
Towards Deferred Execution of a SYCL 

Command Graph

Ewan Crawford, Codeplay

Pablo Reble (Intel), Ben Tracy (Codeplay), and Julian Miller (Intel)



© 2023 Codeplay Software Ltd2

C++ platform via the SYCL™
open standard, enabling vision 
& machine learning e.g. 
TensorFlow™

Enabling AI & HPC 
to be Open, Safe & 

Accessible to All
Markets

High Performance Compute (HPC)
Automotive ADAS, IoT, Cloud Compute

Smartphones & Tablets
Medical & Industrial

Technologies: Artificial Intelligence
Vision Processing

Machine Learning
Big Data Compute

Company

Leaders in enabling high-performance 
software solutions for new AI processing 
systems

Enabling the toughest processors with tools 
and middleware based on open standards

Established 2002 in Scotland, acquired by 
Intel in 2022 and now ~90 employees.

Supported Solutions

The heart of Codeplay's 
compute technology enabling 
OpenCL™, SPIR-V™, HSA™ and 
Vulkan™

And many more!

Collaborations

An open, cross-industry, SYCL based, 
unified, multiarchitecture, multi-
vendor programming model that 
delivers a common developer 
experience across accelerator 
architectures



© 2023 Codeplay Software Ltd3

Who we are

• After years of collaboration and contribution to
open standards alongside Intel, Codeplay Software
is a subsidiary of Intel after an acquisition made last
year.

• We will continue to operate as Codeplay Software
and will work extensively with all relevant
industries to advance the SYCL ecosystem,
especially around oneAPI.

• Codeplay is now working jointly with Intel to further
advance the SYCL standard and the oneAPI open
ecosystem.



Talk Agenda

• Motivation

• Specification overview

• Implementation details

• Future steps



Motivation

• SYCL is already able to define a DAG of execution at runtime.

• Graph is implicit in the code with command creation and 
submission are tied together.

• Our extension provides a way to give the user control of the 
dependency graph in a construction step prior to execution.



Benefits of Separating Concerns

• A graph can be defined once and submitted as many times as 
required.

• Reduces latency when submitting commands to the device.

• Optimizations become available across the defined graph.



1Dheat example on GPU comparison

SYCL (default)

SYCL Graph (Proof-of-concept)

Intel® Core™ i7-6770HQ Processor with Intel® Iris® Pro Graphics 

580
https://github.com/reble/oneAPI-samples/tree/sycl-
graph/DirectProgramming/DPC%2B%2B/StructuredGrids/1d_HeatTransfer

Default SYCL

Modified for SYCL Graph extension



Related Work

• Splitting command  construction from execution is a proven 
solution.

• Lower-level APIs:
• Vulkan command-buffer

• OpenCL cl_khr_command_buffer extension (see IWOCL 2022 talk ) 

• Level Zero command-list

• CUDA-Graphs is an analogous feature in CUDA. 



Project Goals

1. Extension that integrates well into the SYCL standard.

2. Improve performance by explicit reuse of resources for specific 
workloads – small kernels with repetitive execution.

3. Support frameworks that can currently target CUDA Graphs:
• Tensorflow

• PyTorch

• GROMACS

• Kokkos



Extension 
Specification



sycl_ext_oneapi_graph

•Open development on GitHub https://github.com/reble/llvm

•Spec PR https://github.com/intel/llvm/pull/5626 of first 
revision

•Experimental extension
• APIs presented in this talk are subject to change, so any feedback you 

have is helpful.

• Additions in ext::oneapi::experimental namespace

https://github.com/reble/llvm
https://github.com/intel/llvm/pull/5626


Strongly typed 
graph object

• Strong typing makes the state 
of the graph clear to the 
reader.

• Consistent with SYCL kernel 
bundle design.

• Tied to a single device and 
context.



State Transition

Modifiable • Graph is under construction and new nodes may be 
added to it.

• Graph topology fixed and is ready for execution.
• Submitted for execution as many times as desired.

• Single point of overheads from optimization and 
construction of backend representation.

• Many executable state graphs can be created from a 
single modifiable state graph.

Executable

Finalize



Executable Graph Submission

• handler::depends_on can express 
graph submission dependencies.

• Subgraphs expressed naturally.



Graph Construction Mechanisms

Queue Recording API (Record & Replay)

• Capture command-groups submitted to a 
queue and recorded them in a graph.

Attributes:

• Easier to use when targeting an existing 
code base.

• External library calls can be captured to a 
graph.

Explicit Graph Building API

• User has direct access to graph building  
interface that adds nodes and edges.

Attributes:

• Working with node objects directly is more 
expressive.

• Easier to debug and less likely to trigger 
invalid usage.



Adding Nodes & Edges

Nodes

• A command-group 
submission to a queue being 
recorded by queue recording 
API.

• A command-group 
submission to explicit API 
method for adding nodes.

Edges

• Dependencies defined by 
sycl::buffer accessors.

• Using handler::depends_on() 
with an event returned by a 
queue recording submission.

• Two mechanisms in explicit API:
• Passing a list of dependent nodes 

on node creation.

• make_edge() method



SYCL SAXPY

compute

init



Record and Replay



Explicit API



Explicit API



Implementation 
Status



Enables oneDNN sycl_interop_usm
sample to run using extension with 

shown changes.

Implementation today supports:

• Kernel command nodes
• USM
• Level Zero backend
• Both graph construction APIs

oneDNN Example

https://gist.github.com/Bensuo/5c5eedd703dac8868a01720b0201988f

https://gist.github.com/Bensuo/5c5eedd703dac8868a01720b0201988f


PI command-buffer

• DPC++ has an intermediate C abstraction API called “PI” that is 
implemented by SYCL-2020 backends.

• We’ve extended this interface to add a new command-buffer 
type and entry-points.
• An extension similar to cl_khr_command_buffer additions 

to OpenCL.

• Provide an emulation mode to support sycl_ext_oneapi_graph
on backends we’ve not yet implemented our PI extension for.



PI Additions

API Addition Description

pi_ext_command_buffer New type representing a command-buffer.

piextCommandBufferCreate() Creates a command-buffer with optional 
properties.

piextCommandBufferFinalize() No more commands can be added to command-
buffer, and command-buffer is made ready to 
execute.

piextCommandBufferNDRangeKernel() Add a kernel command to the command-buffer.

piextEnqueueCommandBuffer() Submits a command-buffer for execution to a 
queue.

piextCommandBufferRetain() Increments reference count.

piextCommandBufferRelease() Decrements reference count.



PI Backend Mapping

PI API Addition Intel Level Zero1

OpenCL cl_khr_command_buffer
Extension2

CUDA Graphs2

pi_ext_command_buffer ze_command_list_handle_t

cl_command_buffer_khr cudaGraph_t

piextCommandBufferCreate zeCommandListCreate

clCreateCommandBufferKHR cudaGraphCreate

piextCommandBufferFinalize zeCommandListClose

clFinalizeCommandBufferKHR cudaGraphInstantiate

piextCommandBufferNDRangeKernel zeCommandListAppendLaunchKernel

clCommandNDRangeKernelKHR cudaGraphAddKernelNode

piextEnqueueCommandBuffer zeCommandQueueExecuteCommandLists

clEnqueueCommandBufferKHR cudaGraphLaunch

1. Implemented mapping    2. Intended  mapping 



Node/Edge Runtime Implementation

Node Implementation

• When a node is created by 
the graphs runtime code, the 
details about the command 
are extracted from the SYCL 
handler and stored in the 
node.

• Node is device specific as 
handler can use device 
information it normally gets 
from the queue.

Edge Implementation

• Graph runtime code bypasses 
existing scheduling to implement 
edges.

• Edges correspond to either
a) A new PI sync point type that 

defines dependencies within a PI 
command-buffer.

b) Graph partitioned into multiple 
command-buffers, synchronized 
with a PI event.



Future Work



Implementation Development

Goal - Complete implementation of extension revision 
1 merged into mainline DPC++.

• Implement executable graph update feature.

• Ensure that buffer accessors correctly form edges.

• Command-group functionality can be captured in a node yet:
• Host tasks
• SYCL streams
• Specialization constants



Specification Development

• Work towards a follow-up specification revision based on feedback:

• Graph owned memory allocations.

• A single graph having nodes targeting different devices.

• More than one submission of the same executable graph in-flight at 
once.

• Merge with kernel-fusion extension.

• See next talk “A SYCL Extension for User-Driven Online Kernel Fusion”.



Summary

• oneAPI vendor extension separating command construction from 
execution as a user accessible command graph.

• Benefits:
• Remove redundant command construction overheads from repeated 

submission of the same command sequence.

• Reduces latency when submitting commands to a device. 

• Provides optimization opportunities across the defined graph.



31


	Start
	Slide 1
	Slide 2
	Slide 3: Who we are
	Slide 4: Talk Agenda

	Motivation
	Slide 5: Motivation
	Slide 6: Benefits of Separating Concerns
	Slide 7: 1Dheat example on GPU comparison
	Slide 8: Related Work
	Slide 9: Project Goals

	Specification
	Slide 10: Extension Specification
	Slide 11: sycl_ext_oneapi_graph
	Slide 12: Strongly typed graph object
	Slide 13: State Transition
	Slide 14: Executable Graph Submission
	Slide 15: Graph Construction Mechanisms
	Slide 16: Adding Nodes & Edges
	Slide 17: SYCL SAXPY
	Slide 18: Record and Replay
	Slide 19: Explicit API
	Slide 20: Explicit API

	Implementation
	Slide 21: Implementation Status
	Slide 22: oneDNN Example
	Slide 23: PI command-buffer
	Slide 24: PI Additions
	Slide 25: PI Backend Mapping
	Slide 26: Node/Edge Runtime Implementation

	End
	Slide 27: Future Work
	Slide 28: Implementation Development
	Slide 29: Specification Development
	Slide 30: Summary
	Slide 31


