The 11th International workshop on OpenCL and SYCL

IWOCL & SYCLcon 2023

Accelerating Edge devices with SYCL

Dylan Angus, Codeplay

Svetlozar Georgiev, Hector Arroyo Gonzalez, James Riordan, Paul Keir and Mehdi Goli

April 18–20, 2023 | University of Cambridge, UK
Company

Leaders in enabling high-performance software solutions for new AI processing systems
Enabling the toughest processors with tools and middleware based on open standards
Established 2002 in Scotland, acquired by Intel in 2022 and now ~90 employees.

Supported Solutions

oneAPI
An open, cross-industry, SYCL™ based, unified, multiarchitecture, multi-vendor programming model that delivers a common developer experience across accelerator architectures

ComputeCpp
C++ platform via the SYCL™ open standard, enabling vision & machine learning e.g. TensorFlow™

ComputeAorta
The heart of Codeplay's compute technology enabling OpenCL™, SPIR-V™, HSA™ and Vulkan™

Collaborations

Enabling AI & HPC to be Open, Safe & Accessible to All

Markets

High Performance Compute (HPC)
Automotive ADAS, IoT, Cloud Compute
Smartphones & Tablets
Medical & Industrial

Technologies: Artificial Intelligence
Vision Processing
Machine Learning
Big Data Compute

And many more!
Who we are

• After years of collaboration and contribution to open standards alongside Intel, Codeplay Software is a subsidiary of Intel after an acquisition made this year.

• We will continue to operate as Codeplay Software and will work extensively with all relevant industries to advance the SYCL ecosystem, especially around oneAPI

• Codeplay is now working jointly with Intel to further advance the SYCL standard and the oneAPI open ecosystem.
What is Edge Computing?

- Distributed computing paradigm

- Encourages data to be processed and stored close to the source of origination.

- A direct result of compute resources being moved to a cloud-based framework

- Relevant in areas where bandwidth and latency are restricted and network stability, privacy, or security are un-reliable or insecure.

Figure 1. History of edge computing. [11]
Edge Computing Examples

• Autonomous agriculture robots [3]
 • Often have numerous cameras connected to the host
 • Processing needed in areas where there can be no reliable connection to a cloud-based platform

• Bridge surveying drones [4]
 • Mapping and path-planning are needed with low latency
 • Benefit from a lightweight, compact, low-powered device
 • Especially when there are size and energy consumption requirements.
What are Edge Devices?

Any piece of hardware that initially processes data as close to the origin as possible

- They can be the first entry point node into a wider (typically) cloud-based network of processing nodes filtering out unnecessary data and/or doing initial processing before passing on to the rest of the network.
- Work as small but compact computers, leverage onboard accelerators to tackle various Robotics, Computer Vision and AI tasks directly on the device without needing an external connection.
Why are they important?

• Reduces latency and memory usage in network by filtering data

• In areas where bandwidth and latency are restricted and network stability, privacy, or security are un-reliable they act as localised processing nodes.
Use Case (In Progress)

- Part of on-going work in aerial scene understanding through multi-class classification.
- Radar gathers points from around the scene and generates a point cloud of 2048 points at a frequency of 10Hz-20Hz.
- Using the PointNet Neural Network model we digest the point cloud and perform a classification task.
- A Jetson Xavier NX edge device is used to accelerate the model through the Onnxruntime framework.
- The Jetson benefits from being lightweight and portable, while pro due to latency and energy constraints.
- Full details of work to be published soon.

Figure 4. Radar and drone used in use-case.
Jetson Xavier NX

OS: Ubuntu 18.04

GPU:
- 384 NVIDIA CUDA cores
- 48 Tensor cores
- 2x NVDLA Engines
- GPU Max Frequency
 - 1100 MHz

CPU:
- 6-core NVIDIA Carmel ARM v8.2 64-bit
- 6 MB L2 + 4 MB L3 Cache
- CPU Max Frequency
 - 2-core @ 1900MHz
 - 4/6-core @ 1400MHz

Figure 5. Jetson Xavier NX Device. [12]
Open Neural Network Exchange (ONNX) [5] is an open-source artificial intelligence ecosystem of technology companies and re-search organizations that establish open standards for representing machine learning algorithms and software tools.

ONNXRuntime [6] is the model loading library that implements the ONNX standard for different backends (E.g., CPU, CUDA, SYCL)

Using the implemented SYCL backend of ONNXRuntime we build on work introduced in [2]

Namely we enabled ONNXRuntime on an edge device and then tune the kernels [8] of our SYCL backend through SYCL-DNN [9] and SYCL-BLAS [7]
PointNet

- PointNet [10] is a Neural Network Model capable of digesting a point cloud and performing Classification, Part Segmentation and Semantic Segmentation.

- Leverages heavy matrix multiplication-based operators to perform tasks.

- Well suited to handle the point cloud generated by the radar used on top of the drone.

- Relies heavily on matrix-multiplication based operators which we will show benefit greatly from our kernel tuning.

Figure 6 showing different scene understanding use cases of Point Net. [10]

Figure 7 showing Point Net model architecture. [10]
Enabling with DPC++

• From Source
 • Cloned source from https://github.com/intel/llvm
 • Commit Hash 4a4702e2e992
 • Compiled with AArch64 as the host target and CUDA as the device target
 • CUDA version 10.2

• From Binaries (Not currently available)
 • Install oneAPI Base Toolkit from Intel
 • Install oneAPI for CUDA add-on from Codeplay
Benchmark Configurations

• Configurations Details and Workload Setup:
 • Hardware:
 • 384-core NVIDIA Volta™ GPU with 48 Tensor Cores
 • 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU
 • 8 GB 128-bit LPDDR4x
 • Software:
 • Ubuntu 18.04.5 LTS
 • Kernel Version: 4.9.201-tegra
 • L4T 32.5.1 [JetPack 4.5.1]
 • CUDA 10.2.89
 • CUDNN 8.0.0.180
 • SYCL Open Source Clang 17.0.0
 • Compiler switches: -fsycl-targets=nvptx64-nvidia-cuda
 • NVIDIA-NVCC V10.2.89
 • Compiler switches: -O3 -gencode -arch=compute_72, code=sm_72

• All Benchmarks were run for 1000 iterations on the 15W 2CPU configuration mode unless otherwise specified.

• We compared results were compared to the CUDA backend of Onnxruntime to the SYCL backend targeting the GPU through DPC++.

• Testing Date: Performance results are based on testing by Codeplay as of April 6th, 2023, and may not reflect all publicly available updates.

• Performance varies by use, configuration and other factors.
Initial Operator Performance

CUDA Operator Time Distribution

SYCL (89.5 ms) vs CUDA (16.3 ms) Operator Time

SYCL Operator Time Distribution

See backup for workloads and configurations. Results may vary.
Fallbacks

• ONNX only supports NCHW format while SYCL-DNN primarily supports and is optimised for NHWC

• Unnecessary transposes were added into the model during conversion to ONNX format.

• Concat, Broadcasted BinaryOp, Softmax and Pooling implementations need to be optimised

• CUDA backend leveraged Jetson's TensorCores while the SYCL backend didn't
Graph Improvements

• Removed Unnecessary transposes and other redundant operators

• Converted 1D Convolutions to MatMul's

• Tiled the static binary operator input offline to avoid runtime broadcast
Operator Performance After Graph Improvements

See backup for workloads and configurations. Results may vary.
Nvidia Tensor Cores

• Programmable dedicated matrix-multiply-and-accumulate units

• Each Tensor Core provides a 4x4x4 matrix processing array which performs the operation \(D = A \times B + C \), where \(A, B, C \) and \(D \) are 4x4 matrices

• Each Tensor Core performs 64 floating point FMA mixed-precision operations per clock (FP16 input multiply with full-precision product and FP32 accumulate)

• Interface provide specialized matrix load, matrix multiply and accumulate, and matrix store operations to enable cores.

Figure 8. Visualisation of the tensor core throughput on the Volta architecture versus the Pascal standard CUDA cores architecture. [13]
Joint Matrix Support

• Experimental matrix extension to DPC++

• Generalised interface intended to unify different tensor hardware: Intel® Advanced Matrix Extensions (Intel® AMX), Intel® Xe Matrix Extensions (Intel® XMX) and Nvidia® Tensor Cores

• SYCL-BLAS now supports sub-group based collective GEMM operation which is used by the MatMul operation

• Support can be enabled or disabled at runtime through the environmental variable SB_ENABLE_JOINT_MATRIX
Kernel Tuning

- SYCL-BLAS and SYCL-DNN exposes underlying kernel configurations through templates.

- Allowing kernels to be tuned to specific devices as seen and shown in [7]

- We were able to extend the configuration space to include the joint matrix parameters as well.

See backup for workloads and configurations. Results may vary.
Configuration Selection

- The same top configurations do well when grouped with similar sized operations

- This allows us to save on library size as we can reuse the same kernel specification for multiple nodes

See backup for workloads and configurations. Results may vary.
MatMul Performance With Tuned Joint Matrix

- Tuned Joint Matrix implementation yielded a ~20% improvement from baseline

- Tuned Joint Matrix implementation has ~86% performance of the CUDA implementation

See backup for workloads and configurations. Results may vary.
Energy Analysis

• The Jetson is highly configurable
• GPU, CPU and EMC clock frequencies are adjustable
• Control over the number of CPU cores being used
• Made use of the 15W mode with 2 CPU Cores and 10W mode with 2 CPU Cores configurations
Energy Analysis

- JM SYCL backend achieved 97% of the performance of the CUDA backend in 10W mode vs the 86% performance in the 15W mode.

- JM SYCL backend in 10W had a 28% improvement from its baseline.

- JM SYCL backend in 10W outperformed the 15 mode SYCL backend without JM.

See backup for workloads and configurations. Results may vary.
MatMul Shape Analysis

- SYCL backend performs worse for smaller sizes. This may be fixed by on-going work in SYCL Graphs.
- Found a performance bug for the shape [3, 3, 2048].
- JM SYCL outperforms CUDA for the two largest matrix shapes.

See backup for workloads and configurations. Results may vary.
Energy Analysis of Overall Execution

- Overall comparable performance between the SYCL backend and the CUDA backend.

- For both the 10W and 15W mode the SYCL backend is operating at about 62% the performance of CUDA with major room for improvement.

- More than capable of operating at the 10Hz-20Hz execution frequency needed for use case.

See backup for workloads and configurations. Results may vary.
Future Work

- Improve performance in other operators like Concat, Transpose, Softmax and Pooling
- Enable performant NCHW Convolution implementations
- Target the onboard ARM CPU and RISC-V core through DPCPP native CPU compiler for SYCL.
- Target RISC-V/RVV accelerator via DPCPP through ComputeAorta
- Enable and Investigate performance on FPGA development boards
- Look out for a journal entry describing the full drone-radar use-case!
References

Notices & Disclaimers

Performance varies by use, configuration and other factors.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure.
Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Codeplay Software Ltd.. Codeplay, Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.