
SYCLomatic compatibility library:
Making Migration to SYCL Easier

Andy Huang, Software Engineer
April 2023

2

Notices & Disclaimers

All product plans and roadmaps are subject to change without notice.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex. Results may vary.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details.
No product or component can be absolutely secure.

Intel technologies may require enabled hardware, software or service activation.

Results have been estimated or simulated.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

Other names and brands may be claimed as the property of others.

SYCL is a trademark of the Khronos Group Inc.

http://www.intel.com/PerformanceIndex

3

Agenda

• The Background of SYCLomatic

• Design Philosophy

• Addressing Semantic Difference

• Accessibility of sycl::queue

• Pointer-like memory operations for targets, which don’t support USM

• Interface to fetch image

• Compatible APIs

• Atomic operations

• Utility function for memory allocation

• Utility function for 2D/3D memory operation

• Compatible APIs to popular CUDA libraries

• Summary / Call to Action

4

Background of SYCLomatic
• Collect compilation options of the

Developer’s CUDA* source from project build
scripts, eg. Makefile, vcxproj file

• Assist developers migrating code written in
CUDA to SYCL* by generating SYCL code
wherever possible

• Typically, 90%-95%+ of CUDA code
automatically migrates to SYCL code

• Inline comments are provided to help
developer complete and tune the code

+ Intel estimates as of September 2021. Based on measurements on a set of 70 HPC benchmarks and
samples, with examples like Rodinia, SHOC, PENNANT. Results may vary.

*Other names and brands may be claimed as the property of others.

5

Design Philosophy

• Assisting the migration of SYCLomatic through addressing
• Difference in language API design
• Difference in runtime/library API design

• Friendly interface for developers
• Can be used as a standalone library without SYCLomatic

• Performance Aspirations
• To minimize the performance impact caused by the compatibility library APIs
• To leverage the performance benefit of SYCL runtime and SYCL library

• Maintainability
• Keeping backward compatibility
• Targeting reusable class/API design

6

Addressing Semantic Difference – sycl::queue

Difference

• Missing context to record the device selection in
the current thread

• Programmer needs to select the device every time
before getting a queue

• No default sycl::queue is available in sycl::device
• Programmer needs to passing the created queue

around the host functions

• No single API call to synchronize all queues on a
device

Solution

• Singleton class dev_mgr
• Keeping a map to record the thread’s tid and the

selected device

• A class device_ext for each device
• The “default queue”

• Recording all the created queue in the device

7

Addressing Semantic Difference – sycl::queue (example)

__global__ void kernel_foo() {}

int foo() {
kernel_foo<<<1,1,0>>>();

}

int foo2() {
cudaSetDevice(1);

}

void kernel_foo() {}

int foo() {
dpct::get_default_queue().parallel_for(

sycl::nd_range<3>(sycl::range<3>(1, 1, 1),
sycl::range<3>(1, 1, 1)),
[=](sycl::nd_item<3> item_ct1) {
kernel_foo();

}
);

}

int foo2() {
dpct::select_device(1);

}

8

Addressing Semantic Difference –
Pointer-like memory operations for targets, which don’t support USM

Difference

• Pointer-like operations are used by CUDA
programmers

Solution

• Singleton class mem_mgr
• Creating a “virtual” pointer for each device memory

allocation

• Providing a function to retrieve the accessor from a
“virtual pointer”

int foo() {
float *h_A = (float *)malloc(size);
float *d_A = NULL;

cudaMalloc((void **)&d_A, 100);
cudaMemcpyAsync(d_A, h_A, size,
cudaMemcpyHostToDevice);

}

int foo() {
float *h_A = (float *)malloc(size);
float *d_A = NULL;

d_A = (float *)dpct::dpct_malloc(100);
dpct::async_dpct_memcpy(d_A, h_A, size,
dpct::host_to_device);

}

9

Addressing Semantic Difference –
Flexible interface to fetch Image data
Difference

• CUDA workflow:
• Allocating device memory

• Creating texture

• Binding a texture to the memory

• SYCL image workflow:
• The memory is allocated when sycl::image is

constructed

• The format, dimension and pitch of the image cannot
be changed

Solution

• When migrating cudaBindTexture()
• Recording the device pointer, dimension and channel

info into an image_wrapper

• Lazy constructing the sycl::image base on the
info in the image_wrapper when needed

10

Addressing Semantic Difference –
Flexible interface to fetch Image data (example)

static texture<float4, 2> tex42;

__global__ void kernel() {
float4 f42 = tex2D(tex42, 1.0f, 1.0f);

}

int foo(){
float4 *d_data42;
auto tex42_ptr = &tex42;
cudaMalloc(&d_data42, sizeof(float4) * 32 * 32);

cudaBindTexture2D(0, tex42_ptr, d_data42,
&tex42.channelDesc,
32 * sizeof(float4), 32,
32 * sizeof(float4));

kernel<<<1, 1>>>();

}

dpct::image_wrapper<sycl::float4, 2> tex42;

void kernel(dpct::image_accessor_ext<sycl::float4, 2> tex42) {
sycl::float4 f42 = tex42.read(1.0f, 1.0f);

}

int foo() {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::float4 *d_data42;
auto tex42_ptr = &tex42;
d_data42 = (sycl::float4 *)sycl::malloc_device(sizeof(sycl::float4) * 32 * 32,

q_ct1);
tex42_ptr->attach(d_data42, 32 * sizeof(sycl::float4), 32,

32 * sizeof(sycl::float4), tex42.get_channel());

q_ct1.submit([&](sycl::handler &cgh) {
auto tex42_acc = tex42.get_access(cgh);
auto tex42_smpl = tex42.get_sampler();
cgh.parallel_for(

sycl::nd_range<3>(sycl::range<3>(1, 1, 1), sycl::range<3>(1, 1, 1)),
[=](sycl::nd_item<3> item_ct1) {
kernel(

dpct::image_accessor_ext<sycl::float4, 2>(tex42_smpl, tex42_acc));
});

});

11

Compatible APIs –
Free functions for atomic operation

Difference

• In SYCL 2020, atomic operations require 2 steps:
• Constructing an atomic_ref

• Performing the required operation on the created
atomic_ref

Solution

• Free functions to wrap the 2 steps in a single
function call

__device__ void addByte(unsigned int *s_WarpHist,
unsigned int data) {

atomicAdd(s_WarpHist + data, 1);
}

__device__ void addByte(unsigned int *s_WarpHist,
unsigned int data) {

dpct::atomic_fetch_add<sycl::access::address_space::generic_space>(
s_WarpHist + data, 1);

}

12

Compatible APIs –
Utility Classes to simplify device memory allocation
Difference

• SYCL does not provide features to declare
static/global variable for device

Solution

• Class constant_memory to recording the
dimension/default value

• Allocate device memory only when needed

• Create accessor only when needed

__constant__ int t1;
__constant__ float t2[4][5];

__global__ void kernel() {
int a = t1;

}

int foo() {

kernel<<<1, 1>>>();

}

static dpct::constant_memory<int, 0> t1;
static dpct::constant_memory<float, 2> t2(4, 5);

void kernel(int t1) {
int a = t1;

}

int foo() {
dpct::get_default_queue().submit([&](sycl::handler &cgh) {
t1.init();
auto t1_ptr_ct1 = t1.get_ptr();
cgh.parallel_for(

sycl::nd_range<3>(sycl::range<3>(1, 1, 1), sycl::range<3>(1, 1, 1)),
[=](sycl::nd_item<3> item_ct1) {
kernel(*t1_ptr_ct1);

});
});

}

13

Compatible APIs –
2D and 3D Memory Operations
Difference

• SYCL does not provide function to
allocate/copy/set 2D or 3D memory

• Cannot copy to certain range like
cudaMemcpy2DAsync()

Solution

• Adding free functions to
• Handling pitch size during allocation

• Recording pitch information

• Provide copy to range feature

int foo() {

int size = 10 * sizeof(float);
int pitch_des = size, pitch_src = size;
int width = size, height = size;
float *h_A = (float *)malloc(size);
float *d_A = NULL;

cudaMalloc((void **)&d_A, size);
cudaMemcpy2DAsync(d_A, pitch_des, h_A, pitch_src,
width, height, cudaMemcpyHostToDevice, cudaStreamDefault);

}

int foo() {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();

int size = 10 * sizeof(float);
int pitch_des = size, pitch_src = size;
int width = size, height = size;
float *h_A = (float *)malloc(size);
float *d_A = NULL;

d_A = (float *)sycl::malloc_device(size, q_ct1);
dpct::async_dpct_memcpy(d_A, pitch_des, h_A, pitch_src, width, height,

dpct::host_to_device);
}

14

Compatible APIs –
Compatible APIs for popular CUDA libraries
Difference

• Libraries which provide similar feature may have
quite different API design concept

• For example
• curand(CUDA) workflow:

curandGenerator_t can set generator type dynamically
after been constructed

• oneapi::mkl::rng(Intel® oneAPI) workflow:
The type of generator cannot be changed after
construction

Solution

• Adding utility class/functions for different cases

• In the case of curand,
• Adding template class which take generator type as a pointer

and the class is derived from a non-template base class

• Using the base class to migrate curandGenerator_t

• Creating new mkl generator and updating the pointer when
changing the generator

• Current supported libraries:
• BLAS, CCL, DNN, STL algorithm, FFT, Rand

15

Summary / Call-to-Action

• The compatibility library simplify the auto migration process of SYCLomatic

• The friendly API design can help developers to create SYCL-based projects with less effort

• Future work
• Trying to promote some APIs to SYCL spec/extension

• Improving coverage of popular libraries

• Providing more detailed spec of the compatibility library

• Call for contribution: SYCLomatic & SYCLomatic test

https://github.com/oneapi-src/SYCLomatic
https://github.com/oneapi-src/SYCLomatic-test/tree/SYCLomatic/help_function

16

More Resources

• SYCLomatic Project on GitHub: GetStartedGuide.md, Contributing.md guide

• Get started developing
• Book: Mastering Programming of Heterogeneous Systems using C++ & SYCL

• Essentials of SYCL training

• The oneAPI samples on Github

• oneAPI specification and SYCL specification

• Intel® oneAPI Toolkits

• Intel® DevCloud - A free environment to access Intel® oneAPI Tools and develop and test
code across a variety of Intel® architectures (CPU, GPU, FPGA)

• CodeProject: Using oneAPI to convert CUDA code to SYCL

https://github.com/oneapi-src/SYCLomatic
https://github.com/oneapi-src/SYCLomatic/blob/main/GetStartedGuide.md
https://github.com/oneapi-src/SYCLomatic/blob/main/CONTRIBUTING.md
https://protect-eu.mimecast.com/s/P9FyCjvlRipPPWgT5ya8e?domain=link.springer.com
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/dpc-essentials.html
https://github.com/oneapi-src/oneAPI-samples
https://spec.oneapi.io/releases/index.html#id1
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://protect-eu.mimecast.com/s/Whb3C026RU6ZZ1jTwUMjj?domain=codeproject.com

	Slide 1: SYCLomatic compatibility library: Making Migration to SYCL Easier
	Slide 2: Notices & Disclaimers
	Slide 3: Agenda
	Slide 4: Background of SYCLomatic
	Slide 5: Design Philosophy
	Slide 6: Addressing Semantic Difference – sycl::queue
	Slide 7: Addressing Semantic Difference – sycl::queue (example)
	Slide 8: Addressing Semantic Difference – Pointer-like memory operations for targets, which don’t support USM
	Slide 9: Addressing Semantic Difference – Flexible interface to fetch Image data
	Slide 10: Addressing Semantic Difference – Flexible interface to fetch Image data (example)
	Slide 11: Compatible APIs – Free functions for atomic operation
	Slide 12: Compatible APIs – Utility Classes to simplify device memory allocation
	Slide 13: Compatible APIs – 2D and 3D Memory Operations
	Slide 14: Compatible APIs – Compatible APIs for popular CUDA libraries
	Slide 15: Summary / Call-to-Action
	Slide 16: More Resources
	Slide 17

