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HPX and SYCL

e Asynchronous, Distributed Many-Task Runtime System
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Introduction @O

HPX and SYCL

e Asynchronous, Distributed Many-Task Runtime System

e Asynchronous: Build task graph using futures and
continuations (then, when_all)

Compute Node 1
(HPX locality 1)

Task 1 [€ormmmrrmemnreees

hpx::future<void> futl

hpx::async ([] ()

... h

hpx::future<void> fut2

futl.then([] () {...

b

hpx::future<void> futX

when_all (futl,

fut2) ;
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Introduction @O

HPX and SYCL

e Asynchronous, Distributed Many-Task Runtime System Compute Node 1 Compute Node 2
e Asynchronous: Build task graph using futures and (HPX locality 1) (HPX locality 2)
continuations (then, when_all)
- Task 1 Task 4
o Distributed: Task graph across compute nodes (remote as as
function calls , HPX channels, multiple backends available) \
Task 2

Gregor DaiB
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Introduction @O

HPX and SYCL

e Asynchronous, Distributed Many-Task Runtime System Compute Node 1 Compute Node 2

e Asynchronous: Build task graph using futures and (HPX locality 1) (HPX locality 2)
continuations (then, when_all)

o Distributed: Task graph across compute nodes (remote
function calls , HPX channels, multiple backends available) \

o Many Tasks: Few HPX worker threads (one per core)
working on millions of lightweight (suspendable) HPX tasks

Task 1 Task 4

Task 2
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Introduction O@

HPX and SYCL

Why combine HPX with SYCL?

Compute Node 1 Compute Node 2
(HPX locality 1) (HPX locality 2)
Task 1 Task 4 2
SYCL
Task 2 1
SYCL
2
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Introduction O@

HPX and SYCL

Why combine HPX with SYCL?

e More choices: SYCL for HPX applications, HPX for Compute Node 1 Compute Node 2
distributed SYCL applications (instead of MPI) (HPX locality 1) (HPX locality 2)
o Better integrations: Better integration of HPX with other
libraries that use SYCL (Kokkos) R Task4] =
o More efficiency: Complement strengths \ SYCL
Task 2 1
SYCL
2
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Introduction O@

HPX and SYC

Why combine HPX with SYCL?

e More choices: SYCL for HPX applications, HPX for Compute Node 1 Compute Node 2
distributed SYCL applications (instead of MPI) (HPX locality 1) (HPX locality 2)

o Better integrations: Better integration of HPX with other Task 1
libraries that use SYCL (Kokkos) ® Task 4} fucd.chen

o More efficiency: Complement strengths \ éu\;CL

Task 2 1
How to combine HPX with SYCL?

e The problem: Integrate task-graphs asynchronously and SYcCL
efficiently 2
— No active waiting (no event.wait ()) Avoid barriers /
blocking of worker threads Task 3 A e
— Overhead?

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB



How to combine HPX with SYCL?

e We have: SYCL events to check if asynchronous SYCL

g sycl::event
actions are done

[d

e We need: HPX futures to check if asynchronous SYCL

1 submitted H running |—> completed

actions are done
e Get an HPX future from a SYCL event without actively

waiting or blocking the thread :
*11 not ready

hpx::future<T>

ready
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How to combine HPX with SYCL?

e We have: SYCL events to check if asynchronous SYCL

g sycl::event
actions are done

[d

e We need: HPX futures to check if asynchronous SYCL

4 submitted H running |—> completed

actions are done
e Get an HPX future from a SYCL event without actively

waiting or blocking the thread :
*11 not ready

e HPX scheduler takes care of the rest (triggering
continuations) hpx::future<T>

ready
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How to combine HPX with SYCL?

e We have: SYCL events to check if asynchronous SYCL sycl:event

actions are done

e We need: HPX futures to check if asynchronous SYCL
actions are done

[d

1 submitted H running |—> completed

Topo Should trigger callback

e Get an HPX future from a SYCL event without actively

waiting or blocking the thread
d 9 o not ready [-----------m-emmeeme e A > ready

e HPX scheduler takes care of the rest (triggering
continuations) hpx::future<T> T

TODOs for integration

e Add specialization for HPX future_data

e Add callback mechanism that is called when the SYCL
event is completed

future_data Tono callback —set_data()

e Use it to set the future to ready
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Integrating HPX and SYC

L Integration Variant 1: Using SYCL host_tasks
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Integrating HPX and sycL. O@OQOO
HPX-SYCL Integration Variant 1: Using SYCL host_tasks

Use SYCL host_tasks as callback mechanism

e Advantages:
Easiest way to implement the HPX-SYCL integration
e Disadvantages:

host_tasks not executed by HPX workers
— Overhead/contention problem?
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Integrating HPX and sycL O@OOO

HPX-SYCL Integration Variant 1: Using SYCL host_tasks

Use SYCL host_tasks as callback me

e Advantages:
Easiest way to implement the HPX-SYCL integration

Disadvantages:
y . submitted|—>| running |—>completed

host_tasks not executed by HPX workers
— Overhead/contention problem?
sycl_queue sycl_event

!
submit host_task }—j not ready |-~/ > ready

hpx::future T

future_data host_task ——>{set_data()

sycl::event

Gregor DaiB
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Integrating HPX and sycL O@OOO

HPX-SYCL Integration Variant 1: Using SYCL host_tasks

Use SYCL host_tasks as callback mechanism

e Advantages:
Easiest way to implement the HPX-SYCL integration
e Disadvantages:

host_tasks not executed by HPX workers
— Overhead/contention problem?

Create Callback during future_data creation

sycl_queue.submit ([fdp =
hpx::intrusive_ptr <future_data>(
this),
sycl_event](cl::sycl::handler& h) {

h.depends_on(sycl_event) ;
h.host_task ([fdpl () {
fdp-> set_data (hpx::util::unused); 1});
b

sycl::event
submitted|—>| running |—>completed
sycl_queue sycl_event

submit host_task }—j not ready |-~/ > ready

hpx::future T

future_data host_task ——>{set_data()
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Integrating HPX and sycL OO@®OO

HPX-SYCL Integration Variant 2: Using Event Polling

e HPX scheduler

HPX Application
o Store event-callback pairs in HPX scheduler hpx::future (not ready) | hpx::future (ready)

get_future (event) >
o Worker threads poll events in-between tasks |
and invoke callbacks RS chedilley

e Only one thread polls (others skip if mutex is
already locked)

fut.set_data()

poll [l poll poll

SYCL Event

e Use concurrent queue for adding and
mutex-protected vector for later checking

SYCL Command Group (Kernel)

event status now complete
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Integrating HPX and sycL OO@®OO

HPX-SYCL Integration Variant 2: Using Event Polling

Event polling within the HPX scheduler

e Store event-callback pairs in HPX scheduler

o Worker threads poll events in-between tasks
and invoke callbacks

e Only one thread polls (others skip if mutex is
already locked)

e Use concurrent queue for adding and
mutex-protected vector for later checking

Advantages

e HPX worker run callbacks themselves — One
threadpool

e Works with SYCL implementations that do not
yet support host_tasks

HPX Application

hpx::future (not ready) hpx::future (ready)

get_future (event)

\ 4

HPX Scheduler

poll

SYCL Event

SYCL Command Group (Kernel)

fut.set_data()

poll poll

event status now complete
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Integrating HPX and sycL OO@®OO

HPX-SYCL Integration Variant 2: Using Event Polling

Event polling within the HPX scheduler
HPX Application
L

Store event-callback pairs in HPX scheduler priivii (e ieEtl) | R ((EEGE)

get_future (event) >

o Worker threads poll events in-between tasks |

and invoke callbacks RS chedilley fut.set_data()
e Only one thread polls (others skip if mutex is po11 Ml po11 poll

already locked) SYEL R
e Use concurrent queue for adding and

mutex-protected vector for later checking

)

SYCL Command Group (Kernel

oGS ]

e HPX worker run callbacks themselves — One

threadpool .
. . . Disadvantages
e Works with SYCL implementations that do not

yet support host_tasks e Requires additions to the HPX scheduler
e Event creations, deletions and polling can cause overheads

event status now complete
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Integrating HPX and sycL OOO@O
HPX-SYCL Integration: Basic Usage and get_future

Dummy SYCL kernel/task

sycl::event my_event = queue.submit ([&] (sycl::handler& h) {

h.parallel_for (num_items, [=](auto i) {
});/
1)
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Integrating HPX and sycL OOO@O
HPX-SYCL Integration: Basic Usage and get_future

Dummy SYCL kernel/task

sycl::event my_event = queue.submit ([&] (sycl::handler& h) {

h.parallel_for (num_items, [=](auto i) {

b/
Call HPX-SYCL integration

hpx::future<void> my_future =

hpx::sycl::experimental::detail:: get_future(my_event);
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Integrating HPX and sycL OOO@O
HPX-SYCL Integration: Basic Usage and get_future

Dummy SYCL kernel/task

sycl::event my_event = queue.submit ([&] (sycl::handler& h) {

/* insert SYCL dependencies */
h.parallel_for (num_items, [=](auto i) {
/* insert numeric code here */ });/

Call HPX-SYCL integration

hpx::future<void> my_future =

hpx::sycl::experimental::detail:: get_future(my_event);

Add HPX continuation asynchronously

hpx::future<void> continuation_future =

my_future.then ([](auto&& fut) { /* insert CPU work,communication,... */});
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Integrating HPX and sycL OOO@O
HPX-SYCL Integration: Basic Usage and get_future

Dummy SYCL kernel/task

sycl::event my_event = queue.submit ([&] (sycl::handler& h) {

/* insert SYCL dependencies */
h.parallel_for (num_items, [=](Cauto i) {
/* insert numeric code here */ });/

Call HPX-SYCL integration

hpx::future<void> my_future =

hpx::sycl::experimental::detail:: get_future(my_event);

Add HPX continuation asynchronously

hpx::future<void> continuation_future =

my_future.then ([](auto&& fut) { /* insert CPU work,communication,... */});

Suspend calling HPX task until everything is done

continuation_future. get ()
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Integrating HPX and sycL. OOOO®
HPX-SYCL Integration: HPX-SYCL Executor with hpx: :async

Use HPX-SYCL Executor for convenience

e Wrapper for in-order SYCL queues

e Allows passing SYCL queue functions directly to hpx::async

Use HPX-SYCL Executor for convenience

hpx::sycl::experimental::sycl_executor
exec(sycl::default_selector{});

auto fut = hpx::async(exec,

&sycl::queue::submit, [&](sycl::handler& h) {

h.parallel_for (num_items, [=](auto i) {

5

g
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Scientific Application as a Benchmark: Octo-Tiger .OOO

Scientific Application as a Benchmark: Octo-Tiger

iger: Overview

e Simulation of interacting binary star systems and
stellar mergers

Double white dwarf mergers
Contact binary v1309 and its merger
R Coronae Borealis stars

e Intended for large scale, distributed runs Octo-Tiger

Previous runs: Cori, Piz Daint, Summit
Current target: Perlmutter

e Based on the HPX runtime
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Scientific Application as a Benchmark: Octo-Tiger .OOO

Scientific Application as a Benchmark: Octo-Tiger

Octo-Tiger: Overview

e Simulation of interacting binary star systems and
stellar mergers

Double white dwarf mergers
Contact binary v1309 and its merger
R Coronae Borealis stars

e Intended for large scale, distributed runs Octo-Tiger

Previous runs: Cori, Piz Daint, Summit
Current target: Perlmutter

e Based on the HPX runtime

Octo-Tiger as an HPX-SYCL Benchmark

e All major solvers are implemented with Kokkos
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Scientific Application as a Benchmark: Octo-Tiger .OOO

Scientific Application as a Benchmark: Octo-Tiger

Octo-Tiger: Overview

e Simulation of interacting binary star systems and
stellar mergers

Double white dwarf mergers
Contact binary v1309 and its merger
R Coronae Borealis stars

e Intended for large scale, distributed runs Octo-Tiger

Previous runs: Cori, Piz Daint, Summit
Current target: Perlmutter

e Based on the HPX runtime

Octo-Tiger as an HPX-SYCL Benchmark

e All major solvers are implemented with Kokkos

e Kokkos supports various CPU/GPU execution and
memory spaces (CUDA, HIP, HPX and SYCL spaces
available)
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Scientific Application as a Benchmark: Octo-Tiger

Octo-Tiger: Overview

e Simulation of interacting binary star systems and
stellar mergers

Double white dwarf mergers
Contact binary v1309 and its merger
R Coronae Borealis stars

e Intended for large scale, distributed runs Octo-Tiger

Previous runs: Cori, Piz Daint, Summit
Current target: Perlmutter

e Based on the HPX runtime

Octo-Tiger as an HPX-SYCL Benchmark

e All major solvers are implemented with Kokkos

e Kokkos supports various CPU/GPU execution and
memory spaces (CUDA, HIP, HPX and SYCL spaces
available)

e Kokkos kernels can run a SYCL execution space
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Scientific Application as a Benchmark: Octo-Tiger .OOO

Scientific Application as a Benchmark: Octo-Tiger

Octo-Tiger: Overview

e Simulation of interacting binary star systems and
stellar mergers

Double white dwarf mergers
Contact binary v1309 and its merger
R Coronae Borealis stars

e Intended for large scale, distributed runs Octo-Tiger

Previous runs: Cori, Piz Daint, Summit
Current target: Perlmutter

e Based on the HPX runtime

Octo-Tiger as an HPX-SYCL Benchmark

e All major solvers are implemented with Kokkos

e Kokkos supports various CPU/GPU execution and
memory spaces (CUDA, HIP, HPX and SYCL spaces
available)

e Kokkos kernels can run a SYCL execution space

e HPX-SYCL integration — non-blocking HPX
futures for Kokkos kernels running on the SYCL
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Scientific Application as a Benchmark: Octo-Tiger 0.00
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Scientific Application as a Benchmark: Octo-Tiger 0.00

Octo-Tiger: Datastructure and Solvers

Self-gravitating astrophysical fluids

e Inviscid Euler equations (Hydro) — Finite Volumes
e Newtonian Gravity (Gravity) — Fast Multipole Method
Adaptive Mesh Refinement (AMR)

Octree refined to maximize resolution for the atmosphere between
the stars

Entire sub-grid in each tree-node

From [1]
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Scientific Application as a Benchmark: Octo-Tiger 0.00

Octo-Tiger: Datastructure and Solvers

Self-gravitating astrophysical fluids

e Inviscid Euler equations (Hydro) — Finite Volumes
e Newtonian Gravity (Gravity) — Fast Multipole Method
o Adaptive Mesh Refinement (AMR)

e Octree refined to maximize resolution for the atmosphere between
the stars

Entire sub-grid in each tree-node

Kokkos Compute Kernels:

e Solvers traverse the tree, calling compute kernels on each
sub-grid individually

e Each Kokkos kernel works on one sub-grid with many concurrent
kernels being launched

From [1]

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB



Scientific Application as a Benchmark: Octo-Tiger 0.00

Octo-Tiger: Datastructure and Solvers

Self-gravitating astrophysical fluids

o Inviscid Euler equations (Hydro) — Finite Volumes

e Newtonian Gravity (Gravity) — Fast Multipole Method
o Adaptive Mesh Refinement (AMR)

e Octree refined to maximize resolution for the atmosphere between
the stars

Entire sub-grid in each tree-node

Kokkos Compute Kernels:

e Solvers traverse the tree, calling compute kernels on each
sub-grid individually

e Each Kokkos kernel works on one sub-grid with many concurrent
kernels being launched

e Even small scenarios contains thousands of kernel launches
within < 250ms — good stress test

e Not launching enough kernels in parallel can cause starvation
(smallish kernels) From [1]
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Scientific Application as a Benchmark: Octo-Tiger O0.0

Octo-Tiger: Execution Model

DAG of Compute Kernels
Kokkos

e HPX and Kokkos integrations exist Kemelt
e Get futures for Kokkos kernels using HPX-Kokkos
compatibility library (by calling get_future
specializations within HPX)
o HPX-Kokkos only works for supported execution T::i(z
spaces (previously the CUDA, HIP and HPX spaces)

e Run individual Kokkos kernels either on a CPU (HPX)
or GPU execution space

fl.then

shared f2.then

Adapted from [2]

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL

Kokkos
Kernel 3

HPX
Task 4

Kokkos
Kernel 5

HPX
Task 6
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Scientific Application as a Benchmark: Octo-Tiger O0.0

Octo-Tiger: Execution Model

AG of Com Kernel
G of Compute Kernels Kokkos £1.then Kokkos
—>

o HPX and Kokkos integrations exist Kemel 1 Kemel 3
e Get futures for Kokkos kernels using HPX-Kokkos HPX
e A a Task 4
compatibility library (by calling get_future W
specializations within HPX) Kokkos kernel 7

I
HPX Kernel 5

o HPX-Kokkos only works for supported execution shared f2.then

. Task 2
spaces (previously the CUDA, HIP and HPX spaces) —
e Run individual Kokkos kernels either on a CPU (HPX) Task 6
or GPU execution space Adapted from [2]
Launch Kernel asynchronously | Split Kernel into Compute blocks via Kokkos SIMD Types
Parallelization
Kernel CPU Execution: {"Launch 1| GPU Execution [>Tile o >Scalar Types |
iKokkos Kernel SYCL Execution 11|;M Scalar Type:
.. fi bits el S e Y
o Kernel gets split into HPX tasks read Soace jse scaiar instan. |
. . . . g EE— ! itiation for GPU__ |
o Kernel gets instantiated with appropriate SIMD types woiaion] syl | xsctor Kokkos e
(Tom). Integration
iger T —. HPX Execution
- vl oo roady
Kernel GPU Execution: | when the kernel is Run on HPX worker} | | Adapt to target
; finished CPU Execution i threads i| i CPU via types
i 1 T Application + HPX Kokkos + HPX Kokkos SIMD
e SIMD template types get instantiated with scalar types IR ks okkos Sl
e Run on GPU execution space (CUDA, HIP, SYCL?) Adapted from [3]
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Scientific Application as a Benchmark: Octo-Tiger O0.0

Octo-Tiger: Execution Model

AG of Compute Kernels

e HPX and Kokkos integrations exist S Space
e Get futures for Kokkos kernels using HPX-Kokkos HPX
compatibility library (by calling get_future e sveL
specializations within HPX) svcL e
. > Fxecution
o HPX-Kokkos only works for supported execution 12:;(2 shared £2.then | Space
spaces (previously the CUDA, HIP and HPX spaces) —
e Run individual Kokkos kernels either on a CPU (HPX) Task 6
or GPU execution space Adapted from 2]
Launch Kernel asynchronously | Split Kernel into Compute blocks via Kokkos SIMD Types
Parallelization
Kernel CPU Execution: {"Launch 1| GPU Execution [>Tile o >Scalar Types |
o Kernel gets split into HPX tasks o | thread Space jse scaiar instan. |
" 9 n " ———>1ipx- : lation for GPU__ |
o Kernel gets instantiated with appropriate SIMD types woiaion] syl | xsctor Kokkos
(oce Integration
iger) T HPX Execution
: et o raady
Kernel GPU Execution: { when the kernel is Run on HPX worker} | | Adapt to target
i finished CPU Execution i threads i| i CPU via types
e SIMD template types get instantiated with scalar types Lzt iR baiEs b Kooz St
e Run on GPU execution space (CUDA, HIP, SYCL?) Adapted from [3]
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introduction OO Integrating HPxX and svyc. OOOOO  scientific Application as a Benchmark: Octo-Tiger OOO®  Results with Octo-Tiger OO0 conclusion OO

Required (SYCL-related) Software Additions for Octo-Tiger and its Dependencies

o HPX:

Changes: Implemented both presented HPX-SYCL integration variants
PR: https://github.com/STE11AR-GROUP/hpx/pull/6085
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https://github.com/SC-SGS/CPPuddle/pull/15
https://github.com/STEllAR-GROUP/octotiger/pull/432

introduction OO Integrating HPxX and svyc. OOOOO  scientific Application as a Benchmark: Octo-Tiger OOO®  Results with Octo-Tiger OO0 conclusion OO

Required (SYCL-related) Software Additions for Octo-Tiger and its Dependencies

e HPX:
Changes: Implemented both presented HPX-SYCL integration variants
PR: https://github.com/STE11AR- GROUP/hpx/pull/6085

o HPX-Kokkos:
Purpose: Compatibility layer for HPX and Kokkos. Allows treating Kokkos kernels as HPX tasks IF the get_future
functionality exists for the underlying execution space.
Changes: Plug in the HPX-SYCL get_future call. Add deep_copy_async overload using the SYCL event directly
PR: https://github.com/STE11AR- GROUP/hpx-kokkos/pull/13
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introduction OO Integrating HPxX and svyc. OOOOO  scientific Application as a Benchmark: Octo-Tiger OOO®  Results with Octo-Tiger OO0 conclusion OO

Required (SYCL-related) Software Additions for Octo-Tiger and its Dependencies

o HPX:

Changes: Implemented both presented HPX-SYCL integration variants
PR: https://github.com/STE11AR-GROUP/hpx/pull/6085

o HPX-Kokkos:
Purpose: Compatibility layer for HPX and Kokkos. Allows treating Kokkos kernels as HPX tasks IF the get_future
functionality exists for the underlying execution space.
Changes: Plug in the HPX-SYCL get_future call. Add deep_copy_async overload using the SYCL event directly
PR: https://github.com/STE11AR- GROUP/hpx-kokkos/pull/13

e CPPuddle:
Purpose: Memory and executor utility library for task-based programming. Provides memory recycling allocators
Changes: Add allocators for SYCL memory pools on the device
PR: https://github.com/SC-SGS/CPPuddle/pull/15
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Required (SYCL-related) Software Additions for Octo-Tiger and its Dependencies

e HPX:
Changes: Implemented both presented HPX-SYCL integration variants
PR: https://github.com/STE11AR-GROUP/hpx/pull/6085

o HPX-Kokkos:

Purpose: Compatibility layer for HPX and Kokkos. Allows treating Kokkos kernels as HPX tasks IF the get_future
functionality exists for the underlying execution space.

Changes: Plug in the HPX-SYCL get_future call. Add deep_copy_async overload using the SYCL event directly
PR: https://github.com/STE11AR- GROUP/hpx-kokkos/pull/13

e CPPuddle:
Purpose: Memory and executor utility library for task-based programming. Provides memory recycling allocators
Changes: Add allocators for SYCL memory pools on the device
PR: https://github.com/SC-SGS/CPPuddle/pull/15

e Octo-Tiger:

Changes: Use correct SYCL execution space and memory allocators
PR: https://github.com/STE11AR- GROUP/octotiger/pull/432
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introduction OO Integrating HPxX and svyc. OOOOO  scientific Application as a Benchmark: Octo-Tiger OOO®  Results with Octo-Tiger OO0 conclusion OO

Required (SYCL-related) Software Additions for Octo-Tiger and its Dependencies

e HPX:
Changes: Implemented both presented HPX-SYCL integration variants
PR: https://github.com/STE11AR- GROUP/hpx/pull/6085
o HPX-Kokkos:
Purpose: Compatibility layer for HPX and Kokkos. Allows treating Kokkos kernels as HPX tasks IF the get_future
functionality exists for the underlying execution space.
Changes: Plug in the HPX-SYCL get_future call. Add deep_copy_async overload using the SYCL event directly
PR: https://github.com/STE11AR- GROUP/hpx-kokkos/pull/13
CPPuddle:
Purpose: Memory and executor utility library for task-based programming. Provides memory recycling allocators
Changes: Add allocators for SYCL memory pools on the device
PR: https://github.com/SC-SGS/CPPuddle/pull/15
Octo-Tiger:
Changes: Use correct SYCL execution space and memory allocators
PR: https://github.com/STE11AR- GROUP/octotiger/pull/432
Kokkos:
Already contained SYCL execution and memory space
Required changes: Some CMake additions to allow using the SYCL execution space on AMD GPUs
Optional optimization: Removing internal execution space barriers for in-order queues
PR: Not yet upstreamed
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Results with Octo-Tiger [ [@@)

Experiment Setup

Scenario Size, Number of Kernel Calls per Time-Step

Grid parameters GPU metrics per time-step
Sub-grid size  Overall number of cells Number of (leaf) sub-grids \ Kernel calls CPU-GPU data transfers
8% (512) 262144 512 \ 7680 15360

[Scenario [ Hardware _________________|

e Goal: Evaluate performance with and without the  NVIDIA® GPU node

HPX-SYCL integration turned on CPU: Intel® Xeon® Platinum 8358 CPU
NVIDIA A100 GPU

e AMD® GPU node
CPU: AMD EPYC™ 7H12 CPU.

e Use patch to turn of the integration by inserting event
wait commands and returning ready futures

e Vary number of HPX worker threads (steers GPU: AMD MI100 GPU
C‘.’”te”t'on) e Use best combination of performance
e Simple Node-Level Hydro-Only Scenario: parameters for each node (number of
Sedov-Taylor Blast Wave concurrent GPU executors, dynamic work
e Using Intel DPC++/OneAPI aggregation limit)
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Results: Host Task Integration

Results with Octo-Tiger Oe0

Sedov Blast Wave Scenario on a NVIDIA A100:

Time-per-timestep with and without the (host task) HPX-SYCL Integration
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Sedov Blast Wave Scenario on a AMD MI100:

Time-per-timestep with and without the (host task) HPX-SYCL Integration
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Results with Octo-Tiger Oe0

Results: Host Task Integration

Sedov Blast Wave Scenario on a NVIDIA A100:

Time-per-timestep with and without the (host task) HPX-SYCL Integration

Time-per-timestep in ms [log]

— Runtime degrades when using the host_task-based HPX-SYCL integration (at least when using all CPU cores)
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Sedov Blast Wave Scenario on a AMD MI100:

Time-per-timestep with and without the (host task) HPX-SYCL Integration
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(Using 8 GPU executors, with up to 32 kernels aggregated)
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Results with Octo-Tiger O0e

Results: Event Polling Integration

Sedov Blast Wave Scenario on a NVIDIA A100: Sedov Blast Wave Scenario on a AMD MI100:
Time-per-timestep with and without the HPX-SYCL Integration Time-per-timestep with and without the HPX-SYCL Integration
(Using 32 GPU executors and aggregate up to 8 kernels per launch) (Using 8 GPU executors and aggregate up to 32 kernels per launch)
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Results:

Event Polling Integration

Results with Octo-Tiger O0e
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Sedov Blast Wave Scenario on a NVIDIA A100:
Time-per-timestep with and without the HPX-SYCL Integration

(Using 32 GPU executors and aggregate up to 8 kernels per launch)
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Sedov Blast Wave Scenario on a AMD MI100:
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(Using 8 GPU executors and aggregate up to 32 kernels per launch)
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— Runtime consistently improves when using the event polling HPX-SYCL integration (even for this small scenario)
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Introduction ‘= Integrating HPX and SYC - Scientific Application as a Benchmark: Octo-Tiger ‘- - Results with Octo-Tiger | - Conclusion .O

Conclusion

Conclusion
e Developed HPX-SYCL integration allowing us to treat SYCL events as HPX tasks
e Adapted entire Octo-Tiger software stack for SYCL to benchmark the integration(s)
Event polling integration performs better than (DPC++) host tasks integration

e Integration is beneficial (over synchronous execution without it), even when just running simple, single-node
scenarios

e Software stack is still experimental, lots of potential for optimizations
Outlook

e Intel GPUs?

e Integration speedup with distributed runs?
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Performance using various execution spaces:

LEGACY CPU:
32 HPX worker threads 509 ms|
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Speedup when removing barriers within Kokkos for in-order queues:

Sedov Blast Wave Scenario on a NVIDIA A100:
Time-per-timestep with and without the Kokkos patch

(Using 32 GPU executors and aggregate up to 8 kernels per launch)
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Event polling integration: Runtime with varying number of executors

Time-per-timestep in ms [log]
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Event polling integration: Runtime with varying number of aggregated kernels

Time-per-timestep in ms [log]

Sedov Blast Wave Scenario on a NVIDIA A100:
Time-per-timestep with and without the HPX-SYCL Integration
(Using 32 HPX worker threads and 1 GPU executor)

1000

262

203
161

100

~@~ Time-per-timestep HPX-SYCL OFF

o, @~ Time-per-timestep HPX-SYCL ON
K
N
N
\
8.
S
S
~
Yon
o, T~
~~
S~eo -
o ~o————0
o @
E23 117 11ex  L19x
1.03x

1.00x

il

- HPX SYCL ON Speedup (w.r.t to OFF)
e e

16 32 64
Number Max Aggregatlon [log]

A100: Increasing number of kernels aggregated

: Rl
PX-SYCL ON Speedup (w.r.t to OFF)

o
g
X

1589

1000
851

499

322

243
216

Time-per-timestep in ms [log]

100

Sedov Blast Wave Scenario on a AMD MI100:
Time-per-timestep with and without the HPX-SYCL Integration
(Using 32 HPX worker threads and 1 GPU executor)

‘o ~@- Time-per-timestep HPX-SYCL OFF
\\ 0~ Time-per-timestep HPX-SYCL ON
N,
&\
~
\\
.\\
Q S<e
~
~
\\
° o
~
~——
° o
° °
1.39x
L33 56 a0
1.05x

1.00x

il

- HPX SYCL ON Speedup w.r.t to OFF)
it L L it L

16 32 64
Number Max Aggregatlon [log]

MI100: Increasing number of kernels aggregated

ON Speedup (w.r.t to OFF)



	Introduction
	Integrating HPX and SYCL
	Scientific Application as a Benchmark: Octo-Tiger
	Results with Octo-Tiger
	Conclusion

