

GENEVIS (Solver)

Image classification

Convolution Kernel OpenCV GO3S,GENEVIS Image classification
Correlation OpenCV GO3S,GENEVIS ADS-B
Max detection GO3S Image classification ADS-B
Synchronization mechanism GENEVIS EUCLID NIR, GO3S TensorFlow ADS-B, NGDSP
Memory Allocation CERES Solver, OpenCV EUCLID NIR, GO3S TensorFLow ADS-B, NGDSP

(€ Sequential reference version for functional verification
(€ 3 parallel versions: naive, optimised, vendor optimised libraries:

(€ Evaluate programmability: programming effort vs performance
(€ Implementations available in CUDA, OpenCL, HIP, OpenMP

13

- |

GPU4S Bench /WIYIark Kernels contrlbutlons in this or' 11

(€ Port benchmarks in SYCL

(€ Both SYCL Memory Models: Unified Shared Memory (USM) and
Buffers

(€ Naive and Optimised versions

(€ Same organization with existing GPU4S Bench ports in other parallel
programming models

(€ All programming models use the same program drivers and have
the same overhead

(€ Programming model section takes place at compile time
(€ Open source implementation [1]
(€ To be merged in the next GPU4S Bench / OBPMark Kernels release

[1] Cristina Peralta Quesada. GPU4S Bench SYCL Implementation: https://github.com/crispg95/GPU4S_Bench 14

https://github.com/crispq95/GPU4S_Bench

Pedestrian Det'e'»ctlén'

(€ Open Source application [1] developed at BSC/UPC
(€ Developed as Multi-CPU Multi-GPU benchmark for Automotive Systems [2]

(€ Original implementation achieved 88x times speedup over the sequential
version on a server class CPU

(€ Used 4 x86 CPUs and 2 GPUs

(€ Ported to an embedded platform (NVIDIA Xavier) and used as a research
use case and demonstrator in the UP2DATE H2020 project

BP? DATE

[1] M. M. Trompouki. 2013. Pedestrian Detection Source Code Repository.
https://github.com/mtrompouki/pedestrian_detection

[2] M. M. Trompouki, L. Kosmidis, and N. Navarro. An Open Benchmark Implementation for Multi-CPU Multi-GPU
Pedestrian Detection in Automotive Systems. ICCAD 2017

15

https://github.com/mtrompouki/pedestrian_detection

({ Pedestrian detection on camera images

(€ Necessary functionality required for automatic emergency breaking,
mandatory since 2022 in all vehicles sold in the European Union

(€ Implementation based on a classic vision algorithm (Viola-Jones method)
Instead of deep neural networks

({ Explainable, easier to be used in a certified context

(€ Original application [1][2] written in CUDA, hand optimized to achieve high
performance

[1] M. M. Trompouki. 2013. Pedestrian Detection Source Code Repository.
https://github.com/mtrompouki/pedestrian_detection

[2] M. M. Trompouki, L. Kosmidis, and N. Navarro. An Open Benchmark Implementation for Multi-CPU Multi-GPU
Pedestrian Detection in Automotive Systems. ICCAD 2017

16

https://github.com/mtrompouki/pedestrian_detection

il a

(€ Code ported in SYCL

(€ Implementations in both SYCL Memory Models: Unified Shared Memory
(USM) and Buffers

(€ 3 implementations
(€ Nalve
(€ In-order queues
(€ Out-of-order gueues
({ Code available as open source [1]
(€ Will be merged in the original repository

[17] Cristina Peralta Quesada. 2022. Pedestrian Detection in SYCL.
https://qgithub.com/crispq95/pedestrian _detector

17

https://github.com/crispq95/pedestrian_detector

Experimental SétUb ”

Two platforms
(€ A high performance platform
(€ Initial target
(€ Mainly for development
(€ Known to support SYCL
(€ An embedded GPU platform
(€ NVIDIA Xavier
(€ Candidate platform for safety critical systems
(€ Unknown support for SYCL at the beginning of the project

18

b == . - TS =

.-o‘: —

Experimental SétUb? ighPerform%ce Platform

Hardware
({ CPU: AMD Ryzen 7 1800 Eight-Core processor v T
(€ GPU: NVIDIA GeForce GTX 1080 Ti

Software

(€ Ubuntu 18.04.6 LTS

(€ CUDA, OpenCL, OpenMP

(€ hipSYCL v0.9.3 compiled from source

19

——mt—r ‘-——-——-— T — i——

mbedded Platform.. -] "‘

Experimental SétUb: E

NVIDIA Xavier

(€ 8-core Caramel ARM v8.2 64-bit CPU

(€ Volta GPU with 8 Streaming Multiprocessors

(€ 32 GB of memory

(€ 1SO 26262 ASIL-D Certified for use in automotive

(€ One of the target platforms for GPU4S project
(€ Main platform in H2020 UP2DATE project

20

Experimental SétUb: "

(€ Different Power Modes available

(€ Power budget limited to 15W due to thermal
dissipation limitations in space

({ Selected mode: Mode 2, 15W
({ Software:
(€ Ubuntu 18.04.6 LTS
(€ CUDA and OpenMP
(€ hipSYCL v0.9.3 compiled from source

(€ No differences w.r.t. high performance
platform setup

(€ No issues encountered

Power budget
Mode ID
Online CPU

CPU maximal
frequency (MHz)

GPU TPC

GPU maximal
frequency (MHz)

DLA cores

DLA maximal
frequency (MHz)

PVA cores

PVA maximal
frequency (MHz)

CVNAS maximal
frequency (MHz)

Memory maximal
frequency (MHz)

21

(€ SYCL Buffers

({ Easier to use when development starts from scratch

(€ No need for the programmer to worry about data transfers or
dependencies

(€ Low code complexity

(€ Important for safety critical systems certification
(€ Less LOC compared to USM
(€ Low performance compared to USM

(€ No programmability benefit for experienced programmers with low
level GPU programming models

22

(€ Unified Shared Memory (USM)
(€ Uses pointers and dynamic memory allocations
(€ their use is discouraged in safety critical systems

(€ Major advantage of USM compared to low-level GPU programming
models for safety critical systems

(€ Automatically computed indices eqg. in parallel _for constructs
(€ Correct-by-construction
(€ Reduces programming mistakes

(€ USM LOC similar to the lower level GPU programming models but
portable across architectures

(€ USM provides a good trade-off between performance and
programmability required for safety critical systems -

—

et e——— 11 o
GPU4S Bench Multicore GPU: SYCL vs OpenMP / High Performafice

Canwalutisn om

api

447

100 200 g0

T
[3
A &
5 H

H

Nathals [
14,0004
12,0004
10,000
€, 0004
&, 0004
4,000
2,000
0

T " " T

B B = 3

¥ g ¥ i T

E & = H

& Y] H

2 & 4

& 3 E

24

26

1T

Fiesuanbag

[

Fesuanbes

o WS IDAS M NS TIAS
: i
H
2
_ dIE 1048 NdI-8-10AS
euado Feiuedc
— 1T e e e e I A A S e e s
THER g g
4 — 2 .

937

d IWSN-1DAS Nd FWSN-TIAS
2
&
dIE 1048 NdI-8-10AS
Feiuedc
3 g o
o @]
5
(reguanbag Feguanbag
=)
d IWSN-10AS Nd NS TDAS
g i

dIE1DAS Md I8 1A

S
S
X
<
a
>
P
s
=
=
©
o
O
n
>
i
O
VI
V)]

.. = vod uad
U & [dlUBR0 dWUB0
ggggggeggggggg”
RHtHResyaameq
M (reguanbag Feguanbag
[
d IWSN-10AS Nd NS TDAS
i i
8
1 dIE 1048 NdI-8-10AS
- diusdcy Fdinuads
EETEEEE § 65 8 8 8888 °

GPU4S Bench Multicore

N~
r 2
¥ feguanbag
| -
e Hid I WEN-12A5 MdIANSMETIAS
. >] !
© :
x Hhdoa10A8 OB I0AS
A wiusto arnusdo
J—
P e e e M = —
[TEEEEEEEERE g8888
oo oo -
pr—
> -
t] Fieguanbag
=]
/
d WS I1DAS Nd WS TIAS
D 2
:
S " . -
O 8 8 § 8 8
) |2 & B8 Z g
, h 5
- e anba FrEguanba:
V % wsuanbag [EsuBnbeg
(C d WS 1DAS Nd NS TIAS
F]
” .“ A8 10AS NAOrB I0AS
u wusdo U0
CEEEEEEEREEEEE
5588888888¢88§§-+§8
REfNAEs Yoo mo
M.. Fresuanbag feguanbag
o
d WS 1DAS Nd NS TIAS
k
1 dOEI0AS OB I0AS
wiuedoy dwusds

258

2081

1581
Dy
5

Y
@)
(&
=
=
=
O
c
&)
m
)
4
=2
al
O

|
|
|

GPU4S Bench Multicore

h Performanceé S

g

SYCL vs CUDA / Hi

PU

Ecuna

Ml openAcT-aRU

[t

[2veL-usm-GRY
Sequensal

apl

Vv_m._:._m:uwm

1482

NAO-WSN-10AS

NdO-3-10A8

Sonmax

Nd9-Duedo

wand

vv_ﬂ_.:w:vwm

719

NA2-WS10AS

Ndr 81248

RELU

NdS-oousdo

I~
ﬂ |enusnbeg
[
- NAE-WSMFI0AS
m I e
H
FNde-oowuedo
)
IHEEEEEEEEER
[Ty]
3] Freguenbag
]
NAO-WST-10AS
]
H Nd9rg-T0AS
]
Nde-o0vusdo
wano
T T T T T T—1
¢REBESHEBBY RS

—
[{=]

Waieiet

15295

[Ty

FFT

28

rEuenkes

dO-WEMrTOAS

dO-g-T0AS

FNdS-aovuedo

rYand

FEgusnbeg

WS 10AS

98- 10AS

FNdE-2ovuedo

rvano

FEuenkeg

a w o B a &
o o L - -

r

8

= & a

@ L]] 2 2

r T T T T

& & & 2 2

dI-WSrTOAS

dO-g-0AS

FNde-aovusdo

r¥ana

[Heguanbeg

dO-WSM10AS

FNdE-2ovuedo

rvano

29

erer

=
4 BEL
§511
PN
G080 &
4 | _dGnns
C & HEEN
_ c Q
g —
: - (=] reuent e
m FNdS-HSNFIoAS
‘ b "
H]
O 5 ¥
(¥) m FAdSrg-T10AS
| -
1o
FNdoroouedo
4 — Fvana
——
AN A8
| R a w o B a &
g @ & & = B
== o f
ﬁ epusnbeag N

15295

NA2-WS10AS
[NAD-WSMHI0AS

Ndr 81248

RELU

rNdo-810AS

[Ty

NdS-oousdo
FNde-oovuedo

rvano

Enusnbeg

2327

1
© Henuenbes
™

|
|
|

NAS-WSMFEDAS FNdS-WSFTOAS

SYCL vs CUDA/ H

H NdSr8- 1048 z FNdera-T10As
5]
O
U Nd9-ooyuedo FNdg-oovuedo
DI - Fvana
i SHBEBYAE B BT &3
dHR2EIEER T @ & &
|
!
\ 9
| o eguanbag [Heguanbeg
3]
) NS WS DAS FNO-WSTr10AS
\]
H I FNdo-g-10As
8
I Ndo-ooyuedo FNd9-ooyuedo
— wano F¥ana
r T T T T T T T T T T | r T T
§Eg2278E888% & & &

GPU4S Bench Multicore

ler

3
X
<
0
>
Z
<
a
=
O
2
>
-
10
>
)

PU

GPU4S Bench Multicore

1415

| enuenbes

937

[R WSIEI2AS

98- TOAS

FYand

Fenwenbes

857

WS TIDAS

FEnUsAbeg

rRdO-WSNI0AS

-8 IAS

0/ —

140-
120
100
80
80
40
204

374

FYand

FEquanbag

RSO WSIIDAS

I8 TIAS

rYand

140

1204

100+
80
60
40
20
o

30

FEnuEnbeg
NAOWSTOAS
1
H
NdSra10As
Felano
I T T T T T T
[=} [=} [=} [=} [=] [=] [=] =]
2] 3 g 2 2 2
E E &] = =4
(Eguanbag
NAOWST-0AS
H
3
NdSra10As
Fang
r T T T T T T — 1
[=} [=} [=} [=} = = = =]
b g 3 g 2 8 2
E E &] 2 =
[Eyusnbeg
NAOWSOAS
H
H
Ndo-a10As
FYano
S s s e e S s s e S A
EE2s8=2888888888 8 °
5855888888888 3
ERCEEAE IR N - B
FEquanbag
NJOWST0AS
"
i
N4aora1o4s
FYano
S S e e . —
g 9§ 88 8F 8 E8 8BFR°
8 & § 8 g R

31

&
5
52 s
R
<hak
BB
FEEn
S
e tEnuanbeg
- — o
V = | eusnbeg
a o~ Fsrsn-oAs
1
IO WS TOAS
” Fnjeratass
— Ffao-a- 048
& T
— r T T T T T T
[=} [=} [=} [=} [=] [=] [=]
V & 8 & &8 &2 g2 =®
(Eguanbag
— I~
% FEnuenbas
n Fnfewsen-1oas
D o NSTI0AS B
o 3
a Frfera1oas
‘ ' ldO-8-TDAS
n T
> ke g & 8 8 = & =
8 8 8 g 8 8 =
S 85 & g5 = 2
C . [Eguenbeg
[Ty] RSN bes
<]
S Fnfewsen-1oas
O-WSNI0AS g
L] - m
H
' NP aT10A8
(RO TOAS
Fvino
Hano
e e e e . =
e =<1 EEEEEEEEEEEEEE
g §8 8 8 8 ¥ W gEsHgeerd e oo
<
[~ FEguanbag FEquanbag
[ap]
BD-WSNIDAS FNEDNSTI0AS
]
H f
8
o8- OAS FNEa10As
Hjano Fvino
g 8 8 &8 8 ¢ 2§ 82889888 8 748
I 8 s I AgeeIde

Y
@)
(&
=
=
=
O
c
&)
m
)
4
=
al
O

Execution time (ms)

5,500
5,000
4,500~
4,000
3,500

3,000

2,500
2,000~
1,500
1,000

500

1,600

1,400

£ 1,200
= 1,000
800-

600-

400-

- — .—. .

GPU4S Bench ¢ PU esults on Xavier

2,000~

1,800

Execution time (ms)

1024 2048 4096

Matrix Multiplication

FFT

THE

[CUDA-opt
[LIB CUDA
B SYCL USM

1048576

32

St B e —— L —

——C — —

e st — e~ — —

Pedestrian Detection i Results

Pedestrian Detector - FPS

NVIDIA Xavier High performance platform

api

5.0 [Final-CUDA
: 15 FPS GOAL & rinar-sve
a5 - B In Order-SycL
=27 144 1l Naive-SYCL
2.0 M sequential
12
3.5
3. 10
2. 8
2.
6,
1.
4-
1.
0. 27
0. — - m——

Final-CUDA-
Final-SYCL +
In Order-SYCL -
Naive-SYCL -
Sequential |
Final-CUDA-
Final-SYCL
In Order-SYCL -
Naive-SYCL -
Sequential -|

33

Conclusions

({ Ported open source software from two safety critical domains to SYCL
(GPU4S Bench from the aerospace domain
({ Pedestrian detection application from the automotive domain

(€ Compared performance with implementations in other parallel programming
models, OpenMP and CUDA

(€ Evaluated on a high performance and embedded multicore and GPU platform,
NVIDIA Xavier

34

Conclusions

(€ Our work confirms that SYCL is a suitable programming model for safety critical
systems

(€ the amount of code required for the SYCL version is less than the CUDA one
(significantly less effort is required for SYCL code development

(€ SYCL provides a less error prone abstraction for safety critical software
development

(SYCL is portable among devices from different vendors
(€ SYCL provides a good trade-off of programmability and obtained performance

(We can confirm that the on-going work in Khronos for the definition of the Khronos
SYCL SC working group is a step towards the right direction

35

Future work

(
(
(

(

(
(|

Compare with Intel’'s DPC++ Compatibility Tool on the same software
Compare performance with Intel's DPC++ SYCL implementation

Investigate why hipSYCL'’s performance of the pedestrian detection application on
NVIDIA Xavier is not as competitive with CUDA as in the case of the high
performance platform

Compare performance and programmability with other high level programming
models such as OpenACC

(€ Preliminary comparison results available in
https://upcommons.upc.edu/handle/2117/380697

Port ESA's Open source OBPMark Applications and ML to SYCL

Explore the use of SYCL SC preview in the Horizon Europe METASAT project on a
RISC-V based open platform GPU

(€ Open source multicore CPU and GPU

META

36

https://upcommons.upc.edu/handle/2117/380697

= ‘:'.,‘.:N_ ; -

Acknowledgmehts_ I

(€ This work was funded by the Ministerio de Ciencia e Innovacion - Agencia Estatal
de Investigacion (PID2019-107255GB-C21 and 1JC-2020-045931-I
MCIN/AEI/10.13039/501100011033)

(€ the European Commission’s Horizon 2020 programme under the UP2DATE
project (grant agreement 871465) and the HIPEAC Network of Excellence

BP? DATE

37

rian Det'e'-ctlon

CPU img loading

e1: image memcpy HtD

e2,e3,edebeb,el ed: init device memory (memset)
e9: computelntegralRowSYCL -- dev_imgint
e10: computelntegralColSY CL -- dev_imgint
e11: imgDotSquareSYCL

e12: computelntegralRowSYCL -- dev_imgSqint
e13: computelntegralColSYCL -- dev_imgSqgint
e14: imgCopy -- imgint_f

e15: imgCop - imgSqlnt:f

e16: subwindow_find_candidates kemnel

e17: k1_reduction kemel

e18: dev_position memset

e19: k2 kemel

€20: k3 kemel

e21: dev_finalNb memset

e22: print positions kernel

39

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

