The T11th International workshop on OpenCL and SYCL

IWOCL & SYCLcon 2023 ’

Stellar Mergers with HPX-Kokkos and SYCL.:
Methods of using an Asynchronous Many-Task
Runtime System with SYCL

Gregor Dail3, University of Stuttgart

Patrick Diehl, Hartmut Kaiser and Dirk Pfliger

April 18-20,2023 | University of Cambridge, UK iwocl.org

Introduction @O

HPX and SYCL

e Asynchronous, Distributed Many-Task Runtime System

Stellar Mergers with HPX-Kokkos and SY! ing an Asynchronous Many-Task Runtime System with S Gregor DaiB

Introduction @O

HPX and SYCL

e Asynchronous, Distributed Many-Task Runtime System

e Asynchronous: Build task graph using futures and
continuations (then, when_all)

Compute Node 1
(HPX locality 1)

Task 1 [€ormmmrrmemnreees

hpx::future<void> futl

hpx::async ([] ()

... h

hpx::future<void> fut2

futl.then([] () {...

b

hpx::future<void> futX

when_all (futl,

fut2) ;

Stellar Mergers with HPX-Kokkos and SY! Methods of using an Asynchronous Many-Task Runtime System with SYCI

Gregor DaiB

Introduction @O

HPX and SYCL

e Asynchronous, Distributed Many-Task Runtime System Compute Node 1 Compute Node 2
e Asynchronous: Build task graph using futures and (HPX locality 1) (HPX locality 2)
continuations (then, when_all)
- Task 1 Task 4
o Distributed: Task graph across compute nodes (remote as as
function calls , HPX channels, multiple backends available) \
Task 2

Gregor DaiB

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL

Introduction @O

HPX and SYCL

e Asynchronous, Distributed Many-Task Runtime System Compute Node 1 Compute Node 2

e Asynchronous: Build task graph using futures and (HPX locality 1) (HPX locality 2)
continuations (then, when_all)

o Distributed: Task graph across compute nodes (remote
function calls , HPX channels, multiple backends available) \

o Many Tasks: Few HPX worker threads (one per core)
working on millions of lightweight (suspendable) HPX tasks

Task 1 Task 4

Task 2

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Introduction O@

HPX and SYCL

Why combine HPX with SYCL?

Compute Node 1 Compute Node 2
(HPX locality 1) (HPX locality 2)
Task 1 Task 4 2
SYCL
Task 2 1
SYCL
2

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Introduction O@

HPX and SYCL

Why combine HPX with SYCL?

e More choices: SYCL for HPX applications, HPX for Compute Node 1 Compute Node 2
distributed SYCL applications (instead of MPI) (HPX locality 1) (HPX locality 2)
o Better integrations: Better integration of HPX with other
libraries that use SYCL (Kokkos) R Task4] =
o More efficiency: Complement strengths \ SYCL
Task 2 1
SYCL
2

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Introduction O@

HPX and SYC

Why combine HPX with SYCL?

e More choices: SYCL for HPX applications, HPX for Compute Node 1 Compute Node 2
distributed SYCL applications (instead of MPI) (HPX locality 1) (HPX locality 2)

o Better integrations: Better integration of HPX with other Task 1
libraries that use SYCL (Kokkos) ® Task 4} fucd.chen

o More efficiency: Complement strengths \ éu\;CL

Task 2 1
How to combine HPX with SYCL?

e The problem: Integrate task-graphs asynchronously and SYcCL
efficiently 2
— No active waiting (no event.wait ()) Avoid barriers /
blocking of worker threads Task 3 A e
— Overhead?

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

How to combine HPX with SYCL?

e We have: SYCL events to check if asynchronous SYCL

g sycl::event
actions are done

[d

e We need: HPX futures to check if asynchronous SYCL

1 submitted H running |—> completed

actions are done
e Get an HPX future from a SYCL event without actively

waiting or blocking the thread :
*11 not ready

hpx::future<T>

ready

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL

Gregor DaiB

How to combine HPX with SYCL?

e We have: SYCL events to check if asynchronous SYCL

g sycl::event
actions are done

[d

e We need: HPX futures to check if asynchronous SYCL

4 submitted H running |—> completed

actions are done
e Get an HPX future from a SYCL event without actively

waiting or blocking the thread :
*11 not ready

e HPX scheduler takes care of the rest (triggering
continuations) hpx::future<T>

ready

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL

Gregor DaiB

How to combine HPX with SYCL?

e We have: SYCL events to check if asynchronous SYCL sycl:event

actions are done

e We need: HPX futures to check if asynchronous SYCL
actions are done

[d

1 submitted H running |—> completed

Topo Should trigger callback

e Get an HPX future from a SYCL event without actively

waiting or blocking the thread
d 9 o not ready [-----------m-emmeeme e A > ready

e HPX scheduler takes care of the rest (triggering
continuations) hpx::future<T> T

TODOs for integration

e Add specialization for HPX future_data

e Add callback mechanism that is called when the SYCL
event is completed

future_data Tono callback —set_data()

e Use it to set the future to ready

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Integrating HPX and SYC

L Integration Variant 1: Using SYCL host_tasks

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Integrating HPX and sycL. O@OQOO
HPX-SYCL Integration Variant 1: Using SYCL host_tasks

Use SYCL host_tasks as callback mechanism

e Advantages:
Easiest way to implement the HPX-SYCL integration
e Disadvantages:

host_tasks not executed by HPX workers
— Overhead/contention problem?

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Integrating HPX and sycL O@OOO

HPX-SYCL Integration Variant 1: Using SYCL host_tasks

Use SYCL host_tasks as callback me

e Advantages:
Easiest way to implement the HPX-SYCL integration

Disadvantages:
y . submitted|—>| running |—>completed

host_tasks not executed by HPX workers
— Overhead/contention problem?
sycl_queue sycl_event

!
submit host_task }—j not ready |-~/ > ready

hpx::future T

future_data host_task ——>{set_data()

sycl::event

Gregor DaiB

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL

Integrating HPX and sycL O@OOO

HPX-SYCL Integration Variant 1: Using SYCL host_tasks

Use SYCL host_tasks as callback mechanism

e Advantages:
Easiest way to implement the HPX-SYCL integration
e Disadvantages:

host_tasks not executed by HPX workers
— Overhead/contention problem?

Create Callback during future_data creation

sycl_queue.submit ([fdp =
hpx::intrusive_ptr <future_data>(
this),
sycl_event](cl::sycl::handler& h) {

h.depends_on(sycl_event) ;
h.host_task ([fdpl () {
fdp-> set_data (hpx::util::unused); 1});
b

sycl::event
submitted|—>| running |—>completed
sycl_queue sycl_event

submit host_task }—j not ready |-~/ > ready

hpx::future T

future_data host_task ——>{set_data()

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Integrating HPX and sycL OO@®OO

HPX-SYCL Integration Variant 2: Using Event Polling

e HPX scheduler

HPX Application
o Store event-callback pairs in HPX scheduler hpx::future (not ready) | hpx::future (ready)

get_future (event) >
o Worker threads poll events in-between tasks |
and invoke callbacks RS chedilley

e Only one thread polls (others skip if mutex is
already locked)

fut.set_data()

poll [l poll poll

SYCL Event

e Use concurrent queue for adding and
mutex-protected vector for later checking

SYCL Command Group (Kernel)

event status now complete

Stellar Mergers with HPX-Kokkos and SY Methods of using an Asynchronous Many-Task Runtime System with SYC Gregor DaiB

Integrating HPX and sycL OO@®OO

HPX-SYCL Integration Variant 2: Using Event Polling

Event polling within the HPX scheduler

e Store event-callback pairs in HPX scheduler

o Worker threads poll events in-between tasks
and invoke callbacks

e Only one thread polls (others skip if mutex is
already locked)

e Use concurrent queue for adding and
mutex-protected vector for later checking

Advantages

e HPX worker run callbacks themselves — One
threadpool

e Works with SYCL implementations that do not
yet support host_tasks

HPX Application

hpx::future (not ready) hpx::future (ready)

get_future (event)

\ 4

HPX Scheduler

poll

SYCL Event

SYCL Command Group (Kernel)

fut.set_data()

poll poll

event status now complete

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL

Gregor DaiB

Integrating HPX and sycL OO@®OO

HPX-SYCL Integration Variant 2: Using Event Polling

Event polling within the HPX scheduler
HPX Application
L

Store event-callback pairs in HPX scheduler priivii (e ieEtl) | R ((EEGE)

get_future (event) >

o Worker threads poll events in-between tasks |

and invoke callbacks RS chedilley fut.set_data()
e Only one thread polls (others skip if mutex is po11 Ml po11 poll

already locked) SYEL R
e Use concurrent queue for adding and

mutex-protected vector for later checking

)

SYCL Command Group (Kernel

oGS]

e HPX worker run callbacks themselves — One

threadpool .
. . . Disadvantages
e Works with SYCL implementations that do not

yet support host_tasks e Requires additions to the HPX scheduler
e Event creations, deletions and polling can cause overheads

event status now complete

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Integrating HPX and sycL OOO@O
HPX-SYCL Integration: Basic Usage and get_future

Dummy SYCL kernel/task

sycl::event my_event = queue.submit ([&] (sycl::handler& h) {

h.parallel_for (num_items, [=](auto i) {
});/
1)

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Integrating HPX and sycL OOO@O
HPX-SYCL Integration: Basic Usage and get_future

Dummy SYCL kernel/task

sycl::event my_event = queue.submit ([&] (sycl::handler& h) {

h.parallel_for (num_items, [=](auto i) {

b/
Call HPX-SYCL integration

hpx::future<void> my_future =

hpx::sycl::experimental::detail:: get_future(my_event);

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Integrating HPX and sycL OOO@O
HPX-SYCL Integration: Basic Usage and get_future

Dummy SYCL kernel/task

sycl::event my_event = queue.submit ([&] (sycl::handler& h) {

/* insert SYCL dependencies */
h.parallel_for (num_items, [=](auto i) {
/* insert numeric code here */ });/

Call HPX-SYCL integration

hpx::future<void> my_future =

hpx::sycl::experimental::detail:: get_future(my_event);

Add HPX continuation asynchronously

hpx::future<void> continuation_future =

my_future.then ([](auto&& fut) { /* insert CPU work,communication,... */});

Stellar Mergers with HPX-Kokkos and SY Methods of using an Asynchronous Many-Task Runtime System with SYC Gregor DaiB

Integrating HPX and sycL OOO@O
HPX-SYCL Integration: Basic Usage and get_future

Dummy SYCL kernel/task

sycl::event my_event = queue.submit ([&] (sycl::handler& h) {

/* insert SYCL dependencies */
h.parallel_for (num_items, [=](Cauto i) {
/* insert numeric code here */ });/

Call HPX-SYCL integration

hpx::future<void> my_future =

hpx::sycl::experimental::detail:: get_future(my_event);

Add HPX continuation asynchronously

hpx::future<void> continuation_future =

my_future.then ([](auto&& fut) { /* insert CPU work,communication,... */});

Suspend calling HPX task until everything is done

continuation_future. get ()

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Integrating HPX and sycL. OOOO®
HPX-SYCL Integration: HPX-SYCL Executor with hpx: :async

Use HPX-SYCL Executor for convenience

e Wrapper for in-order SYCL queues

e Allows passing SYCL queue functions directly to hpx::async

Use HPX-SYCL Executor for convenience

hpx::sycl::experimental::sycl_executor
exec(sycl::default_selector{});

auto fut = hpx::async(exec,

&sycl::queue::submit, [&](sycl::handler& h) {

h.parallel_for (num_items, [=](auto i) {

5

g

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Scientific Application as a Benchmark: Octo-Tiger .OOO

Scientific Application as a Benchmark: Octo-Tiger

iger: Overview

e Simulation of interacting binary star systems and
stellar mergers

Double white dwarf mergers
Contact binary v1309 and its merger
R Coronae Borealis stars

e Intended for large scale, distributed runs Octo-Tiger

Previous runs: Cori, Piz Daint, Summit
Current target: Perlmutter

e Based on the HPX runtime

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Scientific Application as a Benchmark: Octo-Tiger .OOO

Scientific Application as a Benchmark: Octo-Tiger

Octo-Tiger: Overview

e Simulation of interacting binary star systems and
stellar mergers

Double white dwarf mergers
Contact binary v1309 and its merger
R Coronae Borealis stars

e Intended for large scale, distributed runs Octo-Tiger

Previous runs: Cori, Piz Daint, Summit
Current target: Perlmutter

e Based on the HPX runtime

Octo-Tiger as an HPX-SYCL Benchmark

e All major solvers are implemented with Kokkos

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Scientific Application as a Benchmark: Octo-Tiger .OOO

Scientific Application as a Benchmark: Octo-Tiger

Octo-Tiger: Overview

e Simulation of interacting binary star systems and
stellar mergers

Double white dwarf mergers
Contact binary v1309 and its merger
R Coronae Borealis stars

e Intended for large scale, distributed runs Octo-Tiger

Previous runs: Cori, Piz Daint, Summit
Current target: Perlmutter

e Based on the HPX runtime

Octo-Tiger as an HPX-SYCL Benchmark

e All major solvers are implemented with Kokkos

e Kokkos supports various CPU/GPU execution and
memory spaces (CUDA, HIP, HPX and SYCL spaces
available)

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL

Gregor DaiB

Scientific Application as a Benchmark: Octo-Tiger .OOO

Scientific Application as a Benchmark: Octo-Tiger

Octo-Tiger: Overview

e Simulation of interacting binary star systems and
stellar mergers

Double white dwarf mergers
Contact binary v1309 and its merger
R Coronae Borealis stars

e Intended for large scale, distributed runs Octo-Tiger

Previous runs: Cori, Piz Daint, Summit
Current target: Perlmutter

e Based on the HPX runtime

Octo-Tiger as an HPX-SYCL Benchmark

e All major solvers are implemented with Kokkos

e Kokkos supports various CPU/GPU execution and
memory spaces (CUDA, HIP, HPX and SYCL spaces
available)

e Kokkos kernels can run a SYCL execution space

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL

Gregor DaiB

Scientific Application as a Benchmark: Octo-Tiger .OOO

Scientific Application as a Benchmark: Octo-Tiger

Octo-Tiger: Overview

e Simulation of interacting binary star systems and
stellar mergers

Double white dwarf mergers
Contact binary v1309 and its merger
R Coronae Borealis stars

e Intended for large scale, distributed runs Octo-Tiger

Previous runs: Cori, Piz Daint, Summit
Current target: Perlmutter

e Based on the HPX runtime

Octo-Tiger as an HPX-SYCL Benchmark

e All major solvers are implemented with Kokkos

e Kokkos supports various CPU/GPU execution and
memory spaces (CUDA, HIP, HPX and SYCL spaces
available)

e Kokkos kernels can run a SYCL execution space

e HPX-SYCL integration — non-blocking HPX
futures for Kokkos kernels running on the SYCL

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL

Gregor DaiB

Scientific Application as a Benchmark: Octo-Tiger 0.00

»n
S
()
E
(e}
(/7]
T
c
©
o
S
=
E
(&)
=
S
L
(2]
©
S
©
a
-
Q
k=)
=
[e]
b
[8]
o

tating astrophysical fluids

Hydro) — Finite Volumes

)

(

Gravity

e Inviscid Euler equations

— Fast Multipole Method

(

e Newtonian Gravity

From [1]
Gregor DaiB

=)
o
>
7
£
H
=
2
13
>
o
3
E
=
3
[
x
]
T
>
c
8
H
)
3
=3
c
g
=
S
£
>
@
<
c
]
b=
=
(3
3
S
"
°
=3
E
@
=
-
o
>
7
°
c
©
"
o
S
3
=
%
o
=
£
H
4
o
2
@
=
8
2
7

Scientific Application as a Benchmark: Octo-Tiger 0.00

Octo-Tiger: Datastructure and Solvers

Self-gravitating astrophysical fluids

e Inviscid Euler equations (Hydro) — Finite Volumes
e Newtonian Gravity (Gravity) — Fast Multipole Method
Adaptive Mesh Refinement (AMR)

Octree refined to maximize resolution for the atmosphere between
the stars

Entire sub-grid in each tree-node

From [1]

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Scientific Application as a Benchmark: Octo-Tiger 0.00

Octo-Tiger: Datastructure and Solvers

Self-gravitating astrophysical fluids

e Inviscid Euler equations (Hydro) — Finite Volumes
e Newtonian Gravity (Gravity) — Fast Multipole Method
o Adaptive Mesh Refinement (AMR)

e Octree refined to maximize resolution for the atmosphere between
the stars

Entire sub-grid in each tree-node

Kokkos Compute Kernels:

e Solvers traverse the tree, calling compute kernels on each
sub-grid individually

e Each Kokkos kernel works on one sub-grid with many concurrent
kernels being launched

From [1]

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Scientific Application as a Benchmark: Octo-Tiger 0.00

Octo-Tiger: Datastructure and Solvers

Self-gravitating astrophysical fluids

o Inviscid Euler equations (Hydro) — Finite Volumes

e Newtonian Gravity (Gravity) — Fast Multipole Method
o Adaptive Mesh Refinement (AMR)

e Octree refined to maximize resolution for the atmosphere between
the stars

Entire sub-grid in each tree-node

Kokkos Compute Kernels:

e Solvers traverse the tree, calling compute kernels on each
sub-grid individually

e Each Kokkos kernel works on one sub-grid with many concurrent
kernels being launched

e Even small scenarios contains thousands of kernel launches
within < 250ms — good stress test

e Not launching enough kernels in parallel can cause starvation
(smallish kernels) From [1]

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Scientific Application as a Benchmark: Octo-Tiger O0.0

Octo-Tiger: Execution Model

DAG of Compute Kernels
Kokkos

e HPX and Kokkos integrations exist Kemelt
e Get futures for Kokkos kernels using HPX-Kokkos
compatibility library (by calling get_future
specializations within HPX)
o HPX-Kokkos only works for supported execution T::i(z
spaces (previously the CUDA, HIP and HPX spaces)

e Run individual Kokkos kernels either on a CPU (HPX)
or GPU execution space

fl.then

shared f2.then

Adapted from [2]

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL

Kokkos
Kernel 3

HPX
Task 4

Kokkos
Kernel 5

HPX
Task 6

Gregor DaiB

Kokkos
kernel 7

Scientific Application as a Benchmark: Octo-Tiger O0.0

Octo-Tiger: Execution Model

AG of Com Kernel
G of Compute Kernels Kokkos £1.then Kokkos
—>

o HPX and Kokkos integrations exist Kemel 1 Kemel 3
e Get futures for Kokkos kernels using HPX-Kokkos HPX
e A a Task 4
compatibility library (by calling get_future W
specializations within HPX) Kokkos kernel 7

I
HPX Kernel 5

o HPX-Kokkos only works for supported execution shared f2.then

. Task 2
spaces (previously the CUDA, HIP and HPX spaces) —
e Run individual Kokkos kernels either on a CPU (HPX) Task 6
or GPU execution space Adapted from [2]
Launch Kernel asynchronously | Split Kernel into Compute blocks via Kokkos SIMD Types
Parallelization
Kernel CPU Execution: {"Launch 1| GPU Execution [>Tile o >Scalar Types |
iKokkos Kernel SYCL Execution 11|;M Scalar Type:
.. fi bits el S e Y
o Kernel gets split into HPX tasks read Soace jse scaiar instan. |
. . . . g EE— ! itiation for GPU__ |
o Kernel gets instantiated with appropriate SIMD types woiaion] syl | xsctor Kokkos e
(Tom). Integration
iger T —. HPX Execution
- vl oo roady
Kernel GPU Execution: | when the kernel is Run on HPX worker} | | Adapt to target
; finished CPU Execution i threads i| i CPU via types
i 1 T Application + HPX Kokkos + HPX Kokkos SIMD
e SIMD template types get instantiated with scalar types IR ks okkos Sl
e Run on GPU execution space (CUDA, HIP, SYCL?) Adapted from [3]

Stellar Mergers with HPX-Kokkos and SY Methods of using an Asynchronous Many-Task Runtime System with SYCI Gregor DaiB

Scientific Application as a Benchmark: Octo-Tiger O0.0

Octo-Tiger: Execution Model

AG of Compute Kernels

e HPX and Kokkos integrations exist S Space
e Get futures for Kokkos kernels using HPX-Kokkos HPX
compatibility library (by calling get_future e sveL
specializations within HPX) svcL e
. > Fxecution
o HPX-Kokkos only works for supported execution 12:;(2 shared £2.then | Space
spaces (previously the CUDA, HIP and HPX spaces) —
e Run individual Kokkos kernels either on a CPU (HPX) Task 6
or GPU execution space Adapted from 2]
Launch Kernel asynchronously | Split Kernel into Compute blocks via Kokkos SIMD Types
Parallelization
Kernel CPU Execution: {"Launch 1| GPU Execution [>Tile o >Scalar Types |
o Kernel gets split into HPX tasks o | thread Space jse scaiar instan. |
" 9 n " ———>1ipx- : lation for GPU__ |
o Kernel gets instantiated with appropriate SIMD types woiaion] syl | xsctor Kokkos
(oce Integration
iger) T HPX Execution
: et o raady
Kernel GPU Execution: { when the kernel is Run on HPX worker} | | Adapt to target
i finished CPU Execution i threads i| i CPU via types
e SIMD template types get instantiated with scalar types Lzt iR baiEs b Kooz St
e Run on GPU execution space (CUDA, HIP, SYCL?) Adapted from [3]

Stellar Mergers with HPX-Kokkos and SY Methods of using an Asynchronous Many-Task Runtime System with SYCI Gregor DaiB

introduction OO Integrating HPxX and svyc. OOOOO scientific Application as a Benchmark: Octo-Tiger OOO® Results with Octo-Tiger OO0 conclusion OO

Required (SYCL-related) Software Additions for Octo-Tiger and its Dependencies

o HPX:

Changes: Implemented both presented HPX-SYCL integration variants
PR: https://github.com/STE11AR-GROUP/hpx/pull/6085

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System wi Gregor DaiB

https://github.com/STEllAR-GROUP/hpx/pull/6085
https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13
https://github.com/SC-SGS/CPPuddle/pull/15
https://github.com/STEllAR-GROUP/octotiger/pull/432

introduction OO Integrating HPxX and svyc. OOOOO scientific Application as a Benchmark: Octo-Tiger OOO® Results with Octo-Tiger OO0 conclusion OO

Required (SYCL-related) Software Additions for Octo-Tiger and its Dependencies

e HPX:
Changes: Implemented both presented HPX-SYCL integration variants
PR: https://github.com/STE11AR- GROUP/hpx/pull/6085

o HPX-Kokkos:
Purpose: Compatibility layer for HPX and Kokkos. Allows treating Kokkos kernels as HPX tasks IF the get_future
functionality exists for the underlying execution space.
Changes: Plug in the HPX-SYCL get_future call. Add deep_copy_async overload using the SYCL event directly
PR: https://github.com/STE11AR- GROUP/hpx-kokkos/pull/13

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System wi Gregor DaiB

https://github.com/STEllAR-GROUP/hpx/pull/6085
https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13
https://github.com/SC-SGS/CPPuddle/pull/15
https://github.com/STEllAR-GROUP/octotiger/pull/432

introduction OO Integrating HPxX and svyc. OOOOO scientific Application as a Benchmark: Octo-Tiger OOO® Results with Octo-Tiger OO0 conclusion OO

Required (SYCL-related) Software Additions for Octo-Tiger and its Dependencies

o HPX:

Changes: Implemented both presented HPX-SYCL integration variants
PR: https://github.com/STE11AR-GROUP/hpx/pull/6085

o HPX-Kokkos:
Purpose: Compatibility layer for HPX and Kokkos. Allows treating Kokkos kernels as HPX tasks IF the get_future
functionality exists for the underlying execution space.
Changes: Plug in the HPX-SYCL get_future call. Add deep_copy_async overload using the SYCL event directly
PR: https://github.com/STE11AR- GROUP/hpx-kokkos/pull/13

e CPPuddle:
Purpose: Memory and executor utility library for task-based programming. Provides memory recycling allocators
Changes: Add allocators for SYCL memory pools on the device
PR: https://github.com/SC-SGS/CPPuddle/pull/15

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System wi Gregor DaiB

https://github.com/STEllAR-GROUP/hpx/pull/6085
https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13
https://github.com/SC-SGS/CPPuddle/pull/15
https://github.com/STEllAR-GROUP/octotiger/pull/432

introduction OO Integrating HPxX and svyc. OOOOO scientific Application as a Benchmark: Octo-Tiger OOO® Results with Octo-Tiger OO0 conclusion OO

Required (SYCL-related) Software Additions for Octo-Tiger and its Dependencies

e HPX:
Changes: Implemented both presented HPX-SYCL integration variants
PR: https://github.com/STE11AR-GROUP/hpx/pull/6085

o HPX-Kokkos:

Purpose: Compatibility layer for HPX and Kokkos. Allows treating Kokkos kernels as HPX tasks IF the get_future
functionality exists for the underlying execution space.

Changes: Plug in the HPX-SYCL get_future call. Add deep_copy_async overload using the SYCL event directly
PR: https://github.com/STE11AR- GROUP/hpx-kokkos/pull/13

e CPPuddle:
Purpose: Memory and executor utility library for task-based programming. Provides memory recycling allocators
Changes: Add allocators for SYCL memory pools on the device
PR: https://github.com/SC-SGS/CPPuddle/pull/15

e Octo-Tiger:

Changes: Use correct SYCL execution space and memory allocators
PR: https://github.com/STE11AR- GROUP/octotiger/pull/432

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System wi Gregor DaiB

https://github.com/STEllAR-GROUP/hpx/pull/6085
https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13
https://github.com/SC-SGS/CPPuddle/pull/15
https://github.com/STEllAR-GROUP/octotiger/pull/432

introduction OO Integrating HPxX and svyc. OOOOO scientific Application as a Benchmark: Octo-Tiger OOO® Results with Octo-Tiger OO0 conclusion OO

Required (SYCL-related) Software Additions for Octo-Tiger and its Dependencies

e HPX:
Changes: Implemented both presented HPX-SYCL integration variants
PR: https://github.com/STE11AR- GROUP/hpx/pull/6085
o HPX-Kokkos:
Purpose: Compatibility layer for HPX and Kokkos. Allows treating Kokkos kernels as HPX tasks IF the get_future
functionality exists for the underlying execution space.
Changes: Plug in the HPX-SYCL get_future call. Add deep_copy_async overload using the SYCL event directly
PR: https://github.com/STE11AR- GROUP/hpx-kokkos/pull/13
CPPuddle:
Purpose: Memory and executor utility library for task-based programming. Provides memory recycling allocators
Changes: Add allocators for SYCL memory pools on the device
PR: https://github.com/SC-SGS/CPPuddle/pull/15
Octo-Tiger:
Changes: Use correct SYCL execution space and memory allocators
PR: https://github.com/STE11AR- GROUP/octotiger/pull/432
Kokkos:
Already contained SYCL execution and memory space
Required changes: Some CMake additions to allow using the SYCL execution space on AMD GPUs
Optional optimization: Removing internal execution space barriers for in-order queues
PR: Not yet upstreamed

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System wi Gregor DaiB

https://github.com/STEllAR-GROUP/hpx/pull/6085
https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13
https://github.com/SC-SGS/CPPuddle/pull/15
https://github.com/STEllAR-GROUP/octotiger/pull/432

Results with Octo-Tiger [[@@)

Experiment Setup

Scenario Size, Number of Kernel Calls per Time-Step

Grid parameters GPU metrics per time-step
Sub-grid size Overall number of cells Number of (leaf) sub-grids \ Kernel calls CPU-GPU data transfers
8% (512) 262144 512 \ 7680 15360

[Scenario [Hardware _________________|

e Goal: Evaluate performance with and without the NVIDIA® GPU node

HPX-SYCL integration turned on CPU: Intel® Xeon® Platinum 8358 CPU
NVIDIA A100 GPU

e AMD® GPU node
CPU: AMD EPYC™ 7H12 CPU.

e Use patch to turn of the integration by inserting event
wait commands and returning ready futures

e Vary number of HPX worker threads (steers GPU: AMD MI100 GPU
C‘.’”te”t'on) e Use best combination of performance
e Simple Node-Level Hydro-Only Scenario: parameters for each node (number of
Sedov-Taylor Blast Wave concurrent GPU executors, dynamic work
e Using Intel DPC++/OneAPI aggregation limit)

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor DaiB

Results: Host Task Integration

Results with Octo-Tiger Oe0

Sedov Blast Wave Scenario on a NVIDIA A100:

Time-per-timestep with and without the (host task) HPX-SYCL Integration

1243
1060

282

Time-per-timestep in ms [log]

117
100

Stellar Mergers with HPX-Kokkos and SY

(Using 32 GPU executors, with up to 8 kernels aggregated)

~o~ Time-per-timestep HPX-SYCL OFF
@~ Time-per-timestep HPX-SYCL ON
o~ £
oS [}
NN 2
~ pvi
e o
N Z
N
\{ B
° @
@
~ Q
~_ ©° o &
~ z
e, o
So 2
~
1.17x 1.10x S 125
——————— —1 — 107
o 73x 08~
0.48x 0.6
0.33x 0.4
HPX SYCL ON Speedup (w.rtto OFF) 0.2
| I
1 32

1
Number HPX Worker Threads [log]

A100: Best combinations

Methods of using an Asynchronous Many-Task Ru

Sedov Blast Wave Scenario on a AMD MI100:

Time-per-timestep with and without the (host task) HPX-SYCL Integration

Time-per-timestep in ms [log]

e System with SY!

1488

244
213

100

(Using 8 GPU executors, with up to 32 kernels aggregated)

=0~ Time-per-timestep HPX-SYCL OFF
O~ Time-per-timestep HPX-SYCL ON

&\
~
~
~
<
S<SCe
o °
-
1.12x 1.10x 1.11x

1.00x N
0.85x 0.87x

J1LLL

HPX-SYCL ON Speedup (w.r.t to OFF)

16 32
Number HPX WorkerThreadS [log]

MI100: Best combinations

Gregor DaiB

,_.
N
-SYCL ON Speedup (w.r.t to OFF)

1.0X

Results with Octo-Tiger Oe0

Results: Host Task Integration

Sedov Blast Wave Scenario on a NVIDIA A100:

Time-per-timestep with and without the (host task) HPX-SYCL Integration

Time-per-timestep in ms [log]

— Runtime degrades when using the host_task-based HPX-SYCL integration (at least when using all CPU cores)

Stellar Mergers with HPX-Kokkos and S

1243
1060

282

117
100

(Using 32 GPU executors, with up to 8 kernels aggregated)

~o~ Time-per-timestep HPX-SYCL OFF
@~ Time-per-timestep HPX-SYCL ON

e,
SR
~
~
~
e
o
2 Y
~
~
S
® °
~
o ° o
~
Se
\\
~
1.17x 1.10x S
0 73x
0.48x
0.33x
HPX SYCL ON Speedup (w.rtto OFF)
. I
1 32

1
Number HPX Worker Threads [log]

A100: Best combinations

,_.
N
X-SYCL ON Speedup (w.r.t to OFF)

105

Sedov Blast Wave Scenario on a AMD MI100:

Time-per-timestep with and without the (host task) HPX-SYCL Integration

Time-per-timestep in ms [log]

1488

244
213

100

Methods of using an Asynchronous Many-Task Runtime System with S

(Using 8 GPU executors, with up to 32 kernels aggregated)

=0~ Time-per-timestep HPX-SYCL OFF
O~ Time-per-timestep HPX-SYCL ON

&\
~
~
~
N
o~
\\
\\
e
O~
-
e -~
S<SCe
o °
-
1.12x 1.10x 1.11x

1.00x

85x 0.87x

HPX SYCL ON Speedup (w.rt to OFF)
L L

16 32
Number HPX WorkerThreadS [log]

MI100: Best combinations

Gregor Dail

-SYCL ON Speedup (w.r.t to OFF)

o
N

1.0X

Results with Octo-Tiger O0e

Results: Event Polling Integration

Sedov Blast Wave Scenario on a NVIDIA A100: Sedov Blast Wave Scenario on a AMD MI100:
Time-per-timestep with and without the HPX-SYCL Integration Time-per-timestep with and without the HPX-SYCL Integration
(Using 32 GPU executors and aggregate up to 8 kernels per launch) (Using 8 GPU executors and aggregate up to 32 kernels per launch)
~
1047 o N —e— Time-per-timestep HPX-SYCL OFF 1314 —o- Time-per-timestep HPX-SYCL OFF
\\ @~ Time-per-timestep HPX-SYCL ON 1000 @~ Time-per-timestep HPX-SYCL ON
N
A 733
562 N E &
= N S B o
3 S g 8 - e
2 \‘\ g 2 421 \\\ ‘_;_
c 308 a, v\ ZHc Se. Z
.~ ~ o = 308 [N a
~) [-% ~]
L ~ 5 g ~ °
7 ‘o, s B Jo- 3
2 2 2 213 -""~=~o a
E 183 o N & E &
5 ~ z = 182 ° =
i 125 \\8' = g : g
g 107{ 1.19x 1.21x Tl 145 g 143
F L16x L16x 1.00x 1P (12X F 0] Li0x 1.12x L18x 1.11x 1.09x 115X 1.2
H ﬂ - ﬂ ﬂ H -
- HPX SYCL ON Speedup w.r.t to OFF) - HPX SYCL ON Speedup w.r.t to OFF)
I
16 32 1 16 32
Number HPX WorkerThreads [log] Number HPX Worker Threads [log]
A100: Best combinations MI100: Best combinations

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SY Gregor DaiB

Results:

Event Polling Integration

Results with Octo-Tiger O0e

1047

562

308

183

125
107

Time-per-timestep in ms [log]

Sedov Blast Wave Scenario on a NVIDIA A100:
Time-per-timestep with and without the HPX-SYCL Integration

(Using 32 GPU executors and aggregate up to 8 kernels per launch)
~

o™ —@— Time-per-timestep HPX-SYCL OFF

\\ @~ Time-per-timestep HPX-SYCL ON

~
N
N
AN
N
o
(SR
~
~
No-
0" T~wo
1.19x 1.21x 1.16x 1.16x 1.00x 1 P1x
- HPX SYCL ON Speedup w.r.t to OFF)
1 16 32

Number HPX WorkerThreads [log]

A100: Best combinations

PX-SYCL ON Speedup (w.r.t to OFF)

Il uling
oN B
H

Sedov Blast Wave Scenario on a AMD MI100:
Time-per-timestep with and without the HPX-SYCL Integration

(Using 8 GPU executors and aggregate up to 32 kernels per launch)
=

32

1314 h \\ ~@~ Time-per-timestep HPX-SYCL OFF
1000 \\ @~ Time-per-timestep HPX-SYCL ON
N
‘e
733 NN
~
N
— N
g ..
w 421 o~
£ ~
< Je
£ 308 o~
L N
3 e
g 213 T ==—p
S 182 °
I}
Q
@
E
F 100 1.10x 1.12x 1.11x 1.09x
- HPX SYCL ON Speedup w.r.t to OFF
1 2

16
Number HPX Worker Threads [log]

MI100: Best combinations

— Runtime consistently improves when using the event polling HPX-SYCL integration (even for this small scenario)

Stellar Mergers with HPX-Kokkos and SY

Methods of using an Asynchronous Man:

Gregor Dal

HPX-SYCL ON Speedup (w.r.t to OFF)

e
ISENES

Introduction ‘= Integrating HPX and SYC - Scientific Application as a Benchmark: Octo-Tiger ‘- - Results with Octo-Tiger | - Conclusion .O

Conclusion

Conclusion
e Developed HPX-SYCL integration allowing us to treat SYCL events as HPX tasks
e Adapted entire Octo-Tiger software stack for SYCL to benchmark the integration(s)
Event polling integration performs better than (DPC++) host tasks integration

e Integration is beneficial (over synchronous execution without it), even when just running simple, single-node
scenarios

e Software stack is still experimental, lots of potential for optimizations
Outlook

e Intel GPUs?

e Integration speedup with distributed runs?

LSU ‘ cénowrrr:‘ir)utation & Technology

UniverSitét StUﬂgal‘t Interdisciplinary | Innovative | Inventive

© STE||AR GROUP

Stellar Mergers with HPX-Kokkos and SYCL: Methods of using an Asynchronous Many-Task Runtime System with SYCL Gregor Dai

The 1th International workshop on OpenCL and SYCL

IWOCL & SYCLCON 2023 '

Thank you for your attention!

April 18-20,2023 | University of Cambridge, UK iwocl.org

@ D. Pfander, G. Daif3, D. Marcello, H. Kaiser, and D. Pflliger, “Accelerating Octo-Tiger: Stellar mergers on Intel
Knights Landing with HPX,” in Proceedings of the International Workshop on OpenCL, ser. IWNOCL '18. New
York, NY, USA: ACM, 2018, pp. 19:1-19:8.

@ G. DaiB3 et al. (video presentation) hips 2021: Beyond fork-join: Integration of performance portable kokkos
kernels with hpx. Youtube. [Online]. Available: https://www.youtube.com/watch?v=CQaA9AYIm1|

@ G. DaiB3, S. Singanaboina, P. Diehl, H. Kaiser, and D. Pflliger, “From merging frameworks to merging stars:
Experiences using hpx, kokkos and simd types,” in 2022 IEEE/ACM 7th International Workshop on Extreme
Scale Programming Models and Middleware (ESPM2). Los Alamitos, CA, USA: IEEE Computer Society, nov
2022, pp. 10—19. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/ESPM256814.2022.00007

https://www.youtube.com/watch?v=CQaA9AYlm1I
https://doi.ieeecomputersociety.org/10.1109/ESPM256814.2022.00007

Performance using various execution spaces:

LEGACY CPU:
32 HPX worker threads 509 ms|
autovectorization only

KOKKOS CPU-only :
32 HPX worker threads 280 ms
explicit SIMD

KOKKOS CUDA:
32 HPX worker threads 112
64 GPU executors- ms

8 Max aggregation

Compute backend

KOKKOS_SYCL:
32 HPX worker threads
32 GPU executors 107 ms

8 Max aggregation

CUDA:

32 HPX worker threads
128 GPU executors 93 ms

4 Max aggregation

0 200 400 600
Time-per-timestep in ms

Best runs on the NVIDIA A100

Compute backend

LEGACY CPU:

32 HPX worker threads

autovectorization only

KOKKOS CPU-only :
32 HPX worker threads
explicit SIMD

KOKKOS_SYCL:

32 HPX worker threads
8 GPU executors

32 Max aggregation

HIP:

32 HPX worker threads
16 GPU executors

16 Max aggregation

KOKKOS HIP:

32 HPX worker threads
128 GPU executors

32 Max aggregation

|

'

i

531 ms

275 ms

182 ms

169 ms

167 ms

0

200 400 600
Time-per-timestep in ms

Best runs on the AMD MI100

Time-per-timestep in ms [log]

1047

562

308

183

125
107

Speedup when removing barriers within Kokkos for in-order queues:

Sedov Blast Wave Scenario on a NVIDIA A100:
Time-per-timestep with and without the Kokkos patch

(Using 32 GPU executors and aggregate up to 8 kernels per launch)
-~

\\\ =~ Time-per-timestep without Kokkos fence patch
S —e~ Time-per-timestep with Kokkos fence patch
NN
~
AN
LS
A
SO
AN
AN
LS
SO
SN
\\\‘.
0N
LN
~ N
oS
\\\\
o T~y
1.17x L22x 1.17x 1.19x 11ax 1P

Kokkos Patch Speedup

NANE

32
Number HPX WorkerThreads [Iog]

A100: Best combinations

Kokkos Patch Speedup

o
I

12

st
o

Sedov Blast Wave Scenario on a AMD MI100:
Time-per-timestep with and without the Kokkos patch

(Using 8 GPU executors and aggregate up to 32 kernels per launch)

1314

1000

733

421

308

213
182

Time-per-timestep in ms [log]

100

Q\ =@~ Time-per-timestep without Kokkos fence patch
\§§ —e— Time-per-timestep with Kokkos fence patch
S
~
A
NS
AN
\:\
\:\
~
~3s.
~Je.
o~
SO
RN
~
\o..-:::‘
1.07x 1.08x 112x 1.09x 1.11x 1.06x

- Kokkos Patch Speedup

Number HPX Worker Threads [\og]

MI100: Best combinations

o
IS

12

b

Kokkos Patch Speedup

Event polling integration: Runtime with varying number of executors

Time-per-timestep in ms [log]

100((%J

Sedov Blast Wave Scenario on a NVIDIA A100:
Time-per-timestep with and without the HPX-SYCL Integration

sing 32 HPX worker threads, without dynamic work aggregation)

~@~ Time-per-timestep HPX-SYCL OFF

o~ Time-per-ti -
773 o Time-per-timestep HPX-SYCL ON
>
~
~
-
~
528 o N
e
N
N
N
377 Q. \
~
304 oL~
e -
363 R e
1.17x
1.12
1.00x Hx ﬁx lﬁx 1.00x lﬁx
- HPX-SYCL ON Speedup w.r.t to OFF)
100 e e
1 2 8 16 32 64 128

Number GPU Executors [log]

A100: Increasing Number of GPU executors

'CL ON Speedup (w.r.t to OFF)

[N
o N
X-SYCL

Time-per-timestep in ms [log]

158gUsing 32 HPX worker threads, without dynamic work aggregation

1236

994

935
901

Sedov Blast Wave Scenario on a AMD MI100:
Time-per-timestep with and without the HPX-SYCL Integration

\\ ~@- Time-per-timestep HPX-SYCL OFF
\\ o~ Time-per-timestep HPX-SYCL ON
Q
\
S
Q N
N
\\
\\
e
o So
o o -0
~ -0 -
o g
1.10x Llax 1,
1.00x 0X 103 104X g0k 1.00x

QNN

- HPX SYCL ON Speedup (w.r.t to OFF)
e ey P iy S

1

16 32 64 128
Number GPU Executors [log]

MI100: Increasing Number of GPU executors

ON Speedup (w.r.t to OFF)

Event polling integration: Runtime with varying number of aggregated kernels

Time-per-timestep in ms [log]

Sedov Blast Wave Scenario on a NVIDIA A100:
Time-per-timestep with and without the HPX-SYCL Integration
(Using 32 HPX worker threads and 1 GPU executor)

1000

262

203
161

100

~@~ Time-per-timestep HPX-SYCL OFF

o, @~ Time-per-timestep HPX-SYCL ON
K
N
N
\
8.
S
S
~
Yon
o, T~
~~
S~eo -
o ~o————0
o @
E23 117 11ex L19x
1.03x

1.00x

il

- HPX SYCL ON Speedup (w.r.t to OFF)
e e

16 32 64
Number Max Aggregatlon [log]

A100: Increasing number of kernels aggregated

: Rl
PX-SYCL ON Speedup (w.r.t to OFF)

o
g
X

1589

1000
851

499

322

243
216

Time-per-timestep in ms [log]

100

Sedov Blast Wave Scenario on a AMD MI100:
Time-per-timestep with and without the HPX-SYCL Integration
(Using 32 HPX worker threads and 1 GPU executor)

‘o ~@- Time-per-timestep HPX-SYCL OFF
\\ 0~ Time-per-timestep HPX-SYCL ON
N,
&\
~
\\
.\\
Q S<e
~
~
\\
° o
~
~——
° o
° °
1.39x
L33 56 a0
1.05x

1.00x

il

- HPX SYCL ON Speedup w.r.t to OFF)
it L L it L

16 32 64
Number Max Aggregatlon [log]

MI100: Increasing number of kernels aggregated

ON Speedup (w.r.t to OFF)

	Introduction
	Integrating HPX and SYCL
	Scientific Application as a Benchmark: Octo-Tiger
	Results with Octo-Tiger
	Conclusion

