
Towards Alignment of Parallelism in 
SYCL and ISO C++

John Pennycook, Intel Corporation

Ben Ashbaugh, James Brodman, Michael Kinsner, Steffen Larsen,
Greg Lueck, Roland Schulz, Michael Voss



IWOCL & SYCLcon 2023 2

Parallel Evolution of SYCL, ISO C++ and OpenCL

SYCL SYCL 
1.2

SYCL 
1.2.1

SYCL 
2020

C++ C++11 C++14 C++17 C++20

OpenCL OpenCL 
1.2

OpenCL 
2.0

OpenCL 
3.0

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Memory Model

Scoped Memory Model, Sub-groups, Group Functions 

Memory Model, CTAD, Algorithms

atomic_ref

Core Language, Kernels as Lambdas

Generalized Lambdas

ND-Range

Maintaining alignment between these specifications requires constant, ongoing effort!



IWOCL & SYCLcon 2023 3

Motivating Use-Case: Global Synchronization

template <size_t Dimensions>

void arrive_and_wait(size_t expected, sycl::group<Dimensions> wg, ...)

{

// Wait for all work-items in the group before signaling arrival

sycl::group_barrier(wg);

// Elect one work-item to synchronize with other groups

if (wg.leader()) {

// Signal that this group has arrived at the barrier

atomic_counter++;

// Spin while waiting for all groups to arrive

while (atomic_counter.load() != expected) {}

}

// Wait for the leader to finish synchronizing with other groups

sycl::group_barrier(wg);

}

Assumption 2:
Every work-group leader makes progress.

Assumption 1:
Leader of the work-group makes progress
while other work-items wait at second barrier.

Empirical evidence for support under “occupancy-bound execution” by Sorensen et al. on multiple GPUs 

Should this code work? Does it?



IWOCL & SYCLcon 2023 4

Motivating Use-Case: Sub-group Specialization

void produce(sycl::local_ptr<example::concurrent_queue> tasks)

{

if (sg.leader())

{

tasks->push(...);

}

...

}

void consume(sycl::local_ptr<example::concurrent_queue> tasks)

{

if (sg.leader())

{

work = tasks->pop();

}

foo(work);

...

}

Assumptions:
Leader of every sub-group makes 
progress, while other work-items wait 
at a barrier (not shown).

NB: Assumptions only relevant for
sub-groups in the same work-group

Empirical evidence for support of “warp specialization” by Bauer et al. on NVIDIA GPUs

Should this code work? Does it?



IWOCL & SYCLcon 2023 5

Forward Progress Guarantees in ISO C++

Guarantee Concurrent Parallel Weakly Parallel

Eventually executes its 
first step ✓  

Makes progress after 
executing its first step ✓ ✓ 

Mental Model
OS threads

Provided By
std::thread

Mental Model
Tasks

Provided By
par

Mental Model
≈Fibers?

Provided By
par_unseq



IWOCL & SYCLcon 2023 6

Forward Progress Guarantees in SYCL?

Guarantee
Work-item in 
parallel_for

Work-item in
ND-Range parallel_for

Eventually executes its 
first step  

Makes progress after 
executing its first step  

Makes progress when 
other work-items hit a 
barrier

N/A ?

SYCL 2020, Revision 6, Section 3.8.3.4:
“A SYCL implementation must execute work-items concurrently† and must ensure that the work-items in a group 
obey the semantics of group barriers, but are not required to provide any additional forward progress guarantees”

† Not “concurrent forward progress guarantees”!



IWOCL & SYCLcon 2023 7

thread with concurrent 
forward progress guarantees

“Blocking with Forward Progress Guarantee Delegation” 
in ISO C++

// Assume calling thread has concurrent forward progress guarantees
std::for_each(std::par_unseq, c.begin(), c.end(), [&](auto x)
{
... // Each invocation has weakly parallel forward progress guarantees

}); // Calling thread blocks with forward progress delegation

main

std::for_each

lambda

return

lambda

return

lambda

return

...

blocks on

at least one thread is temporarily strengthened to have 
concurrent forward progress guarantees 

multiple threads with weaker forward progress guarantees



IWOCL & SYCLcon 2023 8

Forward Progress Guarantees in SYCL (Revisited)

Guarantee
Work-item in 
parallel_for

Work-item in
ND-Range parallel_for

Eventually executes its 
first step  

Makes progress after 
executing its first step  

Makes progress when 
other work-items hit a 
barrier

N/A ✓

Proposed Fixes to Section 3.8.3.4:
1. “Each work-item ... is a separate thread of execution, providing at least weakly parallel forward progress guarantees.”
2. “When a work-item arrives at a group barrier acting on group G, implementations must eventually select and 

potentially strengthen another work-item in group G that has not yet arrived at the barrier.”



IWOCL & SYCLcon 2023 9

Hypothetical: SYCL Implemented with ISO C++

template <typename Kernel>
void handler::parallel_for(sycl::nd_range<1> ndr, Kernel f) {

std::vector<size_t> groups = { 1, 2, ..., ndr.get_group_range()[0] };
std::vector<size_t> items = { 1, 2, ..., ndr.get_local_range()[0] };

// Create a thread of execution providing parallel forward progress guarantees per work-group
std::for_each(std::execution::par, std::begin(groups), std::end(groups), [&](size_t group_id) {

// Create a thread of execution providing weakly parallel forward progress guarantees per work-item
std::for_each(std::execution::par_unseq, std::begin(items), std::end(items), [&](size_t item_id) {

// Invoke the user supplied kernel function object
sycl::nd_item<1> item = sycl::detail::make_nd_item<1>(group_id, item_id);
f(item);

});

});

}

Pseudocode of a hypothetical implementation for illustrative purposes only.

NB: Not all threads of execution 
are created at the same time.



IWOCL & SYCLcon 2023 10

New Mental Model: A Hierarchy of Threads

• The host has at least one thread and creates one thread per root-group.
• The root-group creates one thread per work-group.
• Each work-group creates one thread per sub-group.
• Each sub-group creates one thread per work-item.

Each thread blocks with forward progress guarantee delegation on its children.

Host

Work-Group

Sub-Group

Work-Item

Root-Group



IWOCL & SYCLcon 2023 11

New Mental Model: Mapping to OpenCL 1.x

ConcurrentHost

Work-Group Weakly Parallel

Sub-Group Weakly Parallel

Work-Item Weakly Parallel

Weakly ParallelRoot-Group

Each thread blocks with forward progress guarantee delegation on its children.

• At least one {root-group, work-group, sub-group, work-item} makes progress.
• Individual {root-group, work-group, sub-group, work-item}s have no guarantees.



IWOCL & SYCLcon 2023 12

New Mental Model: Mapping to OpenCL 2.x†

ConcurrentHost

Work-Group Weakly Parallel

Sub-Group Concurrent

Work-Item Weakly Parallel

Weakly ParallelRoot-Group

• At least one {root-group, work-group} makes progress.
• Every sub-group in an executing work-group makes progress.
• At least one work-item per sub-group makes progress.
• Individual {root-group, work-group, work-item}s have no guarantees.

† Assuming support for CL_DEVICE_SUB_GROUP_INDEPENDENT_FORWARD_PROGRESS.



IWOCL & SYCLcon 2023 13

Designing an Extension: High-Level Goals

Portability

ProductivityPerformanceEnable opt-in to 
strong guarantees to 
enable new algorithms

Give implementations 

flexibility, not additional 

implementation burden

Allow developers to 
reason about where 
code will run correctly

Re-use existing 
mechanisms for 
querying device 
capabilities

Don’t change the 
default behavior of 
existing SYCL programs

Let developers decide how 
to balance P3 trade-offs



IWOCL & SYCLcon 2023 14

Using the Extension: Declaring Requirements

struct MyKernel
{

// Kernel function calls arrive_and_wait
// (Other functionality omitted)
void operator()(sycl::nd_item<1> it) {

...
arrive_and_wait(num_work_groups, it.get_group());
...

}

// Kernel Properties: Declare requirements
auto get(sycl::properties_tag)
{

return sycl::properties { 
sycl::work_group_progress
<sycl::forward_progress_guarantee::concurrent,
sycl::execution_scope::root_group>

};
}

size_t num_work_groups;
};

Requirements are embedded in the kernel.

“At least one work-item in each work-group 
created by the same root-group must provide 
concurrent forward progress guarantees.”



IWOCL & SYCLcon 2023 15

Using the Extension: Submitting the Kernel

try {
// Kernel Launch: Attempt to use a fixed ND-range
auto range = sycl::nd_range<1>{num_wg * wg_size, wg_size};
q.parallel_for(range, MyKernel(num_wg));

}
catch (...)
{

// Fall back to an alternative kernel implementation
// or exit with an error

}

Requirements are extracted 
automatically from the kernel definition.

Implementation throws an exception if the 
requirements cannot be satisfied.



IWOCL & SYCLcon 2023 16

Using the Extension: Querying Support

// Device Queries: Check support for requirements
using query = sycl::info::device::forward_progress_guarantee

<sycl::forward_progress_guarantee::concurrent,
sycl::execution_scope::root_group>;

sycl::device dev = q.get_device();
auto capability = dev.get_info<query>();
if (capability >= sycl::forward_progress_guarantee::concurrent)
{

// Kernel Launch Queries: Determine valid ND-range size
using size_query = sycl::info::kernel::max_work_group_size;
using num_query = sycl::info::kernel::max_num_work_groups; 
auto bundle = sycl::get_kernel_bundle(q.get_context());
auto kernel = bundle.get_kernel<class MyKernel>();
auto wg_size = kernel.get_info<size_query>(q);
auto num_wg = kernel.get_info<num_query>(q, wg_size);

// Kernel Launch: Use results from queries
auto range = sycl::nd_range<1>{num_wg * wg_size, wg_size};
q.parallel_for(range, MyKernel(num_wg));

}
else { ... } // Fallback path as before (see previous slides)

Check for implementation-specific 
limits on the maximum work-group 
size and number of work-groups.

Check whether the device can 
satisfy the requirements at all.



IWOCL & SYCLcon 2023 17

Summary

▪We’ve bridged the gap between SYCL and C++17 parallelism

• Fixed underdefined aspects of SYCL by reusing proven terminology/concepts

• Defined a way to reason about hierarchical forward progress guarantees

• Proposed new features to state assumptions/requirements and query support

▪Ongoing effort to maintain alignment and influence other standards

• Explore interaction between ND-range kernels and std::execution

• Apply our learnings to OpenCL, SPIR-V, Vulkan

• Feedback welcome at https://github.com/intel/llvm/pull/7598

https://github.com/intel/llvm/pull/7598


IWOCL & SYCLcon 2023 18

Disclaimers & Notices

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its 
subsidiaries. Other names and brands may be claimed as the property of others.

Khronos® is a registered trademark and SYCL™ and SPIR™ are trademarks of The Khronos Group Inc.

Code included in this presentation is licensed subject to the Zero-Clause BSD open source license (0BSD), 
https://opensource.org/licenses/0BSD

https://opensource.org/licenses/0BSD


19


