
Stellar Mergers with HPX-Kokkos and SYCL:
Methods of using an Asynchronous Many-Task
Runtime System with SYCL

Gregor Daiß, University of Stuttgart

Patrick Diehl, Hartmut Kaiser and Dirk Pflüger

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX and SYCL

What is HPX?

• Asynchronous, Distributed Many-Task Runtime System

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 2 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX and SYCL

What is HPX?

• Asynchronous, Distributed Many-Task Runtime System

• Asynchronous: Build task graph using futures and
continuations (then, when_all) hpx::future<void> fut1 =

 hpx::async([](){...});

hpx::future<void> fut2 =
 fut1.then([](){...});

Compute Node 1
(HPX locality 1)

Task 1

Task 3

Task 2

hpx::future<void> futX =
 when_all(fut1, fut2);

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 2 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX and SYCL

What is HPX?

• Asynchronous, Distributed Many-Task Runtime System

• Asynchronous: Build task graph using futures and
continuations (then, when_all)

• Distributed: Task graph across compute nodes (remote
function calls , HPX channels, multiple backends available)

Compute Node 2
(HPX locality 2)

Task 4

Compute Node 1
(HPX locality 1)

Task 1

Task 3

Task 2

Task 4

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 2 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX and SYCL

What is HPX?

• Asynchronous, Distributed Many-Task Runtime System

• Asynchronous: Build task graph using futures and
continuations (then, when_all)

• Distributed: Task graph across compute nodes (remote
function calls , HPX channels, multiple backends available)

• Many Tasks: Few HPX worker threads (one per core)
working on millions of lightweight (suspendable) HPX tasks

Compute Node 2
(HPX locality 2)

Task 4

Compute Node 1
(HPX locality 1)

Task 1

Task 3

Task 2

Task 4

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 2 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX and SYCL

Why combine HPX with SYCL?

Compute Node 2
(HPX locality 2)

Task 4

SYCL
1

SYCL
2

?

?

Compute Node 1
(HPX locality 1)

Task 1

Task 3

Task 2

Task 4

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 3 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX and SYCL

Why combine HPX with SYCL?

• More choices: SYCL for HPX applications, HPX for
distributed SYCL applications (instead of MPI)

• Better integrations: Better integration of HPX with other
libraries that use SYCL (Kokkos)

• More efficiency: Complement strengths

Compute Node 2
(HPX locality 2)

Task 4

SYCL
1

SYCL
2

?

?

Compute Node 1
(HPX locality 1)

Task 1

Task 3

Task 2

Task 4

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 3 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX and SYCL

Why combine HPX with SYCL?

• More choices: SYCL for HPX applications, HPX for
distributed SYCL applications (instead of MPI)

• Better integrations: Better integration of HPX with other
libraries that use SYCL (Kokkos)

• More efficiency: Complement strengths

How to combine HPX with SYCL?

• The problem: Integrate task-graphs asynchronously and
efficiently

→ No active waiting (no event.wait()) Avoid barriers /
blocking of worker threads

→ Overhead?

Compute Node 2
(HPX locality 2)

Task 4

SYCL
1

event.wait()

fut4.then

SYCL
2

Compute Node 1
(HPX locality 1)

Task 1

Task 3

Task 2

Task 4

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 3 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX-SYCL Integration Basics

How to combine HPX with SYCL?

• We have: SYCL events to check if asynchronous SYCL
actions are done

• We need: HPX futures to check if asynchronous SYCL
actions are done

• Get an HPX future from a SYCL event without actively
waiting or blocking the thread

sycl::event

submitted running completed

hpx::future<T>

not ready ready

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 4 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX-SYCL Integration Basics

How to combine HPX with SYCL?

• We have: SYCL events to check if asynchronous SYCL
actions are done

• We need: HPX futures to check if asynchronous SYCL
actions are done

• Get an HPX future from a SYCL event without actively
waiting or blocking the thread

• HPX scheduler takes care of the rest (triggering
continuations)

sycl::event

submitted running completed

hpx::future<T>

not ready ready

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 4 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX-SYCL Integration Basics

How to combine HPX with SYCL?

• We have: SYCL events to check if asynchronous SYCL
actions are done

• We need: HPX futures to check if asynchronous SYCL
actions are done

• Get an HPX future from a SYCL event without actively
waiting or blocking the thread

• HPX scheduler takes care of the rest (triggering
continuations)

TODOs for integration

• Add specialization for HPX future_data

• Add callback mechanism that is called when the SYCL
event is completed

• Use it to set the future to ready

sycl::event

submitted running completed

hpx::future<T>

not ready ready

future_data set_data()TODO callback

TODO Should trigger callback

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 4 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX-SYCL Integration Variant 1: Using SYCL host_tasks

Use SYCL host_tasks as callback mechanism

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 5 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX-SYCL Integration Variant 1: Using SYCL host_tasks

Use SYCL host_tasks as callback mechanism

• Advantages:
• Easiest way to implement the HPX-SYCL integration

• Disadvantages:
• host_tasks not executed by HPX workers
→ Overhead/contention problem?

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 5 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX-SYCL Integration Variant 1: Using SYCL host_tasks

Use SYCL host_tasks as callback mechanism

• Advantages:
• Easiest way to implement the HPX-SYCL integration

• Disadvantages:
• host_tasks not executed by HPX workers
→ Overhead/contention problem?

sycl::event

submitted running completed

hpx::future

not ready ready

future_data set_data()host_task

submit host_task

sycl_eventsycl_queue

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 5 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX-SYCL Integration Variant 1: Using SYCL host_tasks

Use SYCL host_tasks as callback mechanism

• Advantages:
• Easiest way to implement the HPX-SYCL integration

• Disadvantages:
• host_tasks not executed by HPX workers
→ Overhead/contention problem?

Create Callback during future_data creation

sycl_queue.submit ([fdp =
hpx:: intrusive_ptr <future_data >(
this),
sycl_event](cl::sycl:: handler& h) {

h.depends_on(sycl_event);

h.host_task ([fdp]() {

fdp -> set_data (hpx::util:: unused); });
});

sycl::event

submitted running completed

hpx::future

not ready ready

future_data set_data()host_task

submit host_task

sycl_eventsycl_queue

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 5 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX-SYCL Integration Variant 2: Using Event Polling

Event polling within the HPX scheduler

• Store event-callback pairs in HPX scheduler

• Worker threads poll events in-between tasks
and invoke callbacks

• Only one thread polls (others skip if mutex is
already locked)

• Use concurrent queue for adding and
mutex-protected vector for later checking

 HPX Scheduler

 HPX Application
 hpx::future (not ready)

get_future(event)
 hpx::future (ready)

 SYCL Event

fut.set_data()

poll poll poll

 SYCL Command Group (Kernel) event status now complete

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 6 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX-SYCL Integration Variant 2: Using Event Polling

Event polling within the HPX scheduler

• Store event-callback pairs in HPX scheduler

• Worker threads poll events in-between tasks
and invoke callbacks

• Only one thread polls (others skip if mutex is
already locked)

• Use concurrent queue for adding and
mutex-protected vector for later checking

Advantages

• HPX worker run callbacks themselves→ One
threadpool

• Works with SYCL implementations that do not
yet support host_tasks

 HPX Scheduler

 HPX Application
 hpx::future (not ready)

get_future(event)
 hpx::future (ready)

 SYCL Event

fut.set_data()

poll poll poll

 SYCL Command Group (Kernel) event status now complete

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 6 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX-SYCL Integration Variant 2: Using Event Polling

Event polling within the HPX scheduler

• Store event-callback pairs in HPX scheduler

• Worker threads poll events in-between tasks
and invoke callbacks

• Only one thread polls (others skip if mutex is
already locked)

• Use concurrent queue for adding and
mutex-protected vector for later checking

Advantages

• HPX worker run callbacks themselves→ One
threadpool

• Works with SYCL implementations that do not
yet support host_tasks

 HPX Scheduler

 HPX Application
 hpx::future (not ready)

get_future(event)
 hpx::future (ready)

 SYCL Event

fut.set_data()

poll poll poll

 SYCL Command Group (Kernel) event status now complete

Disadvantages

• Requires additions to the HPX scheduler

• Event creations, deletions and polling can cause overheads

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 6 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX-SYCL Integration: Basic Usage and get_future

Dummy SYCL kernel/task

sycl::event my_event = queue.submit ([&](sycl:: handler& h) {

/* insert SYCL dependencies */
h.parallel_for(num_items , [=](auto i) {

/* insert numeric code here */ });/
});

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 7 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX-SYCL Integration: Basic Usage and get_future

Dummy SYCL kernel/task

sycl::event my_event = queue.submit ([&](sycl:: handler& h) {

/* insert SYCL dependencies */
h.parallel_for(num_items , [=](auto i) {

/* insert numeric code here */ });/
});Call HPX-SYCL integration

hpx::future <void > my_future =

hpx::sycl:: experimental :: detail :: get_future(my_event);

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 7 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX-SYCL Integration: Basic Usage and get_future

Dummy SYCL kernel/task

sycl::event my_event = queue.submit ([&](sycl:: handler& h) {

/* insert SYCL dependencies */
h.parallel_for(num_items , [=](auto i) {

/* insert numeric code here */ });/
});Call HPX-SYCL integration

hpx::future <void > my_future =

hpx::sycl:: experimental :: detail :: get_future(my_event);

Add HPX continuation asynchronously

hpx::future <void > continuation_future =

my_future.then ([](auto&& fut) { /* insert CPU work ,communication ,... */});

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 7 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX-SYCL Integration: Basic Usage and get_future

Dummy SYCL kernel/task

sycl::event my_event = queue.submit ([&](sycl:: handler& h) {

/* insert SYCL dependencies */
h.parallel_for(num_items , [=](auto i) {

/* insert numeric code here */ });/
});Call HPX-SYCL integration

hpx::future <void > my_future =

hpx::sycl:: experimental :: detail :: get_future(my_event);

Add HPX continuation asynchronously

hpx::future <void > continuation_future =

my_future.then ([](auto&& fut) { /* insert CPU work ,communication ,... */});

Suspend calling HPX task until everything is done

continuation_future. get ()

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 7 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

HPX-SYCL Integration: HPX-SYCL Executor with hpx::async

Use HPX-SYCL Executor for convenience

• Wrapper for in-order SYCL queues

• Allows passing SYCL queue functions directly to hpx::async

Use HPX-SYCL Executor for convenience

hpx::sycl:: experimental :: sycl_executor
exec(sycl:: default_selector {});

auto fut = hpx::async(exec,

&sycl::queue ::submit , [&](sycl:: handler& h) {
/* insert buffer accessesors */
h.parallel_for(num_items , [=](auto i) {
/* insert numeric code here */ });

});

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 8 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Scientific Application as a Benchmark: Octo-Tiger

Octo-Tiger: Overview

• Simulation of interacting binary star systems and
stellar mergers
• Double white dwarf mergers
• Contact binary v1309 and its merger
• R Coronae Borealis stars

• Intended for large scale, distributed runs
• Previous runs: Cori, Piz Daint, Summit
• Current target: Perlmutter

• Based on the HPX runtime

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 9 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Scientific Application as a Benchmark: Octo-Tiger

Octo-Tiger: Overview

• Simulation of interacting binary star systems and
stellar mergers
• Double white dwarf mergers
• Contact binary v1309 and its merger
• R Coronae Borealis stars

• Intended for large scale, distributed runs
• Previous runs: Cori, Piz Daint, Summit
• Current target: Perlmutter

• Based on the HPX runtime

Octo-Tiger as an HPX-SYCL Benchmark

• All major solvers are implemented with Kokkos

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 9 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Scientific Application as a Benchmark: Octo-Tiger

Octo-Tiger: Overview

• Simulation of interacting binary star systems and
stellar mergers
• Double white dwarf mergers
• Contact binary v1309 and its merger
• R Coronae Borealis stars

• Intended for large scale, distributed runs
• Previous runs: Cori, Piz Daint, Summit
• Current target: Perlmutter

• Based on the HPX runtime

Octo-Tiger as an HPX-SYCL Benchmark

• All major solvers are implemented with Kokkos

• Kokkos supports various CPU/GPU execution and
memory spaces (CUDA, HIP, HPX and SYCL spaces
available)

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 9 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Scientific Application as a Benchmark: Octo-Tiger

Octo-Tiger: Overview

• Simulation of interacting binary star systems and
stellar mergers
• Double white dwarf mergers
• Contact binary v1309 and its merger
• R Coronae Borealis stars

• Intended for large scale, distributed runs
• Previous runs: Cori, Piz Daint, Summit
• Current target: Perlmutter

• Based on the HPX runtime

Octo-Tiger as an HPX-SYCL Benchmark

• All major solvers are implemented with Kokkos

• Kokkos supports various CPU/GPU execution and
memory spaces (CUDA, HIP, HPX and SYCL spaces
available)

• Kokkos kernels can run a SYCL execution space

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 9 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Scientific Application as a Benchmark: Octo-Tiger

Octo-Tiger: Overview

• Simulation of interacting binary star systems and
stellar mergers
• Double white dwarf mergers
• Contact binary v1309 and its merger
• R Coronae Borealis stars

• Intended for large scale, distributed runs
• Previous runs: Cori, Piz Daint, Summit
• Current target: Perlmutter

• Based on the HPX runtime

Octo-Tiger as an HPX-SYCL Benchmark

• All major solvers are implemented with Kokkos

• Kokkos supports various CPU/GPU execution and
memory spaces (CUDA, HIP, HPX and SYCL spaces
available)

• Kokkos kernels can run a SYCL execution space

• HPX-SYCL integration→ non-blocking HPX
futures for Kokkos kernels running on the SYCL
space

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 9 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Octo-Tiger: Datastructure and Solvers

Self-gravitating astrophysical fluids

• Inviscid Euler equations (Hydro)→ Finite Volumes

• Newtonian Gravity (Gravity)→ Fast Multipole Method

From [1]

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 10 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Octo-Tiger: Datastructure and Solvers

Self-gravitating astrophysical fluids

• Inviscid Euler equations (Hydro)→ Finite Volumes

• Newtonian Gravity (Gravity)→ Fast Multipole Method

• Adaptive Mesh Refinement (AMR)

• Octree refined to maximize resolution for the atmosphere between
the stars

• Entire sub-grid in each tree-node

From [1]

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 10 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Octo-Tiger: Datastructure and Solvers

Self-gravitating astrophysical fluids

• Inviscid Euler equations (Hydro)→ Finite Volumes

• Newtonian Gravity (Gravity)→ Fast Multipole Method

• Adaptive Mesh Refinement (AMR)

• Octree refined to maximize resolution for the atmosphere between
the stars

• Entire sub-grid in each tree-node

Kokkos Compute Kernels:

• Solvers traverse the tree, calling compute kernels on each
sub-grid individually

• Each Kokkos kernel works on one sub-grid with many concurrent
kernels being launched

From [1]

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 10 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Octo-Tiger: Datastructure and Solvers

Self-gravitating astrophysical fluids

• Inviscid Euler equations (Hydro)→ Finite Volumes

• Newtonian Gravity (Gravity)→ Fast Multipole Method

• Adaptive Mesh Refinement (AMR)

• Octree refined to maximize resolution for the atmosphere between
the stars

• Entire sub-grid in each tree-node

Kokkos Compute Kernels:

• Solvers traverse the tree, calling compute kernels on each
sub-grid individually

• Each Kokkos kernel works on one sub-grid with many concurrent
kernels being launched

• Even small scenarios contains thousands of kernel launches
within < 250ms→ good stress test

• Not launching enough kernels in parallel can cause starvation
(smallish kernels) From [1]

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 10 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Octo-Tiger: Execution Model

DAG of Compute Kernels

• HPX and Kokkos integrations exist

• Get futures for Kokkos kernels using HPX-Kokkos
compatibility library (by calling get_future
specializations within HPX)

• HPX-Kokkos only works for supported execution
spaces (previously the CUDA, HIP and HPX spaces)

• Run individual Kokkos kernels either on a CPU (HPX)
or GPU execution space

when_all(...)

shared_f2.then

f1.then

HPX
Task 2

Kokkos
Kernel 1

Kokkos
Kernel 5

HPX
Task 6

Kokkos
Kernel 3

HPX
Task 4

Kokkos
kernel 7

Adapted from [2]

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 11 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Octo-Tiger: Execution Model

DAG of Compute Kernels

• HPX and Kokkos integrations exist

• Get futures for Kokkos kernels using HPX-Kokkos
compatibility library (by calling get_future
specializations within HPX)

• HPX-Kokkos only works for supported execution
spaces (previously the CUDA, HIP and HPX spaces)

• Run individual Kokkos kernels either on a CPU (HPX)
or GPU execution space

Kernel CPU Execution:

• Kernel gets split into HPX tasks

• Kernel gets instantiated with appropriate SIMD types

Kernel GPU Execution:

• SIMD template types get instantiated with scalar types

• Run on GPU execution space (CUDA, HIP, SYCL?)

when_all(...)

shared_f2.then

f1.then

HPX
Task 2

Kokkos
Kernel 1

Kokkos
Kernel 5

HPX
Task 6

Kokkos
Kernel 3

HPX
Task 4

Kokkos
kernel 7

Adapted from [2]

HPX
Application

(Octo-
Tiger)

SYCL Execution
Space

HPX Execution
Space

Task 1

Task N

Tile 1

Tile M
...

Scalar Types

Scalar Types

SIMD Types

SIMD Types

SIMD Types
Parallelization

Split Kernel into Compute blocks via Kokkos

Launch
Kokkos Kernel
from arbitrary

thread

Receive HPX future
that will be ready

when the kernel is
finished

Run on HPX worker
threads

Launch Kernel asynchronously

CPU Execution

GPU Execution

Adapt to target
CPU via types

...

Use scalar instan-
tiation for GPU

Kokkos
HPX-Kokkos

executor

Application + HPX Kokkos + HPX Kokkos SIMD
std::simd

HPX-SYCL
Integration

Adapted from [3]

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 11 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Octo-Tiger: Execution Model

DAG of Compute Kernels

• HPX and Kokkos integrations exist

• Get futures for Kokkos kernels using HPX-Kokkos
compatibility library (by calling get_future
specializations within HPX)

• HPX-Kokkos only works for supported execution
spaces (previously the CUDA, HIP and HPX spaces)

• Run individual Kokkos kernels either on a CPU (HPX)
or GPU execution space

Kernel CPU Execution:

• Kernel gets split into HPX tasks

• Kernel gets instantiated with appropriate SIMD types

Kernel GPU Execution:

• SIMD template types get instantiated with scalar types

• Run on GPU execution space (CUDA, HIP, SYCL?)

when_all(...)

shared_f2.then

f1.then

HPX
Task 2

SYCL
Execution

Space

SYCL
Execution

Space

HPX
Task 6

SYCL
Execution

Space

HPX
Task 4 SYCL

Execution
Space

Adapted from [2]

HPX
Application

(Octo-
Tiger)

SYCL Execution
Space

HPX Execution
Space

Task 1

Task N

Tile 1

Tile M
...

Scalar Types

Scalar Types

SIMD Types

SIMD Types

SIMD Types
Parallelization

Split Kernel into Compute blocks via Kokkos

Launch
Kokkos Kernel
from arbitrary

thread

Receive HPX future
that will be ready

when the kernel is
finished

Run on HPX worker
threads

Launch Kernel asynchronously

CPU Execution

GPU Execution

Adapt to target
CPU via types

...

Use scalar instan-
tiation for GPU

Kokkos
HPX-Kokkos

executor

Application + HPX Kokkos + HPX Kokkos SIMD
std::simd

HPX-SYCL
Integration

Adapted from [3]

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 11 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Required (SYCL-related) Software Additions for Octo-Tiger and its Dependencies

• HPX:
• Changes: Implemented both presented HPX-SYCL integration variants
• PR: https://github.com/STEllAR-GROUP/hpx/pull/6085

• HPX-Kokkos:
• Purpose: Compatibility layer for HPX and Kokkos. Allows treating Kokkos kernels as HPX tasks IF the get_future

functionality exists for the underlying execution space.
• Changes: Plug in the HPX-SYCL get_future call. Add deep_copy_async overload using the SYCL event directly
• PR: https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13

• CPPuddle:
• Purpose: Memory and executor utility library for task-based programming. Provides memory recycling allocators
• Changes: Add allocators for SYCL memory pools on the device
• PR: https://github.com/SC-SGS/CPPuddle/pull/15

• Octo-Tiger:
• Changes: Use correct SYCL execution space and memory allocators
• PR: https://github.com/STEllAR-GROUP/octotiger/pull/432

• Kokkos:
• Already contained SYCL execution and memory space
• Required changes: Some CMake additions to allow using the SYCL execution space on AMD GPUs
• Optional optimization: Removing internal execution space barriers for in-order queues
• PR: Not yet upstreamed

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 12 / 17

https://github.com/STEllAR-GROUP/hpx/pull/6085
https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13
https://github.com/SC-SGS/CPPuddle/pull/15
https://github.com/STEllAR-GROUP/octotiger/pull/432

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Required (SYCL-related) Software Additions for Octo-Tiger and its Dependencies

• HPX:
• Changes: Implemented both presented HPX-SYCL integration variants
• PR: https://github.com/STEllAR-GROUP/hpx/pull/6085

• HPX-Kokkos:
• Purpose: Compatibility layer for HPX and Kokkos. Allows treating Kokkos kernels as HPX tasks IF the get_future

functionality exists for the underlying execution space.
• Changes: Plug in the HPX-SYCL get_future call. Add deep_copy_async overload using the SYCL event directly
• PR: https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13

• CPPuddle:
• Purpose: Memory and executor utility library for task-based programming. Provides memory recycling allocators
• Changes: Add allocators for SYCL memory pools on the device
• PR: https://github.com/SC-SGS/CPPuddle/pull/15

• Octo-Tiger:
• Changes: Use correct SYCL execution space and memory allocators
• PR: https://github.com/STEllAR-GROUP/octotiger/pull/432

• Kokkos:
• Already contained SYCL execution and memory space
• Required changes: Some CMake additions to allow using the SYCL execution space on AMD GPUs
• Optional optimization: Removing internal execution space barriers for in-order queues
• PR: Not yet upstreamed

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 12 / 17

https://github.com/STEllAR-GROUP/hpx/pull/6085
https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13
https://github.com/SC-SGS/CPPuddle/pull/15
https://github.com/STEllAR-GROUP/octotiger/pull/432

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Required (SYCL-related) Software Additions for Octo-Tiger and its Dependencies

• HPX:
• Changes: Implemented both presented HPX-SYCL integration variants
• PR: https://github.com/STEllAR-GROUP/hpx/pull/6085

• HPX-Kokkos:
• Purpose: Compatibility layer for HPX and Kokkos. Allows treating Kokkos kernels as HPX tasks IF the get_future

functionality exists for the underlying execution space.
• Changes: Plug in the HPX-SYCL get_future call. Add deep_copy_async overload using the SYCL event directly
• PR: https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13

• CPPuddle:
• Purpose: Memory and executor utility library for task-based programming. Provides memory recycling allocators
• Changes: Add allocators for SYCL memory pools on the device
• PR: https://github.com/SC-SGS/CPPuddle/pull/15

• Octo-Tiger:
• Changes: Use correct SYCL execution space and memory allocators
• PR: https://github.com/STEllAR-GROUP/octotiger/pull/432

• Kokkos:
• Already contained SYCL execution and memory space
• Required changes: Some CMake additions to allow using the SYCL execution space on AMD GPUs
• Optional optimization: Removing internal execution space barriers for in-order queues
• PR: Not yet upstreamed

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 12 / 17

https://github.com/STEllAR-GROUP/hpx/pull/6085
https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13
https://github.com/SC-SGS/CPPuddle/pull/15
https://github.com/STEllAR-GROUP/octotiger/pull/432

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Required (SYCL-related) Software Additions for Octo-Tiger and its Dependencies

• HPX:
• Changes: Implemented both presented HPX-SYCL integration variants
• PR: https://github.com/STEllAR-GROUP/hpx/pull/6085

• HPX-Kokkos:
• Purpose: Compatibility layer for HPX and Kokkos. Allows treating Kokkos kernels as HPX tasks IF the get_future

functionality exists for the underlying execution space.
• Changes: Plug in the HPX-SYCL get_future call. Add deep_copy_async overload using the SYCL event directly
• PR: https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13

• CPPuddle:
• Purpose: Memory and executor utility library for task-based programming. Provides memory recycling allocators
• Changes: Add allocators for SYCL memory pools on the device
• PR: https://github.com/SC-SGS/CPPuddle/pull/15

• Octo-Tiger:
• Changes: Use correct SYCL execution space and memory allocators
• PR: https://github.com/STEllAR-GROUP/octotiger/pull/432

• Kokkos:
• Already contained SYCL execution and memory space
• Required changes: Some CMake additions to allow using the SYCL execution space on AMD GPUs
• Optional optimization: Removing internal execution space barriers for in-order queues
• PR: Not yet upstreamed

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 12 / 17

https://github.com/STEllAR-GROUP/hpx/pull/6085
https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13
https://github.com/SC-SGS/CPPuddle/pull/15
https://github.com/STEllAR-GROUP/octotiger/pull/432

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Required (SYCL-related) Software Additions for Octo-Tiger and its Dependencies

• HPX:
• Changes: Implemented both presented HPX-SYCL integration variants
• PR: https://github.com/STEllAR-GROUP/hpx/pull/6085

• HPX-Kokkos:
• Purpose: Compatibility layer for HPX and Kokkos. Allows treating Kokkos kernels as HPX tasks IF the get_future

functionality exists for the underlying execution space.
• Changes: Plug in the HPX-SYCL get_future call. Add deep_copy_async overload using the SYCL event directly
• PR: https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13

• CPPuddle:
• Purpose: Memory and executor utility library for task-based programming. Provides memory recycling allocators
• Changes: Add allocators for SYCL memory pools on the device
• PR: https://github.com/SC-SGS/CPPuddle/pull/15

• Octo-Tiger:
• Changes: Use correct SYCL execution space and memory allocators
• PR: https://github.com/STEllAR-GROUP/octotiger/pull/432

• Kokkos:
• Already contained SYCL execution and memory space
• Required changes: Some CMake additions to allow using the SYCL execution space on AMD GPUs
• Optional optimization: Removing internal execution space barriers for in-order queues
• PR: Not yet upstreamed

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 12 / 17

https://github.com/STEllAR-GROUP/hpx/pull/6085
https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13
https://github.com/SC-SGS/CPPuddle/pull/15
https://github.com/STEllAR-GROUP/octotiger/pull/432

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Experiment Setup

Scenario Size, Number of Kernel Calls per Time-Step

Grid parameters GPU metrics per time-step

Sub-grid size Overall number of cells Number of (leaf) sub-grids Kernel calls CPU-GPU data transfers

83 (512) 262144 512 7680 15360

Scenario

• Goal: Evaluate performance with and without the
HPX-SYCL integration turned on

• Use patch to turn of the integration by inserting event
wait commands and returning ready futures

• Vary number of HPX worker threads (steers
contention)

• Simple Node-Level Hydro-Only Scenario:
Sedov-Taylor Blast Wave

• Using Intel DPC++/OneAPI

Hardware

• NVIDIA® GPU node
• CPU: Intel® Xeon® Platinum 8358 CPU
• NVIDIA A100 GPU

• AMD® GPU node
• CPU: AMD EPYC™ 7H12 CPU.
• GPU: AMD MI100 GPU

• Use best combination of performance
parameters for each node (number of
concurrent GPU executors, dynamic work
aggregation limit)

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 13 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Results: Host Task Integration

1 2 4 8 16 32
Number HPX Worker Threads [log]

1060

282

1243

117
100

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the (host task) HPX-SYCL Integration

 (Using 32 GPU executors, with up to 8 kernels aggregated)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

0.2
0.4
0.6
0.8
1.0
1.2

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.17x 1.10x
0.93x

0.73x
0.48x

0.33x
HPX-SYCL ON Speedup (w.r.t to OFF)

(a) A100: Best combinations

1 2 4 8 16 32
Number HPX Worker Threads [log]

1314

244

1466

213

100

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the (host task) HPX-SYCL Integration

 (Using 8 GPU executors, with up to 32 kernels aggregated)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

0.2
0.4
0.6
0.8
1.0
1.2

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.12x 1.10x 1.11x 1.00x
0.85x 0.87x

HPX-SYCL ON Speedup (w.r.t to OFF)

(b) MI100: Best combinations

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 14 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Results: Host Task Integration

1 2 4 8 16 32
Number HPX Worker Threads [log]

1060

282

1243

117
100

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the (host task) HPX-SYCL Integration

 (Using 32 GPU executors, with up to 8 kernels aggregated)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

0.2
0.4
0.6
0.8
1.0
1.2

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.17x 1.10x
0.93x

0.73x
0.48x

0.33x
HPX-SYCL ON Speedup (w.r.t to OFF)

(a) A100: Best combinations

1 2 4 8 16 32
Number HPX Worker Threads [log]

1314

244

1466

213

100

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the (host task) HPX-SYCL Integration

 (Using 8 GPU executors, with up to 32 kernels aggregated)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

0.2
0.4
0.6
0.8
1.0
1.2

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.12x 1.10x 1.11x 1.00x
0.85x 0.87x

HPX-SYCL ON Speedup (w.r.t to OFF)

(b) MI100: Best combinations

→ Runtime degrades when using the host_task-based HPX-SYCL integration (at least when using all CPU cores)

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 14 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Results: Event Polling Integration

1 2 4 8 16 32
Number HPX Worker Threads [log]

1047

562

308

183

125
107Ti

m
e-

pe
r-t

im
es

te
p

in
 m

s [
lo

g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the HPX-SYCL Integration

 (Using 32 GPU executors and aggregate up to 8 kernels per launch)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

1.0
1.2
1.4

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.19x 1.21x 1.16x 1.16x 1.09x 1.11x

HPX-SYCL ON Speedup (w.r.t to OFF)

(a) A100: Best combinations

1 2 4 8 16 32
Number HPX Worker Threads [log]

1314

733

421

308

213
182

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the HPX-SYCL Integration

 (Using 8 GPU executors and aggregate up to 32 kernels per launch)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

1.0
1.2
1.4

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.10x 1.12x 1.18x 1.11x 1.09x 1.15x

HPX-SYCL ON Speedup (w.r.t to OFF)

(b) MI100: Best combinations

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 15 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Results: Event Polling Integration

1 2 4 8 16 32
Number HPX Worker Threads [log]

1047

562

308

183

125
107Ti

m
e-

pe
r-t

im
es

te
p

in
 m

s [
lo

g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the HPX-SYCL Integration

 (Using 32 GPU executors and aggregate up to 8 kernels per launch)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

1.0
1.2
1.4

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.19x 1.21x 1.16x 1.16x 1.09x 1.11x

HPX-SYCL ON Speedup (w.r.t to OFF)

(a) A100: Best combinations

1 2 4 8 16 32
Number HPX Worker Threads [log]

1314

733

421

308

213
182

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the HPX-SYCL Integration

 (Using 8 GPU executors and aggregate up to 32 kernels per launch)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

1.0
1.2
1.4

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.10x 1.12x 1.18x 1.11x 1.09x 1.15x

HPX-SYCL ON Speedup (w.r.t to OFF)

(b) MI100: Best combinations

→ Runtime consistently improves when using the event polling HPX-SYCL integration (even for this small scenario)

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 15 / 17

Introduction Integrating HPX and SYCL Scientific Application as a Benchmark: Octo-Tiger Results with Octo-Tiger Conclusion

Conclusion

Conclusion

• Developed HPX-SYCL integration allowing us to treat SYCL events as HPX tasks

• Adapted entire Octo-Tiger software stack for SYCL to benchmark the integration(s)

• Event polling integration performs better than (DPC++) host tasks integration

• Integration is beneficial (over synchronous execution without it), even when just running simple, single-node
scenarios

• Software stack is still experimental, lots of potential for optimizations

Outlook

• Intel GPUs?

• Integration speedup with distributed runs?

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Daiß 16 / 17

Thank you for your attention!

D. Pfander, G. Daiß, D. Marcello, H. Kaiser, and D. Pflüger, “Accelerating Octo-Tiger: Stellar mergers on Intel
Knights Landing with HPX,” in Proceedings of the International Workshop on OpenCL, ser. IWOCL ’18. New
York, NY, USA: ACM, 2018, pp. 19:1–19:8.

G. Daiß et al. (video presentation) hips 2021: Beyond fork-join: Integration of performance portable kokkos
kernels with hpx. Youtube. [Online]. Available: https://www.youtube.com/watch?v=CQaA9AYlm1I

G. Daiß, S. Singanaboina, P. Diehl, H. Kaiser, and D. Pflüger, “From merging frameworks to merging stars:
Experiences using hpx, kokkos and simd types,” in 2022 IEEE/ACM 7th International Workshop on Extreme
Scale Programming Models and Middleware (ESPM2). Los Alamitos, CA, USA: IEEE Computer Society, nov
2022, pp. 10–19. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/ESPM256814.2022.00007

https://www.youtube.com/watch?v=CQaA9AYlm1I
https://doi.ieeecomputersociety.org/10.1109/ESPM256814.2022.00007

Performance using various execution spaces:

0 200 400 600
Time-per-timestep in ms

CUDA:
32 HPX worker threads

128 GPU executors
4 Max aggregation

KOKKOS_SYCL:
32 HPX worker threads

32 GPU executors
8 Max aggregation

KOKKOS CUDA:
32 HPX worker threads

64 GPU executors
8 Max aggregation

KOKKOS CPU-only :
32 HPX worker threads

 explicit SIMD

LEGACY CPU:
32 HPX worker threads
autovectorization only

Co
m

pu
te

 b
ac

ke
nd

 93 ms

 107 ms

 112 ms

 280 ms

 509 ms

(a) Best runs on the NVIDIA A100

0 200 400 600
Time-per-timestep in ms

KOKKOS HIP:
32 HPX worker threads

128 GPU executors
32 Max aggregation

HIP:
32 HPX worker threads

16 GPU executors
16 Max aggregation

KOKKOS_SYCL:
32 HPX worker threads

8 GPU executors
32 Max aggregation

KOKKOS CPU-only :
32 HPX worker threads

 explicit SIMD

LEGACY CPU:
32 HPX worker threads
autovectorization only

Co
m

pu
te

 b
ac

ke
nd

 167 ms

 169 ms

 182 ms

 275 ms

 531 ms

(b) Best runs on the AMD MI100

Speedup when removing barriers within Kokkos for in-order queues:

1 2 4 8 16 32
Number HPX Worker Threads [log]

1047

562

308

183

125
107Ti

m
e-

pe
r-t

im
es

te
p

in
 m

s [
lo

g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the Kokkos patch

 (Using 32 GPU executors and aggregate up to 8 kernels per launch)
Time-per-timestep without Kokkos fence patch
Time-per-timestep with Kokkos fence patch

1.0
1.2
1.4 Ko

kk
os

 P
at

ch
 S

pe
ed

up

1.17x 1.22x 1.17x 1.19x 1.14x 1.12x

Kokkos Patch Speedup

(a) A100: Best combinations

1 2 4 8 16 32
Number HPX Worker Threads [log]

1314

733

421

308

213
182

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the Kokkos patch

 (Using 8 GPU executors and aggregate up to 32 kernels per launch)
Time-per-timestep without Kokkos fence patch
Time-per-timestep with Kokkos fence patch

1.0
1.2
1.4 Ko

kk
os

 P
at

ch
 S

pe
ed

up

1.07x 1.08x 1.12x 1.09x 1.11x 1.06x

Kokkos Patch Speedup

(b) MI100: Best combinations

Event polling integration: Runtime with varying number of executors

1 2 4 8 16 32 64 128
Number GPU Executors [log]

773

528

377

304
263251

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the HPX-SYCL Integration

 (Using 32 HPX worker threads, without dynamic work aggregation)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

1.0
1.2
1.4

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.00x
1.17x

1.28x
1.12x 1.07x 1.01x 1.00x 1.01x

HPX-SYCL ON Speedup (w.r.t to OFF)

(a) A100: Increasing Number of GPU executors

1 2 4 8 16 32 64 128
Number GPU Executors [log]

1589

1236

994
935
901

600

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the HPX-SYCL Integration

 (Using 32 HPX worker threads, without dynamic work aggregation
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

1.0
1.2
1.4

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.00x 1.10x 1.14x 1.10x 1.03x 1.04x 0.99x 1.00x

HPX-SYCL ON Speedup (w.r.t to OFF)

(b) MI100: Increasing Number of GPU executors

Event polling integration: Runtime with varying number of aggregated kernels

1 2 4 8 16 32 64
Number Max Aggregation [log]

773

434

262

203
181
161

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the HPX-SYCL Integration

 (Using 32 HPX worker threads and 1 GPU executor)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

1.0
1.2
1.4

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.00x 1.03x
1.16x 1.23x 1.17x 1.16x 1.19x

HPX-SYCL ON Speedup (w.r.t to OFF)

(c) A100: Increasing number of kernels aggregated

1 2 4 8 16 32 64
Number Max Aggregation [log]

1589

851

499

322

243
216

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the HPX-SYCL Integration

 (Using 32 HPX worker threads and 1 GPU executor)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

1.0
1.2
1.4

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.00x 1.05x
1.20x

1.39x 1.33x 1.26x 1.23x

HPX-SYCL ON Speedup (w.r.t to OFF)

(d) MI100: Increasing number of kernels aggregated

	Introduction
	Integrating HPX and SYCL
	Scientific Application as a Benchmark: Octo-Tiger
	Results with Octo-Tiger
	Conclusion

