
IWOCL

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 2

Agenda

▪ Intel® FPGA SDK for OpenCL™

▪ Optimizing ND Range Kernels

▪ Single Work-Item Execution

▪ Using Channels / Pipes

▪ Optimizing Memory

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 3

Innovation Across the Board

FPGA/CPLD

Lowest Cost,

Lowest Power

PowerSoCs

High-efficiency

Power Management

FPGA

Cost/Power Balance

SoC & Transceivers

Development
Kits

Embedded Soft and
Hard Processors

FPGA

Mid-range FPGAs

SoC & Transceivers

FPGA

Optimized for

High Bandwidth

Intellectual
Property (IP)

▪ Industrial

▪ Computing

▪ Enterprise

Design
Software

Nios® II

Resources

Arm*

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 5

Intel® FPGA SDK for OpenCL™ Section Agenda

▪ Introduction

▪ Intel® FPGA SDK for OpenCL™ Usage

▪ Overview of Debug and Optimizing Reports

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group

Binary
Programming

File

Offline Compiler

(OpenCL Kernel Compiler)

Standard C

Compiler

Executable
File

OpenCL

Host Program

6

Intel® FPGA SDK for OpenCL™ Usage

OpenCL

Kernels

Intel FPGA OpenCL Libraries

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 7

FPGA Architecture

▪ Massive Parallelism

– Millions of logic elements

– Thousands of embedded memory blocks

– Thousands of Variable Precision DSP blocks

– Programmable routing

– Dozens of High-speed transceivers

– Various built-in hardened IP

▪ FPGA Advantages

– Custom hardware!

– Efficient processing

– Low power

– Ability to reconfigure

– Fast time-to-market

Programmable

Routing Switch

Logic

Modules

Lookup

Table

FFFFFFFF

Adaptive Logic Module (ALM)

DSP Block

Programmable Solutions Group 8

FPGA Architecture for OpenCL™ Implementation

FPGA

Kernel

Pipeline

Kernel

Pipeline

Host Interface

D
D

RProcessor

External

Memory Controller

& PHY

On-Chip

Memory

Global Memory Interconnect

External

Memory Controller

& PHY

Custom Built

Kernel System

On-Chip

Memory

Local Memory InterconnectLocal Memory Interconnect

Precompiled periphery (BSP)

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 9

OpenCL™ Kernels to Dataflow Circuits

Each kernel is converted into custom dataflow hardware (Compute Unit)

▪ Gain the benefits of FPGAs without the length design process

▪ Implement C operators as circuits

– HDL code located in <SDK Installation>\ip

– Load Store units to read/write memory

– Arithmetic units to perform calculations

– Flow control units

– Connect circuits according to data flow in the kernel

▪ May replicate circuit to accelerate algorithm

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 10

Compilation Example

Kernel compiled into dataflow circuit with flow control

▪ Includes branch and merge units For Entry

For End

__kernel void my_kernel (__global float *a,

__global float *b,

__global float *c,

int N)

{

int i;

for (i = 0; i < N; i++)

c[i] = a[i] + b[i];

}

aoc

Load a[i] Load b[i]

a[i] + b[i]

Store c[i]

Programmable Solutions Group 11

Pipeline Execution of NDRange Kernels and Loops

▪ For NDRange work-items and loop iterations

▪ On each cycle the portions of the pipeline are processing different threads

▪ While work-item 2 is being loaded, work-item 1 is being added, and work-item

0 is being stored

Load

Load

+

Store01234567

Example Workgroup with 8 work-items

Thread IDs

1234567

0

0

234567

0

0

1

1

34567

1

1

0

2

2

4567

2

2

1 0

3

3

Programmable Solutions Group 12

Simultaneous Multithreading Execution Model

Tasks distributed through multiple queues can run in parallel

▪ Same device or multiple devices

▪ AOC implements dedicated compute units for each kernel

– Different kernels can run in parallel

u = foo(x);
y = bar(x);

Q1.clEnqueueNDrangeKernel(cl_foo,…)
Q2.clEnqueueNDrangeKernel(cl_bar,…)

Device

Implicit Parallelism

in Algorithm

Task Parallelism in

OpenCL™ implementation

foo_CU

bar_CU

Sequential execution

with one queue

myqueue.enqueueNDRangeKernel(cl_foo,…)
myqueue.enqueueNDRangeKernel(cl_bar,…)

cl_bar, cl_fooK1 K2
K1

K2
cl_bar

cl_foo

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 13

Intel® FPGA SDK for OpenCL™ Section Agenda

▪ Introduction

▪ Intel® FPGA SDK for OpenCL™ Usage
– SDK Content - AOCL Utility

– Kernel Compilation - Runtime

– Host Compilation - Libraries

▪ Overview of Debug and Optimizing Reports

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 14

SDK Components

▪ Offline Compiler (AOC)

– Translates your OpenCL™ C kernel source file into an Intel® FPGA hardware image

– Requires Intel Quartus® Development Environment

▪ Host Libraries

– Provides the OpenCL host API to be used by OpenCL host applications

▪ AOCL Utility

– Perform various tasks related to the board, drivers, and compile process

▪ Intel Code Builder for OpenCL API with FPGA kernel development framework

– Provides Microsoft* Visual Studio or Eclipse-based IDE for code development

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 15

Compiling Kernels

Run the Offline Compiler

▪ aoc -list-boards

– List available boards within the current board package

▪ aoc –board=<board> <kernel file>

– Compile the kernel to a board in the board package

– Generates the kernel hardware system and compiles it using

the Intel® Quartus® Prime software to target a specific board

Offline

Compiler

AOCX

__kernel void sum

(__global float *a,

__global float *b,

__global float *y)

{

int gid = get_global_id(0);

y[gid] = a[gid] + b[gid];

}

Programmable Solutions Group 16

OpenCL™ Libraries

Create libraries from RTL or OpenCL™ source and call those library functions

from User OpenCL code

VHDL

OpenCL™

Verilog

Library AOC

User’s OpenCL

code

AOCX

See the Intel® FPGA SDK for OpenCL Programming Guide for detailed examples

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 17

aoc Output Files

▪ <kernel file>.aoco

– Intermediate object file representing the created hardware system

▪ <kernel file>.aocx

– Kernel executable file used to program FPGA

▪ Inside <kernel file> folder

– <kernel file folder>\reports\report.html

– Interactive HTML report

– Static report showing optimization, detailed area, and architectural information

– <kernel file>.log compilation log

– Intel® Quartus® Prime software generated source and report files

Programmable Solutions Group 18

Intel FPGA Preferred Board for OpenCL

▪ Intel® FPGA Preferred Board for OpenCL™

– Available for purchase from preferred partners

– Passes conformance testing

▪ Download and install Intel FPGA OpenCL compatible BSP from vendor

– Supplies board information required by the offline compiler

– Provides software layer necessary to interact with the host code including drivers

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group

Framework of host software and FPGA interface design to enable the use of

OpenCL™ on a custom board

▪ FPGA design, software, and board bring up skills required

▪ Custom BSP provides

– Timing-closed Hardware

– MMD software layer

– Some AOCL utility function

Host Software FPGA Board Hardware

19

Custom Platform

MMD

HAL

Interface
OpenCL

kernel

DDR / QDR

DMA

IP/XCVR

OpenCL Lib

User OpenCL host

application

User Application
Provided by Intel®

FPGA

User-Provided Custom

Platform

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 20

Compiling the Host Program

▪ Include CL/opencl.h or CL/cl.hpp

▪ Use a conventional C compiler (Visual Studio*/GCC)

▪ Add $INTELFPGAOCLSDKROOT/host/include to

your file search path

– Recommended to use aocl compile-config

▪ Link to Intel® FPGA OpenCL™ libraries

– Link to libraries located in the
$INTELFPGAOCLSDKROOT/host/<OS>/lib directory

– Recommended to use aocl link-config

Standard

C Compiler

main() {

read_data(…);

manipulate(…);

clEnqueueWriteBuffer(…);

clEnqueueNDRange(…,sum,…);

clEnqueueReadBuffer(…);

display_result(…);

}

Intel FPGA

Libraries

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 21

Intel® FPGA SDK for OpenCL™ Section Agenda

▪ Introduction

▪ Intel® FPGA SDK for OpenCL™ Usage

▪ Overview of Debug and Optimizing Reports

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 22

Kernel Development Flow and Tools

Modify kernel.cl

Emulator (secs)

HTML Report (~1 min)

Loop Optimization Report

Detailed Area Report

Architectural Viewer

Profiler (full compile time)

Functional bugs?

Loop inefficiencies?

Undesired hardware structure?

Sub-optimal memory

interconnect?

Done

Poor performance?

Programmable Solutions Group 23

Debugging Kernels Using printf

printf instructions in kernels are supported

▪ Conforms to OpenCL™ 1.2 specification

– No usage limitations

– Can use inside if-then-else statements, loops, etc.

▪ Order of concurrent calls (from different work-items) are not guaranteed

▪ aoc allocates 64kB global buffer for printfs

– Once kernel execution completes, contents are printed to standard output

– If the buffer overflows, kernel execution stalls until the host reads and prints the

buffer contents

▪ Due to global memory use, printf will impede performance

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group

Enable kernel functional debug on x86 systems

▪ Quickly generate x86 executables that represent the kernel

▪ Debug support for

– Standard OpenCL™ syntax, Channels, Printf statements

▪ Set environment prior to executing host application

24

Emulator

aoc –march=emulator <kernel file>

aoc

Compiler

./kernel_tb…

…

Running …

kernel void accel(…) {

…

gid = get_global_id(0);

out[gid]=proc(data[gid]);

…

}

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

set CL_CONTEXT_EMULATOR_DEVICE_INTELFPGA=<target board>

Programmable Solutions Group 25

HTML Report

Static report showing optimization, area, and architectural information

▪ Automatically generated with the object file (aoc –c)

– Located in <kernel file folder>\reports\report.html

▪ Dynamic reference information to original source code

▪ Sections

– Loop Analysis

– Area Report

– Architectural Viewer

– Kernel Memory Viewer

Programmable Solutions Group 26

HTML Loop Analysis Optimization Report

▪ Actionable feedback on pipeline status of loops

– Shows loop carried dependencies and bottlenecks

– Especially important for single work-item kernels since they have an outer loop

▪ Shows loop unrolling status

▪ Shows loop nesting relationship

Programmable Solutions Group 27

HTML Area Report

Generate detailed estimated area utilization report of kernel code

▪ Detailed breakdown of resources by source line or by system blocks

▪ Provides architectural details of HW

– Suggestions to resolve inefficiencies

Programmable Solutions Group 28

HTML System Viewer

▪ Displays kernel pipeline implementation and memory access implementation

▪ Visualize

– Off-chip memory

– Load-store units

– Accesses

– Stalls

– Latencies

– On-chip memory

– Implementation

– Accesses

Programmable Solutions Group 29

HTML Kernel Memory Viewer

Helps you identify data movement bottlenecks in

your kernel design. Illustrates:

▪ Memory replication

▪ Banking

▪ Implemented arbitration

▪ Read/write capabilities of each memory port

Programmable Solutions Group 30

1. Compile kernel with -profile option

– Inserts profiling counters into the HW

2. Run host application

– Generates profile.mon file

3. View data using the profiler GUI

Dynamic Profiler

aoc -profile <kernel file>

aocl report <kernel file>.aocx profile.monKernel Pipeline

Load

Store

+

Load

Programmable Solutions Group 31

Profiler Reports – Source Code Tab

Displays statistics about memory and channel accesses

Stall%: Percentage of time current data

access is causing pipeline stalls

Occupancy%: Percentage of overall profile

time when the current data access is active

Bandwidth: Average memory bandwidth

for the current memory access

Efficiency: % of data acquired that the

kernel program actually uses

Tooltip available also shows: Cache Hit %, Unaligned Access %, Coalesced, Average Burst Size, and Activity%

Programmable Solutions Group 32

Profiler Reports – Kernel Execution Tab

▪ Illustrates the execution time of each kernel

▪ Shows interactions between different kernel executions

▪ May display memory transfers between the host and devices

– To enable, set the environment variable ACL_PROFILE_TIMER to 1

Programmable Solutions Group 33

Profiler Reports – Kernel Summary Tab

▪ Reports memory bursts, stalls and bandwidth

▪ Each kernel has a separate memory tab

Programmable Solutions Group 34

▪ Demonstrates concepts in this class

▪ Located on the website

▪ Matrix-matrix multiply mathematics

– A is an n x m matrix

– B is an m x p matrix

– Product (AB) is an n x p matrix

▪ Equation

Matrix Multiplication Design Example

https://www.altera.com/support/support-resources/design-examples/design-software/opencl/matrix-multiplication.html

𝐴𝐵 𝑖𝑗 =

𝑘=1

𝑚

𝐴𝑖𝑘𝐵𝑘𝑗

https://www.altera.com/support/support-resources/design-examples/design-software/opencl/matrix-multiplication.html

Programmable Solutions Group 35

Matrix Multiplication Naïve Implementation

▪ NDRange implementation of (2048x1024) x (1024x1024) matrix multiply

▪ Each work-item calculates one result in the product matrix

#define WIDTH 1024

void matrixMul(__global float *restrict C,

__global float *restrict A,

__global float *restrict B)

{

float Csub = 0.0f;

int x = get_global_id(0);

int y = get_global_id(1);

for (int i = 0; i < WIDTH; i++) {

Csub += A[y * WIDTH + i] * B[x + WIDTH * i];

}

C[y * WIDTH + x] = Csub;

}

Loops across matrix A

and down matrix B for

each result

Programmable Solutions Group 36

Matrix Multiplication Naïve Implementation

▪ One Compute Unit created

▪ 1 multiplication and 1 adder created

▪ At 400Mhz, would result in 0.8 GFLOPs

– Theoretical maximum computation

bandwidth of circuit

▪ And that’s not even the bottleneck

– next slide

*

+

sum Load A Load B

New sum

valid_in_1valid_in_0

valid_out

Programmable Solutions Group 37

Matrix Multiplication (Naïve) Profiler Report

▪ Profiler ran for execution on Stratix® V board

– 11 seconds to execute

– Total amount of data read: 11s x (1,300 MB/s + 7400 MB/s) ≈ 95GB

– Total input size = 3M floats x 4 bytes/float = 12 MB

– Data being accessed repeatedly (~8000x)

▪ Issues with initial implementation: High stall, medium occupancy, low efficiency

▪ Profiling Store: Extremely low occupancy, rarely-used LSU, Don’t Care

Programmable Solutions Group 39

Optimizing ND Range Kernel Execution Agenda

▪ Workgroup Size

▪ Loop Unrolling

▪ Kernel Vectorization

▪ Kernel Compute Unit Replication

Programmable Solutions Group 40

Workgroup Characteristics

▪ Work-items within a workgroup can share local data and synchronize

▪ OpenCL™ workgroup size rules

– NDrange must be evenly divisible by workgroup size in each dimension

– Set at kernel launch time by the host local_work_size argument in the

clEnqueueNDRangeKernel call

– All work items from the same workgroup assigned to the same CU at the same time

▪ Optimal workgroup size determined by the hardware

▪ FPGA compute unit workgroup limit can be set by kernel attributes

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 41

Specifying Work-Group Size Attributes

Allow AOC to allocate the optimal amount of hardware resources to manage and

synchronize the work-items in a workgroup

– Allows work-group size optimized code

▪ max_work_group_size(N)

– Specifies the maximum number of work-items in a workgroup

▪ reqd_work_group_size(X,Y,Z)

– Specifies the required work-group size

__attribute__((reqd_work_group_size(64,64,1)))

__kernel void mykernel (…) {

…

}

__attribute__((max_work_group_size(256)))

__kernel void mykernel (…) {

…

}

Programmable Solutions Group 42

Query Kernel CU Workgroup Requirements

Use clGetKernelWorkGroupInfo to query Kernel CU workgroup size limit

▪ Use the following param_names

– CL_KERNEL_WORK_GROUP_SIZE

– Maximum workgroup size the compute unit supports

– CL_KERNEL_COMPILE_WORK_GROUP_SIZE

– Work-group size specified by kernel attribute reqd_work_group_size(X,Y,Z)

– If none exist, will return (0,0,0)

cl::Kernel::getWorkGroupInfo (mydeviceid, CL_KERNEL_WORK_GROUP_SIZE,

¶m_value)

Kernel Object Device ID param_name

param_value: pointer to return value

Programmable Solutions Group 43

Setting Workgroup Size – Host Code Examples

▪ Recommended to specify the workgroup size when launching kernels on the

Intel® FPGA platform

– Setting local_work_size to NULL may result in an undesirable workgroup size

//1D Work-Group Example

int err;

size_t const globalWorkSize = 1920;

size_t const localWorkSize = 8;

err=myqueue.enqueueNDRangeKernel(1dkernel, cl::NullRange, cl::NDRange(globalWorkSize),

cl::NDRange(localWorkSize));

//3D C Work-Group Example

err=myqueue.enqueueNDRangeKernel(3dkernel, cl::NullRange, cl::NDRange(512,512,512),

cl::NDRange(16,8,2));

Programmable Solutions Group 44

Matrix Multiplication Design: Analyze Memory

Access Pattern
▪ Bottleneck: Memory controller can’t keep up (high stall, medium occupancy)

– Problem

– Each input value is accessed repeatedly (~8000x)

– Input data size is 12MB yet we’re reading 95GB of data from global memory

▪ Code analysis: repeated access

– Reads an entire row of A and an entire column of B to calculate each value of C

– Adjacent threads read much of the same data (row from matrix A or a column from

matrix B)

for (int i = 0; i < WIDTH; i++) {

Csub += A[y * WIDTH + i] * B[x + WIDTH * i]; }

C[y * WIDTH + x] = Csub;

Programmable Solutions Group 45

Matrix Multiplication Design: Tiling / Blocking

▪ Tiling is buffering data onto fast on-chip storage where it will be repeatedly

accessed (caching)

– Very common technique

– Used when multiple threads need to access overlapping parts of data set

▪ Data must be partitioned into blocks to fit into local memory

– Only work-items within a workgroup can share data

– Local memory size and geometry set at compile time

– Workgroup sizes (block sizes) must be known at compile time

Programmable Solutions Group 46

Matrix Multiplication Design: Tiling / Blocking

▪ Set required workgroup size using attribute

▪ Set local memory size based on block size
#define BLOCK_SIZE 64

#define WIDTH 1024

__kernel __attribute((reqd_work_group_size(BLOCK_SIZE, BLOCK_SIZE, 1)))

void matrixMul(__global float *restrict C, __global float *restrict A, __global float *restrict B) {

__local float A_local[BLOCK_SIZE][BLOCK_SIZE];

__local float B_local[BLOCK_SIZE][BLOCK_SIZE];

// Initialize x (gid(0)), y(gid(1)), local_x, local_y, aBegin, aEnd, aStep, bStep (Hidden)

float Csub = 0.0f;

for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {

A_local[local_y][local_x] = A[a + WIDTH * local_y + local_x];

B_local[local_y][local_x] = B[b + WIDTH * local_y + local_x];

barrier(CLK_LOCAL_MEM_FENCE);

for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += A_local[local_y][k] * B_local[k][local_x];

barrier(CLK_LOCAL_MEM_FENCE);

}

C[get_global_id(1) * WIDTH + get_global_id(0)] = Csub;

}

Loop through elements

in a BLOCK to cache

in data

Loop through BLOCK

width to calculate

partial result

Programmable Solutions Group

Load A Load BStore C

On-chip Memory On-chip Memory

Accumulator

47

Matrix Multiplication Design: Tiling / Blocking

A *= BC

Programmable Solutions Group 48

Matrix Multiplication: Block Size vs Performance

▪ Workgroup size and local memory

requirement increases quadratically with

Block Size(BS)

▪ Global demand and kernel time drops

linearly with block size

▪ For block size 64, read data ~23x times

from global

▪ Eventually problem changes from

memory-bound to compute-bound and

area-bound

Block Size

Local Mem

Size

(floats)

Global Reads

(floats)

Kernel Time

(ms)

1 2 4,294,967,296 11,224

2 8 2,147,483,648 3,313 (-70%)

4 32 1,073,741,824 1,683 (-49%)

8 128 536,870,912 900 (-47%)

16 512 268,435,456 438 (-51%)

32 2,048 134,217,728 218 (-50%)

64 8,192 67,108,864 151 (-31%)

BS 2 * BS2 2 * N3 / BS --

Matrix: (2048 x 1,024) x (1024 x 1024) = (2048 x 1024)

Programmable Solutions Group 49

Optimizing ND Range Kernel Execution Agenda

▪ Optimization Overview

▪ Workgroup Size

▪ Loop Unrolling

▪ Kernel Vectorization

▪ Kernel Compute Unit Replication

Programmable Solutions Group 50

unroll kernel pragma

#pragma unroll <N> instructs AOC to attempt to unroll a loop <N> times

– Without <N>, AOC will attempt to unroll the loop fully

– Warning issued if AOC unable to unroll

▪ Control the amount of hardware used for loops

– Trading off between performance and area

– If performance is exceeded, reducing loop unrolling factor can help reduce area

– Force compiler to not unroll by using #pragma unroll 1

#pragma unroll 2

for (size_t k=0; k<4; k++) {

mac += data_in[(gid*4)+k] * coeff[k];

}

Programmable Solutions Group

Loop Unrolling Example

▪ Sum of 4 values for every work-item

▪ Store a new result every 4 iterations

Store every

4 iterations

accum = 0;

for (size_t i=0; i<4; i++)

{

accum += data_in[(gid*4)+i];

}

sum_out[gid] = accum;

For Begin For End StoreLoad

accum reg

+

51

Programmable Solutions Group

Loop Unrolling Example: Unroll 2

▪ Unroll factor of 2

– 2 iterations of the loop performed for every

forward execution

▪ Store a new result every 2 iterations

Store every

2 iterations

accum = 0;

#pragma unroll 2

for (size_t i=0; i<4; i++)

{

accum += data_in[(gid*4)+i];

}

sum_out[gid] = accum;

For Begin For End Store

Load accum reg+

Load +

52

Programmable Solutions Group

Loop Unrolling Example: Fully Unrolled

▪ Unroll every iteration of the loop

▪ Store a new result every clock cycle

Load
+

Store
Load

Load

Load

+

+
Store

every

cycle

accum = 0;

#pragma unroll

for (size_t i=0; i<4; i++)

{

accum += data_in[(gid*4)+i];

}

sum_out[gid] = accum;

Additional Optimizations Shown:
1. accum register removed

2. Order of operation optimization done if allowed

3. Operators removed if not needed
• There would be 4 adders created if initial value of accum is not 0.

53

Programmable Solutions Group 54

Loop Unrolling in the HTML Report

▪ Loop unrolling reported in loop analysis section of the HTML report

– <kernel file folder>\reports\report.html

– Also in <kernel file>.log

▪ Reported information

– Loop location

– Nesting relationship

– Requested unroll factor

– Achieved unroll factor

Programmable Solutions Group

Matrix Multiplication : Initial Implementation

▪ 1 multiplication and 1 adder created

▪ Need to try loop unrolling to increase

compute

for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += A_local[local_y][k] + B_local[k][local_x];

*

+

sum Load A Load B

New sum

valid_in_1valid_in_0

valid_out

55

Programmable Solutions Group

Matrix Multiplication: Improved Implementation

*

+

sum Load B

New sum

Load BLoad B Load BLoad A Load ALoad A Load A

* * *

+ +

+

valid_in

valid_out

Coalesced load Coalesced load

Multiply Accumulate Tree

#pragma unroll

for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += A_local[local_y][k] + B_local[k][local_x];

56

Programmable Solutions Group 57

Optimizing ND Range Kernel Execution Agenda

▪ Optimization Overview

▪ Dynamic Profiler Overview

▪ Workgroup Size

▪ Loop Unrolling

▪ Kernel Vectorization

▪ Kernel Compute Unit Replication

Programmable Solutions Group 58

Kernel Vectorization

Widen the pipeline to achieve higher throughput

– Allow multiple work-items from the same workgroup to execute in Single Instruction

Multiple Data (SIMD) fashion

▪ Translate scalar operations into SIMD vectored operations

Load

a[i]

Load

b[i]

Store

c[i]

a[i]+b[i]

Load

a[i]…a[i+n]

Load

b[i]..b[i+n]

Store

c[i]…c[i+n]

a[i]+b[i] a[i+n]+b[i+n]…

Normal Execution SIMD Execution

Programmable Solutions Group 59

Vectorize Kernel Code Manually

▪ Replicate operations in the kernel manually

– Must also adjust NDRange in host application

__kernel void mykernel (…)

{

size_t gid = get_global_id(0);

result[gid] = in_a[gid] + in_b[gid];

}

__kernel void mykernel (…)

{

size_t gid = get_global_id(0);

result[gid*4+0] = a[gid*4+0] + b[gid*4+0];

result[gid*4+1] = a[gid*4+1] + b[gid*4+1];

result[gid*4+2] = a[gid*4+2] + b[gid*4+2];

result[gid*4+3] = a[gid*4+3] + b[gid*4+3];

}

Original

Kernel

Manually

Vectorized

Kernel

Programmable Solutions Group 60

Vectorize Kernel - Memory Coalescing

Vectorize a kernel using OpenCL™ vectored data types

▪ Elements of vectored data types always in consecutive memory locations

– e.g. float4, int8, etc

– Accesses can be coalesced (Wider accesses results in fewer accesses)

__kernel void mykernel (

__global const float4 * restrict in_a,

__global const float4 * restrict in_b,

__global float4 * restrict result)

{

size_t gid = get_global_id(0);

result[gid] = in_a[gid] + in_b[gid];

}

result[gid].x = in_a[gid].x + in_b[gid].x;

result[gid].y = in_a[gid].y + in_b[gid].y;

result[gid].z = in_a[gid].z + in_b[gid].z;

result[gid].w = in_a[gid].w + in_b[gid].w;

.

=

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 61

Automatic Kernel Vectorization

Use attribute to enable automatic kernel compute unit vectorization

– Without modifying the kernel body

– Memory accesses automatically coalesced

– No need to adjust NDRange in host application

▪ num_simd_work_items attribute

– Specify the SIMD factor (# of work-items in the same workgroup executed in parallel)

– Hardware operators automatically vectorized

– Vectorization takes affect in the X dimension of the workgroup

__attribute__((num_simd_work_items(4)))

__attribute__((reqd_work_group_size(64,1,1)))

__kernel void mykernel (…)

…

Programmable Solutions Group 62

Automatic SIMD Vectorization Limitations

▪ num_simd_work_items must be 2, 4, 8, or 16

▪ reqd_work_group_size must be evenly divisible by

num_simd_work_items in the X dimension

▪ If a control path depends on get_global_id or get_local_id, that branch

will not be vectorized

– The rest of the kernel will be

▪ Use manual vectorization or kernel replication (next section) in these situations

Programmable Solutions Group 63

Matrix Multiplication: SIMD Vectorization w/Unrolling

Dynamic Profiler Results

Original design time:

11224 ms

#define BLOCK_SIZE 64

#define WIDTH 1024

__kernel __attribute((reqd_work_group_size(BLOCK_SIZE, BLOCK_SIZE, 1)))

__attribute((num_simd_work_items(SIMD_WORK_ITEMS)))

void matrixMul(__global float *restrict C, __global float *restrict A,

__global float *restrict B)

{

__local float A_local[BLOCK_SIZE][BLOCK_SIZE];

__local float B_local[BLOCK_SIZE][BLOCK_SIZE];

// Initialize x(gid(0)), y(gid(1)), local_x, local_y, aBegin, aEnd, aStep, bStep (Hidden)

float Csub = 0.0f;

for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {

A_local[local_y][local_x] = A[a + WIDTH * local_y + local_x];

B_local[local_y][local_x] = B[b + WIDTH * local_y + local_x];

barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll

for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += A_local[local_y][k] * B_local[k][local_x];

barrier(CLK_LOCAL_MEM_FENCE);

}

C[get_global_id(1) * WIDTH + get_global_id(0)] = Csub;

}

SIMD_WORK_ITEMS Time (ms)

1 151

2 63

4 53

Programmable Solutions Group 64

Dynamic Profiler

Benefits of Tiling, SIMD, and Loop Unrolling
Naïve Kernel: BLOCK_SIZE=1, SIMD=1, No Unrolling, Time = 11,224 ms

Improved Kernel: BLOCK_SIZE=64, SIMD=4, Loop Unrolled, Time = 53ms

▪ Conclusion (212x Performance Improvement)

– Stall / Occupancy are similar, memory efficiency improved

– SIMD Vectorization and BLOCKING improves memory access efficiency while reducing global

memory access requirement

– SIMD Vectorization and Loop Unrolling improves computational bandwidth

– Know your algorithm! Think about your algorithm before low-level system issues

Programmable Solutions Group 65

Optimizing ND Range Kernel Execution Agenda

▪ Optimization Overview

▪ Dynamic Profiler Overview

▪ Workgroup Size

▪ Loop Unrolling

▪ Kernel Vectorization

▪ Kernel Compute Unit Replication

Programmable Solutions Group 66

Default Compute Unit Created

▪ Only one compute unit per kernel created by default

▪ Workgroups distributed to compute unit in sequence

Host

DeviceHost Memory

Global

Memory

In
te

rf
a

c
e

CU
W1,K1,R1

K1W1 R1

Elapsed Time

PCIe
DDR

QDR

Load Load

Store

Programmable Solutions Group 67

Multiple Compute Units

▪ num_compute_unit kernel attribute specifies number of CUs to generate

– num_compute_units(N) or num_compute_units(X,Y,Z)

– N or X*Y*Z compute units created

– Entire compute unit including all local memory, control logic, and operators replicated

– Each compute unit functionally identical

– Kernel usage not limited, limited only by FPGA resource

▪ Workgroups from the same NDRange kernel launch are distributed to available

compute units and processed in parallel

– Need at least three times as workgroups as compute units to effectively utilize all

hardware
__attribute__((num_compute_units(3)))

__kernel void …

Programmable Solutions Group 68

num_compute_units Applied

PCIe
DDR

QDR

Load Load

Store

Load Load

Store

Load Load

Store

Host

DeviceHost Memory

Global

Memory

In
te

rf
a

c
e

CU

CU

CU

W1,K1,R1

K1W1 R1

Elapsed Time

__attribute__((num_compute_units(3)))

__kernel void …

Programmable Solutions Group 69

num_compute_units

▪ Increases number of global memory

accesses

▪ May lead to poor access patterns

– Random accesses

– Possible contention

num_simd_work_items

▪ Increases width of global memory

accesses

▪ Coalescing of memory accesses

– Wide accesses

– Burst accesses

Memory Considerations - CU Replication vs. SIMD

Global Memory

Kernel CU1 Kernel CU2

Loads LoadsStores Stores

Global Memory

X2 SIMD Kernel CU

Loads Stores

Programmable Solutions Group 70

Compute Unit Replication vs. SIMD Vectorization

▪ Try SIMD vectorization first

– Usually leads to more efficient hardware than compute unit replication

▪ May combining SIMD vectorization with computer unit replication

– Possibly required to achieve best performance and/or fit

– 4 copies of 4-lane-wide CUs may or may not be better than 2 8-lane-wide CUs

num_compute_units num_simd_work_items

Designed to increase throughput by increasing kernel hardware

Increase # of compute unis where

workgroups can be scheduled

Increases the # of work-items from the same

workgroup to be processed in parallel in a CU

Entire CU including control logic replicated

(more resource usage)

Kernel control logic shared across each SIMD

vector lane

Usage only limited by FPGA resources Kernel code and resource restrictions

Programmable Solutions Group 71

Example: Combining Replication and Vectorization

▪ Resource estimates of 16 SIMD lanes indicate “no fit”

▪ Resource estimates of 8 SIMD lanes suggest 12 lanes may fit

– Automatic vectorization only supports 2, 4, 8 and 16 lane configurations

▪ Generate 12 lanes by combining num_simd_work_items and

num_compute_units
__attribute__((num_simd_work_items(4)))

__attribute__((num_compute_units(3)))

__attribute__((reqd_work_group_size(8,8,1)))

__kernel void mykernel (…) {

…

Global Memory

X4 SIMD Kernel CU1 X4 SIMD Kernel CU2

Loads Loads
Stores Stores

X4 SIMD Kernel CU3

Loads
Stores

Programmable Solutions Group

Optimizing an NDRange Kernel

72

Exercise 4

Programmable Solutions Group 74

Single Work-Item Execution Agenda

▪ Introduction

▪ Understanding execution models and optimization reports

▪ Resolving common dependency issues

▪ Advanced Uses

– Exercise 2

Programmable Solutions Group 75

Single Work-Item Execution

▪ Launching kernels with global size of (1,1,1)

– A kernel executed on a compute unit with exactly one work-item

– Or use cl::CommandQueue::enqueueTask

▪ Defined as a Task in OpenCL™

▪ Single work-item kernels almost always have an outer loop

– Loops in kernels automatically parallelized by the Intel® FPGA OpenCL Offline

Compiler

– Entire kernel gets pipeline parallelized!

▪ Intel FPGA specific feature that wouldn’t run well on other architectures

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 76

Single-Threaded Kernels Motivation

▪ Data parallelism isn’t always easy to extract

▪ NDRange execution may not be suitable for certain situations

– Difficulties partitioning data into workgroups

– Streaming application where data cannot arrive in parallel

▪ Some algorithms that are inherently sequential and depend on previous results

– E.g. FIR filters, compression algorithms

▪ Sequential programming model of tasks more similar to C programming

– Certain usage scenario more suited for sequential programming model

– Easier to port

Programmable Solutions Group 77

Data Parallelization Review

OpenCL™ NDRange execution best suited for applications where each loop

iteration is independent

for (int i=0; i < n; i++)

answer[i] = a[i] + b[i];

__kernel void sum(__global const float *a,

__global const float *b,

__global float *answer)

{

int xid = get_global_id(0);

answer[xid] = a[xid] + b[xid];

}

Load Load

Store

+
0

1

2

Algorithm

OpenCL™ Implementation

FPGA Acceleration through

Pipelined Execution

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group

Tasks and Loop-pipelining

▪ NDRange Kernels can’t handle dependencies across work-items

well

▪ Solution: Tasks

– Compiler will infer pipelined parallel execution across loop iterations

– Efficiently execute multiple loop iterations

– Dependencies resolved by the compiler

– Values transferred between loop iterations with FPGA resources

– No need to buffer up data

– Easy and cheap to share data through feedbacks in the pipeline

Load

Store

for (int i=1; i < n; i++) {
c[i] = c[i-1] + b[i];

}

i=0

i=1

i=2

78

Programmable Solutions Group 79

Loop Pipelining vs Serial Execution

Loop pipelining: Launch loop iterations as soon as dependency is resolved

▪ Initiation interval(II): launch frequency (in cycles) of a new loop iteration

– II=1 is optimally pipelined

– No dependency or dependencies can be resolved in 1 cycle

For Begin

For End

Op 2

Op 3

Op 1

Op 2

Op 3

Op 1

i0

i1

i2

i2i2i3

S
e

ri
a
l
E

x
e

c
u
ti
o

n
 o

f

L
o
o

p
 I
te

ra
ti
o

n
s

P
ip

e
lin

e
d

 E
x
e

c
u

tio
n

 o
f

L
o
o
p
 Ite

ra
tio

n
s

Programmable Solutions Group 80

Loop Pipelining

AOC will pipeline each iteration of the loop for acceleration

▪ Analyze any dependencies between iterations

▪ Schedule these operations and make copies of hardware if needed

▪ Launch the next iteration as soon as possible

float array[M];

for (int i=0; i < n; i++)

{

for (int j=0; j < M-1; j++)

array[j] = array[j+1];

array[M-1] = a[i];

for (int j=0; j < M; j++)

answer[i] += array[j] * coefs[j];

}

At this point, launch

the next iteration of

outer loop

(Copies of shift registers

made automatically)

Shift Register array

(Dependency for next iteration)

Reduction on array

(Not a dependency)

Programmable Solutions Group 81

Loop Pipelining Example

i0

i1

i2

C
lo

c
k
 C

y
c
le

s

No Overlap of Iterations!
Finishes Faster because Iterations

Are Overlapped

i0

i1

i2

i3

i4

i5

C
lo

c
k
 C

y
c
le

s

Looks like multi-

threaded

execution!

No Loop Pipelining With Loop Pipelining

Programmable Solutions Group 82

Parallel Threads vs Loop Pipelining

▪ Loop Pipelining enables Pipeline Parallelism AND the communication of state

information between iterations.

– If dependency resolved in 1 clock cycle, then the throughput is the same

– Data dependency resolved without adding extra compute time!

Parallel threads launch 1

thread per clock cycle in

pipelined fashion

If loop dependency

resolved in 1 clock

cycle

NDRange Parallel Threads Loop Pipelining

t0

t2

t3

t4

t5

i0

i1

i2

i3

i4

i5

t1

Programmable Solutions Group 83

Loop Unrolling in Time vs Pipelining

Stage 1 Stage 2 Stage 3

Time

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Time

Loop
Iterations

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

II=1

Stage 1 Stage 2 Stage 3

Time

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Thread

3

Thread

2

Thread

1

Unroll Pipeline

Programmable Solutions Group 84

Single Work-Item vs. NDRange Kernels

One approach is not better than the other, can have both types of kernels in the same

application

▪ Create single work-item kernels if

– Data processing sequencing is critical

– Algorithm can’t easily break down into work-items due to data dependencies

– Not all data available prior to kernel launch

– Data cannot be easily partitioned into workgroups

▪ Create NDRange kernels if

– Kernel does not have loop and memory dependencies

– Kernel can execute multiple work-items in parallel efficiently

– Able to take advantage of SIMD processing

Programmable Solutions Group 85

Recognition of Single Work-Item Kernels

AOC assumes single work-item kernels if kernel code does not query any work-

item information

▪ No get_global_id(), get_local_id(), or get_group_id() calls

▪ Enables AOC to automatically perform loop pipelining and memory

dependence analysis on the kernel

▪ Many C-based algorithms can directly compile to an OpenCL™ Task

__kernel void mykernel (…) {

for (i=0; i< FFT_POINTS; i++) {

…

}

}

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 86

Launching Single Work-Item Kernels (Tasks)

▪ Single work item kernels assumed when there are no get_global_id(),

get_local_id(), or get_group_id() calls

▪ Use cl::CommandQueue::enqueueNDRangeKernel with

global_work_size and local_work_size set to 1

▪ Or cl::CommandQueue::enqueueTask in host code

setup_memory_buffers();

transfer_data_to_fpga();

myqueue.enqueueTask(mykernel, …);

read_data_from_fpga();

Host Code

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 87

Single Work-Item Execution Agenda

▪ Introduction

▪ Understanding execution models and optimization reports

▪ Resolving common dependency issues

▪ Advanced Uses

– Lab 2

Programmable Solutions Group 88

Loop Analysis for Single Work-Item Kernels

▪ Automatically Generated

▪ Reports status of loop pipelining

▪ Displays dependency information

▪ Part of HTML Report

– <kernel file folder>\reports\report.html

▪ Also part of the log file

– <kernel file folder>\<kernel file>.log

Modify kernel.cl

Emulator

HTML Report
Loop Report

Area Report

System Viewer

Profiler

Done

Programmable Solutions Group 89

Loop Pipelining Optimization Report

Report shows pipeline status of each single-work item kernel loop

▪ Initiation Interval (II) = launch frequency of loop iterations

– Cycles between loop iteration launches

▪ Minimizing II is the key to single work-item performance optimization

▪ Report shows

– If loops are pipelined

– Initiation interval of pipelined loops

– Ideal II=1

Programmable Solutions Group 90

Loop Pipeline Single Loop Execution

Basic case – single loop

L = K

L : Latency of the loop

(clock cycles or pipeline stages)

K: Constant value

kernel void test() {

for (i=0; i<N; i++) {

…

}

}

Programmable Solutions Group 91

Loop Pipeline Single Loop Execution

Basic case – single loop

L = K

0

Iteration

executing

in Datapath

kernel void test() {

for (i=0; i<N; i++) {

…

}

}

12

01

0

With II = 1, iterations launched every clock cycle one after another

Loop Analysis Report: II=1

Programmable Solutions Group 92

Loop Pipeline Single Loop Execution

Basic case – single loop

▪ Total number of clock cycle to run kernel is about N + K

– K typically in the order of 100s of clock cycles

– N: Iterations based on data, usually orders of magnitudes larger than K

– So: Number of total clock cycles ≈ N

– Throughput can be estimated without actually running the kernel!

L = K

N-1

N-2

kernel void test() {

for (i=0; i<N; i++) {

…

}

}

Programmable Solutions Group 93

Single Loop with Complex Dependencies

▪ II > 1, caused by complex data or memory dependencies

– Dependencies not resolved in 1 cycle

▪ Total number of cycles to run is about N*6 + K ≈ 6*N

L = K

kernel void test() {

for (…) {

A[x] = A[y];

…

}

}

0

…

v

…

…

…

…

1

6 cycles later, next

iteration enter the

loop body

Loop Analysis Report: II=6

Programmable Solutions Group 94

Single Loop with Complex Dependencies

▪ II > 1

▪ Hardware created to stall the pipeline until dependency is

resolved

▪ Total number of cycles to run kernel is about N*II + K ≈ II*N

▪ Key to single work-item kernel throughput is reducing II

– Minimize stalls

L = K

kernel void test() {

for (…) {

A[x] = A[y];

…

}

}

0

…

v

…

…

…

…

1 LD

ACK

ST

Programmable Solutions Group 95

Memory Dependency

Loop-carried dependency where a memory operation cannot occur before

dependent memory operation from a previous iteration

▪ Largest Critical Path Contributor

– Specifies the operations that contribute to the delay

Programmable Solutions Group 96

Data Dependency

Loop-carried dependency where a variable is dependent on the result from a

computation in the previous iteration

▪ Largest Critical Path Contributor

– Specifies the operations that contribute to the delay

Programmable Solutions Group 97

Loop Pipeline with Nested Loops

“Critical Loop” determines performance, non-critical loops can have poor II

L = K

Total run = M*(N*1) + K + J

L = J

Inner Loop

II=1

kernel void test() {

while (i < M) {

…

for (j=0; j<N; j++) {

Critical Loop II

0

0

0:0

1

0:0

0:1

1

Outer Loop

II=2

Loop Analysis Report:

Outer Loop: Pipelined, II >=2

Inner Loop: Pipelined, II=1

Programmable Solutions Group 98

Loop Pipeline with Nested Loops

“Critical Loop” determines performance, non-critical loops can have poor II

▪ Outer loop iterations now blocked because

inner loop is busy

▪ II on outer loop doesn’t impact performance

▪ Outer loop II only an issue if

– N * II_inner_loop < II_outer_loop

L = K

L = J

Inner Loop

II=1

Outer Loop

II=2

0:0

0:1

0:2

2

0:N-5

0:N-1

0:N-2

0:N-3

0:N-4

1:0

0:N-1

0:N-2

0:N-3

0:N-4

12

kernel void test() {

while (i<M) {

…

for (j=0;j<N;j++) {

3

1:1

1:0

0:N-1

0:N-2

0:N-3

Programmable Solutions Group 99

Loop Pipeline with Nested Loops

Which loop is the critical loop?

▪ Depends on the value of N and P

▪ If P is much smaller than N, II for P loop doesn’t matter

– If P*8 < N

kernel void test() {

while (i<M) {

…

for (j=0; j<N; j++) {

…

}

for (j=0; j<P; j++) {

…

}

}

}

Loop Analysis Report:

M loop: II >= 1

N loop: II = 1

P loop: II = 8

Programmable Solutions Group 100

Interleaving of Outer Iterations in the Inner Loop

▪ When Inner Loop II>1 and inner loop is not a serial region (discussed later)

Inner Loop

II=2

0

0

0:0

1

0:0

1:0

1

Outer Loop

II>=1

for (…) {

…

for (…) {

23

2

0:0

1:0

0:1

0:0

1:0

0:1

1:1

0:0

1:0

0:1

1:1

0:2

Programmable Solutions Group 101

Out-of-Order Loop Execution

Nested loops where the number of iterations of the inner loop varies among outer

loop iterations

▪ Outer loop iteration could become out-of-order

for (i=0; i<N; i++) {

…

MV_done = false;

do {

SADsMB(refBuf, MB, …);

…

if (check(MB)) {

MV_done = true;

}

} while (!MV_done);

}

i=0

i=1

Out-of-order

loop

iterations

i=1:1

i=0:2

i=1:0

i=0:1

i=0:0

Programmable Solutions Group 102

Out-of-Order Loop Iterations

▪ Common coding style

▪ Compiler analyzes impact of out-of-order iterations on functionality

– Check for independence of iterations

– Loop pipelining still inferred if functionality not affected

▪ If out-of-order iterations may lead to incorrect result

– Loop NOT pipelined

i=0

i=1

Out-of-order

loop

iterations

for (i=0; i < N; i++)

for (j=0; j < N-i ; j++){

…

}

}

Programmable Solutions Group 103

Serial Region Execution

▪ Serial region can occur with nested loops

– An inner loop access causing an outer

loop dependency

– Inner loop becomes a serial region in the

outer loop iteration

L = Kkernel void test() {

int a[1024];

while (i<M) {

for (j=0; j<N; j++) {

a[X] = b[X];

process(a);

}

}

}

Optimization Report

Outer Loop: II = 2

Serial execution around: Inner Loop

Inner Loop: II=1

L = H 0

0

0:0

1

0:1

0:0

1

0:N-1

0:N-3

0:N-2

2

Iteration 1 cannot

enter inner loop

because it is a

serial region

2

Iteration 1 enters

inner loop after all

iteration 0 inner

iterations have

exited

1:0

Access to a can not

be made until all

previous outer

iterations have

completed

Programmable Solutions Group 104

Serial Regions

▪ Significant issue if inner loop II>1

▪ Not an issue if inner loop trip count is high relative to latency of inner loop

▪ II of both inner and outer loops not affected

▪ Optimization report will state data or memory dependency causing the serial region

Programmable Solutions Group 105

Single Work-Item Execution Agenda

▪ Introduction

▪ Understanding execution models and optimization reports

▪ Resolving common dependency issues

▪ Advanced Uses

– Lab 2

Programmable Solutions Group 106

Minimize Pipeline Stalls

Improve the performance of single work-item kernels

by addressing loop-carried dependencies

▪ Techniques

– Remove dependency

– Relaxing dependency

– Simplifying dependency

– Transferring dependency to local memory

– Remove dependency using a pragma

Modify kernel.cl

Emulator

HTML Report

Loop Analysis

Area Report

System Viewer

Profiler

DONE!

Programmable Solutions Group 107

Removing Loop-Carried Dependency (Unoptimized)

▪ Outer loop launches every cycles

– Not the critical loop

▪ Each inner iteration requires sum from the

previous outer iteration

– Becomes serial region

▪ Inner loop pipelined well!

| *** Loop Analysis Report ***

Loop “Block1”:

Pipelined with II>=1

Serial Region across Loop “Block2”

due to dependency on variable sum

Loop “Block2”:

Pipelined with II=1

int sum = 0;

for (unsigned i=0; i<N; i++) {

for (unsigned j=0; j<N; j++) {

sum += A[i*N+j];

}

sum += B[i];

}

Unoptimized

Programmable Solutions Group 108

Removing Loop-Carried Dependency (Optimized)

To remove the dependency and thus serial region

▪ Accumulate using local variable for inner loop
(sum2)

– Instead of using the same sum as outer loop

▪ Add the local sum2 to sum at the end of each

outer iteration

int sum = 0;

for (unsigned i=0; i<N; i++) {

int sum2 = 0;

for (unsigned j=0; j<N; j++) {

sum2 += A[i*N+j];

}

sum += sum2;

sum += B[i];

}

Optimized

| *** Loop Analysis Report ***

Loop “Block1”:

Pipelined with II>=1

Loop “Block2”:

Pipelined with II=1

Programmable Solutions Group 109

Relaxing Loop-Carried Dependency (Unoptimized)

▪ Floating point multiply here takes 6 cycles

– Data dependency on mul every cycle means II

needs to be 6

▪ Strategy: Increase the distance of the

dependency to be more than 1 iteration

float mul = 1.0f;

for (unsigned i = 0; i < N; i++)

{

mul = mul * A[i];

}

| *** Loop Analysis Report ***

Loop “Block1”

Pipelined, II=6 due to Data

dependency on variable mul

Largest Critical Path Contributor:

100%: Fmul Operation

Unoptimized

Programmable Solutions Group 110

Relaxing Loop-Carried Dependency (Optimized)

▪ Relax the dependency over M iterations to

match latency of dependent operation

▪ Instead of 1 result variable, use M copies

– Number of copies depend on the initial II

– M copies implemented as shift register

▪ Top copy used in multiplication

▪ Shift values

– Result goes to the bottom of shift register

▪ Reduce all the copies to one result

#define M 6

float mul = 1.0f;

float mul_copies[M];

for (unsigned i = 0; i < M; i++)

mul_copies[i] = 1.0f;

for (unsigned i = 0; i < N; i++) {

float cur = mul_copies[M-1]*A[i];

#pragma unroll

for (unsigned j = M-1; j >0; j--)

mul_copies[j] = mul_copies[j-1];

mul_copies[0] = cur;

}

#pragma unroll

for (unsigned i = 0; i < M; i++)

mul = mul * mul_copies[i];

Optimized

*** Loop Analysis Report ***

Loop “Block 1”

Pipelined. II=1
#pragma unroll signals compiler to flatten the loop structure

and execute all iterations of the loop in one feed forward path

Programmable Solutions Group 111

Relaxing Loop-Carried Dependency (Optimized)
#define M 6

float mul = 1.0f;

float mul_copies[M];

for (unsigned i = 0; i < M; i++)

mul_copies[i] = 1.0f;

for (unsigned i = 0; i < N; i++) {

float cur = mul_copies[M-1]*A[i];

#pragma unroll

for (unsigned j = M-1; j >0; j--)

mul_copies[j] = mul_copies[j-1];

mul_copies[0] = cur;

}

#pragma unroll

for (unsigned i = 0; i < M; i++)

mul = mul * mul_copies[i];

mul_copies[5]

mul_copies[4]

mul_copies[3]

mul_copies[2]

mul_copies[1]

mul_copies[0]

*

A[i]

*

mul Result of multiply

won’t be used for

6 cycles

Takes 6

cycles

Optimized

*** Loop Analysis Report ***

Loop “Block 1”

Pipelined. II=1

Programmable Solutions Group 112

Transferring Loop-Carried Dependency to Local

Memory (Unoptimized)
System memory accesses may have long latencies, move dependencies to local

memory

▪ Example:

– Dependency on Global variable A

component void mycomp (int* restrict A) {

for (unsigned i = 1; i < N; i++)

A[N-i] = A[i];

}

*** Loop Optimization Report ***

Loop “Block1”:

Pipelined with II >= <some value>

Due to Stallable Load Operation

Unoptimized

Programmable Solutions Group 113

Transferring Loop-Carried Dependency to Local

Memory (Optimized)
Solution: Move array A[i] from system to

local memory

– Copy global A[] to local B[]

– Execute the loop on local array B[i]

– Copy local B[] back to global A[]

▪ Dependency now on local array B[]

– Successive iterations launched every

cycles

component void mycomp(int* restrict A) {

int B[N];

for (unsigned i = 0; i < N; i++)

B[i] = A[i];

for (unsigned i = 1; i < N; i++)

B[N-i] = B[i];

for (unsigned i = 0; i < N; i++)

A[i] = B[i];

}

*** Loop Optimization Report ***

…

Loop “Block1”

Pipelined. II=1

Loop “Block2”:

Pipelined with II = 1

Loop “Block3”:

Pipelined. II=1

Optimized

Programmable Solutions Group 114

Removing Memory Access Loop-Carried

Dependency
▪ ivdep pragma asserts memory array accesses will not cause dependencies

– Apply to loops

– Removes constraints from otherwise dependent load and store instructions

– Applies to private, local, and global arrays and pointers

– Reduces logic utilization and lowers the II value

– User responsible for functionality!

▪ Example

– X[i] unknown at compile time, compiler assumes dependency across iterations

– With #pragma ivdep, compiler assumes accesses to memory in this loop will not

cause dependencies

#pragma ivdep

for (unsigned i = 1; i < N; i++)

A[i] = A[i – X[i]];

Programmable Solutions Group 115

ivdep Pragma

▪ #pragma ivdep

– Dependencies ignored for all accesses to memory arrays

▪ #pragma ivdep array(array_name)

– Dependency ignored for only array_name accesses

#pragma ivdep array(A)

for (unsigned i = 1; i < N; i++) {

A[i] = A[i – X[i]];

B[i] = B[i – Y[i]];

}

Dependency ignored for A array

Dependency for B still enforced

#pragma ivdep

for (unsigned i = 1; i < N; i++) {

A[i] = A[i – X[i]];

B[i] = B[i – Y[i]];

}

Dependency ignored for A and B array

Programmable Solutions Group 116

ivdep Pragma Advanced Uses

▪ ivdep and structs

▪ ivdep applies to all arrays that may alias with specified pointer

#pragma ivdep array(S.A)

for (unsigned i = 0; i < N; i++)

S.A[i] = S.A[i-X[i]];
No dependencies for array A inside struct S

#pragma ivdep array(S->A)

for (unsigned i = 0; i < N; i++)

S->A[i] = S->A[i-X[i]]
No dependencies for A inside the struct pointed to by S

int *ptr = select ? A : B;

#pragma ivdep array(ptr)

for (unsigned i = 0; i < N; i++){

A[i] = A[i – X[i]];

B[i] = B[i – Y[i]];

}

No dependencies for A and B array

Programmable Solutions Group 117

Convert Nested Loops into Single Loop

Combine nested loops to save resources and improve performance

▪ Consider using the loop_coalesce pragma

▪ Nested loops have more logic and latency than a coalesced loop

for(i=0; i<N; i++)

{

//statements

for (j=0; j<M; j++)

{

//statements

}

}

for(i=0; i< N*M; i++)

{

//Statements

}

Nested Loop

Converted Single Loop

Programmable Solutions Group 118

loop_coalesce Pragma

Directs compiler to coalesce nested loops into a single loop

▪ Helps reduce overhead needed for loops

– Reduces area and latency of component

▪ In certain cases may lengthen critical loop II

#pragma loop_coalesce

for (…) {

for (…) {

…

}

}

#pragma loop_coalesce 2

for (A)

for (B)

for (C)

for (D)

Compiler attempts to coalesce all nested loops Compiler attempts to coalesce only loops A, B, and D

Nesting Level

Programmable Solutions Group 119

Single Work-Item Execution Agenda

▪ Introduction

▪ Understanding execution models and optimization reports

▪ Resolving common dependency issues

▪ Advanced uses

– Lab 2

Programmable Solutions Group 120

Reducing Kernel Hardware Overhead with
max_global_work_dim(0)

▪ Single Work-Item Kernels are not dispatched across work-items/workgroups

▪ Kernel attribute max_global_work_dim(0) removes dispatch HW logic

– Saves resources

– Removes logic that generate threads IDs for specified kernel

– global ID, local ID, group ID

– Other number of dimensions values are allowed (up to 3)

– But result in no resource savings

__attribute__((max_global_work_dim(0)))

__kernel void mykernel (…) {

for(…

}

Kernel CU

Host link

HW

Programmable Solutions Group 121

max_global_work_dim(0) Recommendation

Recommended to be used for ALL single work-item kernels (Tasks)

– Compiler does not perform this by default in order to conform to OpenCL™

standards

▪ Once set, multi-threaded (more than 1 work-item) launch of the kernels will

result in error

▪ Once set, overhead omission reflected for the kernel in the HTML Area Report

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 122

Kernels That Runs Without the host

Mark kernels that runs automatically without the host with autorun attribute

▪ Starts kernel execution automatically once FPGA is configured without the host

– Restarts automatically if it finishes execution

▪ Saves resources

– Omits logic used for communication with the host

– Omits logic that dispatches work-items (ID generators)

__attribute__((autorun)))

Kernel CU

Programmable Solutions Group 123

autorun Kernel Requirements

▪ Must use either the max_global_work_dim(0) or

reqd_work_group_size(X,Y,Z) attribute

– Fixed number of threads launched every time

▪ Must not have any argument

– No communication with the host

▪ I/O channels not supported

– Cannot guarantee data is not dropped at startup

– Kernel-to-kernel channels allowed

▪ Typically for kernels that processes data from channels and write to channels

__attribute__((max_global_work_dim(0)))

__attribute__((autorun))

void kernel mykernel()

Programmable Solutions Group 124

Creating an Array of Compute Units

Replicate kernel hardware with num_compute_units(X,Y,Z) attribute

▪ Creates X*Y*Z copies of kernel pipeline

– Increases throughput

– For NDRange kernels, CU’s are used to execute multiple workgroups in parallel

– More on this in the Optimizing NDRange kernels section

– Consumes X*Y*Z times more resources for that kernel compute unit

▪ With single work-item kernels, AOC allows customization of kernel compute
units using the get_compute_id() function

– Create compute ID dependent logic

CU CU

CU CU

CU CU

CU CU

Programmable Solutions Group 125

get_compute_id() Function Usage

Each replicated compute unit assigned a compute ID▪

get_compute_id▪ (dim) call retrieves the unique index of each compute unit

in the specified dimension during compilation

Compute IDs are– static values ̶̶ dim: 0 = X, 1 = Y, 2 = Z

autorun▪ and max_global_work_dim(0) attributes required!

Alternative to replicating the kernel source code and specializing for each copy▪

Allows compiler to generates unique hardware for eac▪ h compute unit

e.g. – if (get_compute_id(0) == X) then do something

Often used to customize computations or control flow–

Programmable Solutions Group 126

Example with get_compute_id

Using compute ID to determine channel usage

Channels/Pipes

PE

Kernel CU

channel float4 ch_PE_row[3][4];

channel float4 ch_PE_col[4][3];

channel float4 ch_PE_row_side[4];

channel float4 ch_PE_col_side[4];

__attribute__((autorun))

__attribute__((max_global_work_dim(0)))

__attribute__((num_compute_units(4,4)))

kernel void PE() {

float4 a,b;

if (get_compute_id(0)==0) //First PE of row

a = read_channel(ch_PE_col_side[col]);

else

a = read_channel(ch_PE_col[row-1][col]);

if (get_compute_id(1)==0)

…

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

0 1 2 3

0

1

2

3

Programmable Solutions Group 127

Systolic Array Motivation

▪ Key to peak device performance

– Highest possible frequency / Keep FPGA resource busy

▪ Approach 1: Single large kernel

– “CPU coding style”, difficult to generate efficient HW

▪ Approach 2: Utilize small kernels

– Easier to optimize and generate efficient HW

– Then replicate kernels

– “FPGA coding style”, Divider-and-conquer

– Call each of these Processing Elements Kernels (PE)

1 TFLOPs

Kernel?

60

GFLOPs

PE

60

GFLOPs

PE

60

GFLOPs

PE

60

GFLOPs

PE

60

GFLOPs

PE

60

GFLOPs

PE

60

GFLOPs

PE

60

GFLOPs

PE

60

GFLOPs

PE

60

GFLOPs

PE

60

GFLOPs

PE

60

GFLOPs

PE

60

GFLOPs

PE

60

GFLOPs

PE

60

GFLOPs

PE

Programmable Solutions Group 128

Convolutional Neural Network (CNN) Example

PE PE PE PE PE PE PE

Feeder

Kernel

DDR

Drain

Kernel

Processing Element

==

Convolution Operation
1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

Input/Output Buffers

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

Ping Pong Buffer: Output

of one stage becomes

the input of the

subsequent stage

Filter Buffer

Programmable Solutions Group 129

Matrix Multiply in OpenCL™ – Small 4x4 variant

▪ 2D Systolic Array

Each PE a dot product–

DSP blocks chained together–

Regular array topology▪

PELoad B

PE

drain

PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

feeder

feeder

feeder

feeder

Load A
feeder feeder feeder feeder

Drain C

DDR

drain draindrain

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group

Relax Data Dependencies

130

Exercise 2

Programmable Solutions Group

Accelerator

132

Traditional OpenCL™: Host-Centric Architecture

All communication to/from kernels done through global memory

Device Global Memory

User

Kernel

CU

Host CPU

User

Kernel

CU

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 133

Idea: Communication without Global Memory

▪ Kernel-to-kernel communication done directly on-chip using FIFOs

▪ IO-to-kernel communication done without the host

▪ Enabled through Intel FPGA Channels / OpenCL Pipes

Accelerator

Device Global Memory

User

Kernel

CU

Host CPU

User

Kernel

CU

Programmable Solutions Group 134

Channels / Pipe Features

▪ Provides FIFO-like communication mechanism

▪ Each call site is unidirectional

▪ Allows BSP-specific I/O communication with kernel compute units

▪ Advantages

– Leverage internal bandwidth of the FPGA

– Avoid the bottleneck of using off-chip memory

– Reduces overall latency by allowing concurrent Kernel execution

– Reduce storage requirements when data is consumed as it is produced

Kernel CUKernel CU

FIFO

Channel
Write Read

Programmable Solutions Group 135

Kernel-to-Kernel Channel Performance Gains

▪ Standard

– If communication between kernels is required, host forced to launches kernels

sequentially

– Kernel 1 writes to global memory, kernel 2 reads from global memory

▪ With channels

– Host can launch kernels in parallel

– kernel 1 writes to channel as kernel 2 reads from it

Kernel 1 Kernel 2

Kernel 1

Channel Access

Kernel 2

Programmable Solutions Group 136

IO Channel Performance Gains

Standard▪

Data needs to be written to global memory first before kernel can process it and then –
read back after processing

Limited by – PCIe* bandwidth and memory throughput

With IO channels▪

Kernel can run while data flows across network interface–

System running at speed of network interface–

Kernel 1Writing to Global Buffer Reading from Global Buffer

Kernel 1

Reading from IO Channel

Writing to IO Channel

Programmable Solutions Group 137

Channel Declaration

▪ Enable the Intel® FPGA extension for channels

▪ Declare file-scope channel handle along with type

– Supports any built-in OpenCL™ or user defined types

– structs, char, uchar, short, ushort, int, uint, long, ulong, float, vector data types

– Type must be 1024 bits or less

– Optionally specify depth of FIFO (Buffered Channel)

– Declaring an array of channels produces independent channels

#pragma OPENCL EXTENSION cl_intel_channels : enable

channel int a; // Channel ‘a’ for ints

channel long b __attribute__((depth(8))); //buffered channel b

channel float4 c[2]; //Creates 2 float4 channels, c[0] and c[1]

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 138

Blocking Channel Reads and Writes

▪ Each write adds a single piece of data to the channel
– write_channel_intel(a_channel, (float4) x);

▪ Each read removes a single piece of data from the channel
– int x = read_channel_intel(b_channel);

▪ channel_id identifies the buffer

▪ write_channel_intel blocks if the channel is full

▪ read_channel_intel blocks if the channel is empty

▪ <type> must match between reads and writes and channel handle

void write_channel_intel(channel <type> channel_id, const <type> data);

<type> read_channel_intel(channel <type> channel_id);

Function Prototypes

Programmable Solutions Group 139

Non-Blocking Channel Reads and Writes

▪ Like blocking calls except functions does not block, pipeline not stalled

▪ Functions returns bool value indicating if operation took place successfully

– int x = read_channel_nb_intel(a_channel, &valid);

– ‘x’ gets data if ‘valid’ is true

– valid = write_channel_nb_intel(b_channel, x);

– ‘b_channel” contains ‘x’ if ‘valid’ is true

▪ Useful if operation may not occur, when dealing with I/O channels, or to facilitate work

distribution

bool write_channel_nb_intel(channel <type> channel_id, const <type> data);

<type> read_channel_nb_intel(channel <type> channel_id, bool * valid);

Function Prototype

Programmable Solutions Group 140

Kernel Concurrency

▪ Channels designed to work with reading & writing kernels executing in parallel

– Limited storage in the channel

– Not the standard model for OpenCL™ kernels

▪ May require changes to the host code

▪ Use a separate command queue for each kernel

– To allow for parallelism with in-order queues

#define NUM_KERNELS

…

std::vector<cl::Kernel> kernels;

std::vector<cl::CommandQueue> myqueue;

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 141

Buffered Channels

▪ Default channels are 0-depth, i.e. no storage, read and write happens together

▪ Use the depth attribute to specify a minimum depth for the channel

▪ Use buffered channels if there are temporary imbalances btw. reads and writes

– Prevents stall (profiler can detect stalls)

– Conditional reads/writes may cause imbalance between reads/writes

channel int c __attribute__((depth(20)));

__kernel void producer (…) {

if (…)

write_channel_intel(c, …)

}

__kernel void consumer (…) {

if (…)

val=read_channel_intel(c)

}

Programmable Solutions Group 142

I/O Channels

▪ Channels used with input or output features of a board

– E.g., network interfaces, PCIe* interfaces, camera interfaces, etc.

▪ Behavior defined by the Board Support Package (check board_spec.xml)

▪ Declaration of I/O channel using the io attribute

▪ Usage same as other channels

– data = read_channel_intel(udp_in_IO);

<channels>

<interface name=“udp_0” port=“udp0_out” type=“streamsource” width=“256” chan_id=“eth0_in”/>

<interface name=“pcie” port=“tx” type=“streamsink” width=“32” chan_id=“pcie_out” />

</channels>

channel QUDPWord udp_in_IO __attribute__((io(“eth0_in”)));

channel float data __attribute__((io(“pcie_out”)));

*Other names and brands may be claimed as the property of others

Programmable Solutions Group 143

Implementing OpenCL™ Pipes

Implement pipes instead of channels for compatibility with other SDKs

▪ AOC implements pipes as a wrapper around channels

– Channels are statically inferred from pipe arguments

– Kernel CUs are connected via name matching

– All rules that apply to channels also apply to pipes

– Types supported, size limit, blocking/non-blocking behavior, etc.

▪ AOC does not support the entire pipes specification

– Not fully OpenCL™ 2.0 conformant

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 144

Pipe Syntax, Kernel Side

▪ Pipes are specified as a kernel argument with the keyword pipe

– read_only or write_only qualifier and data type required in declaration

▪ Read / Write to the pipe using read_pipe() and write_pipe() calls

– Specify pipe name and address of variable to read/write

__kernel void producer (write_only pipe uint p0) {

for (…)

error = write_pipe(p0, &data);

}

__kernel void consumer (read_only pipe uint p0) {

for (…)

error = read_pipe(p0, &value);

}

Compiler looks for matching

pipe ID to form a HW

connection

Programmable Solutions Group 145

Pipe Syntax, Host Side

Use ▪ clCreatePipe to create the pipe object

Similar to – clCreateBuffer, returns cl_mem object

Use ▪ clSetKernelArg to map pipe to appropriate read and write kernel args

Both of these functions has ▪ no affect on the creation of the pipe hardware

Needs to be called to conform to the OpenCL▪ ™ standard

cl_mem pipe = clCreatePipe(context, 0, sizeof(float), SIZE, NULL, &status);

clSetKernelArg(producer_kernel, 0, sizeof(cl_mem), &pipe);

clSetKernelArg(consumer_kernel, 0, sizeof(cl_mem), &pipe);

Kernel argument index

Pipe Width Pipe Depth Pipe PropertiesMem flags

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 146

Pipe Attributes

▪ Apply __attribute__((blocking)) for blocking behavior

– Pipes are non-blocking by default

▪ Use depth attribute to specify the minimum depth of a pipe

– If read and write depths differ, AOC uses the larger depth of the two

▪ I/O Pipes with io attribute

__kernel void producer (write_only pipe uint __attribute__((blocking)) p0)

__kernel void consumer (read_only pipe uint __attribute__((blocking)) p0)

#define SIZE 100

__kernel void producer (write_only pipe uint __attribute__((depth(SIZE))) p1)

__kernel void consumer (read_only pipe uint __attribute__((depth(SIZE))) p1)

__kernel void myk (read_only pipe QUDPWord __attribute__((io(“eth0_in))) UDP_in)

Programmable Solutions Group 147

Channels / Pipes in the Area Report

Channel / pipe implementation shown in the detailed HTML area report

– Width implemented, Depth implemented (vs depth requested)

– Resources used

Programmable Solutions Group

NDRange and Single Work-Item Kernel Interaction

with Channels/Pipes
▪ Single Work-Item and NDRange Kernel can interact predictably

▪ Algorithm may naturally split into both single work-item and NDRange kernels

▪ Ex. Generating random data for a Monte Carlo simulation:

kernel void rng(int seed) {

int r = seed;

while(true) {

r = rand(r);

write_channel_intel(RAND, r);

}

}

kernel void sim(...) {

int gid = get_global_id(0);

int rnd = read_channel_intel(RAND);

out[gid] = do_sim(data, rnd);

}

Single Work-Item

NDRange

rng()

sim()

Programmable Solutions Group

Arbitration with Non-Blocking Channels/Pipes

kernel void arb2to1(...) {

bool v = false;

while(true) {

int d = read_channel_nb_intel(C_IN1, &v);

if(!v)

d = read_channel_nb_intel(C_IN2, &v);

if(v)

write_channel_intel(C_OUT, d);

}

}
a

rb
2

to
1C_IN1

C_IN2

C_OUT

Programmable Solutions Group 150

Channel / Pipe Example Application

▪ Three Kernels:

– Read Kernel -- (Transfers data from DDR to channel)

– Streamer Kernel -- (Reads from input channel, processes data, and writes to output pipe)

– Write Kernel -- (Transfers data from pipe to DDR)

▪ Separate queues needed to launch kernels in parallel

Global Memory Buffer

FIFO
Read

Kernel
StreamerKernel

Write

Kernel
FIFO

Host Processor

Command

queue #1

Command

queue #3

Command

queue #2

Programmable Solutions Group 151

Channel / Pipe Example Application Code

#pragma OPENCL EXTENSION cl_intel_channels : enable

channel uint c0 __attribute__((depth(128)));

kernel void host_reader(global const uint *src) {

size_t gID=get_global_id(0);

write_channel_intel(c0, src[gID]);

}

kernel void streamer(write_only pipe uint p1 __attribute__((blocking)), int N) {

uint iData;

for (unsigned i=0; i<N; i++) {

iData = read_channel_intel(c0);

iData = word_convert(iData);

write_pipe(p1, &iData);

}

}

kernel void host_writer(global uint *dst, read_only pipe uint p1 __attribute__((blocking))) {

size_t gID = get_global_id(0);

uint value=0;

read_pipe(p1, &value);

dst[gID] = value;

}

This NDRange kernel reads data from

the host and sends it to channel c0

This single work-item kernel processes

data from c0 and passes it to p1.

This NDRange kernel reads data from

pipe p1 and writes data to host

Programmable Solutions Group 152

Host Pipes

▪ Allow host to send/receive data to/from the kernels without global memory

– Performance advantage

– Achieve peak host-to device bandwidth

FPGA

Kernel CU

PCIe*

DMA DMA

DDR

Memory

Controller

HOST
System

Memorycl_mem read_pipe = clCreatePipe(context,CL_MEM_HOST_READ_ONLY, …);

cl_mem write_pipe = clCreatePipe(context, CL_MEM_HOST_WRITE_ONLY, …);

clReadPipeIntelFPGA (read_pipe, &val);

clWritePipeIntelFPGA (write_pipe, &val);

Host Code

#pragma OPENCL EXTENSION cl_intel_fpga_host_pipe : enable

kernel void reader(__attribute__((intel_host_accessible))

__read_only pipe ulong4 host_in) {....}

kernel void writer(__attribute__((intel_host_accessible))

__write_only pipe ulong4 device_out) {....}

Kernel Code

Programmable Solutions Group 153

Pipes vs Channels

Most cases they are the same▪

Usage and Performance–

Use Pipes▪

Partially conformant to OpenCL– ™ standards

Needs modification from OpenCL – 2.0 Pipes

Use Channels ▪

With – autorun kernels

Use model more aligned with FPGA implementation–

Pipe usage more verbose, especially on the host side–

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 155

Optimizing Memory Accesses Agenda

Overview▪

Global/constant memory▪

Local memory▪

Private memory▪

Host memory▪

Programmable Solutions Group 156

▪ Global Memory

– Off-chip memory (DDR / QDR / HMC)

– Slow for non-sequential access

▪ Constant Memory

– Visible to all workgroups

– Accessed through shared cache

▪ Local Memory

– Shared within workgroup

– FPGA on-chip memory

– Much higher bandwidth and lower latency

than global memory

▪ Private Memory

– Unique to a work-item

– FPGA registers or on-chip memory

▪ Host Memory (Separate CPU Memory)

OpenCL™ Memory Model

Kernel

Global Memory

Constant Memory

Workgroup

Local Memory

Work-item

Private

Memory

Work-item

Private

Memory

Workgroup

Local Memory

Work-item

Private

Memory

Work-item

Private

Memory

Workgroup

Local Memory

Work-item

Private

Memory

Work-item

Private

Memory

Workgroup

Local Memory

Work-item

Private

Memory

Work-item

Private

Memory

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 157

Need to Optimize Memory Accesses

▪ In many real-world algorithms, data movement through memory is often the

bottleneck

▪ Memory access efficiency often determine overall performance of a kernel

– Large performance gains can be achieved from optimization effort

▪ Global Memory

– Maximum global memory BW is much smaller than maximum local memory BW

– Maximum computational BW of the FPGA is much larger than the global memory BW

– Increases in kernel performance leads to increases in global memory BW

requirements

Programmable Solutions Group 158

HTML Report: System Viewer and Memories

Stall point graph that include load and store information between kernel ▪

pipeline and memories

Verify memory replication▪

Identify ▪ stallable loads and stores

See type of LSU implemented▪

Programmable Solutions Group 159

System Viewer: Visualize Memory Accesses

▪ Visualize Connections from each load/store to local and global memory

lmem.cl

Programmable Solutions Group 160

HTML Area Report for Memory Implementation

Shows global and constant cache interconnect implemented▪

Reports type of global load store unit implemented▪

Local memory implementation reported▪

Overall state: Optimal, Good but replicated, Potentially inefficient–

Total size, replication factors, – stallable/stall-free, merging, banking, number of reads

and writes

Shows private variable implementation▪

Programmable Solutions Group 161

HTML Kernel Memory Viewer

Displays the local memory present in your design

Illustrates:

▪ Memory replication

▪ Banking

▪ Implemented arbitration

▪ Read/write capabilities of each memory port

Programmable Solutions Group 162

Dynamic Profiler and Memory Accesses

▪ Displays statistics about each memory accesses on source code tab

– Entry shows type of access: global / local

– At access location, displays pipeline stall %, occupancy %, average bandwidth,

efficiency%, cache hit%, non-aligned access, burst, and coalescing

df

Kernel tab shows overall statistics

Programmable Solutions Group 163

Optimizing Memory Accesses Agenda

▪ Overview

▪ Global/constant memory

▪ Local memory

▪ Private memory

▪ Host memory

Programmable Solutions Group 164

Global Memory in OpenCL™

▪ global address space

– Used to transfer data between host and device

– Used for kernel-to-kernel communication

– Shared by all work-items in all workgroups

▪ Generally allocated on host as cl::Memory object

– Created/allocated with cl::Buffer constructor

– Data transferred using cl::enqueue[Read/Write]Buffer method

– Object assigned to global pointer argument of kernels

__kernel void add(__global float* a,

__global float* b,

__global float* c)

{

int i = get_global_id(0);

c[i] = a[i] + b[i];

}

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 165

OpenCL™ BSP Global Memory

▪ Global memory controllers and

devices defined by the Board

Support Package

▪ Global memory interconnect built

by the kernel compiler

FPGA

Kernel

Pipeline

Kernel

Pipeline

PCIe*

External

Memory

Controller

& PHY

On-Chip

Memory

Global Memory Interconnect

On-Chip

Memory

Local Memory InterconnectLocal Memory Interconnect

DDR

External

Memory

Controller

& PHY

DDR

External

Memory

Controller

& PHY

QDR

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 166

Compiler Generated Hardware

▪ Custom global interconnect created

▪ LSU type selected by the compiler

– Performs Width Adaptation

– User data (e.g. 32-bit int) to memory word

(512-bit DRAM word)

– Coalesced to avoid wasted bandwidth

BSP

foo.cl

global int* x;

…

int y=x[k];

Global

Memory

Load Unit

Arbitration

Interconnect

Pipeline

AOC Compiler

Load Unit

Programmable Solutions Group

▪ Burst-Coalesced

– Most common global memory LSU

– Specialized LSU to groups loads/stores into bursts

– LSU for load can cache/re-use data

– Private caching is applied heuristically

▪ Streaming

– Simplified version of burst-coalesced LSU that supports only completely

linear accesses

▪ Pipelined

– Used for local memory

▪ And others

Load a[i] Load b[i]

Store c[i]

a[i]+b[i]

167

LSU Types
$INTELFPGAOCLSDKROOT\ip

Programmable Solutions Group 168

Global Memory Load Store Units in the Area Report

Implementation of LSUs annotated with source line

▪ Include size of cache, situations when cache is created, and other tips

Programmable Solutions Group 169

Arbitration Interconnect to Global Memory

▪ Generated automatically by the compiler

▪ Arbitrate to physical interfaces

– Tree interconnect (high bandwidth)

OR

– Ring interconnect (high fmax)

– Increase reliance on large bursts

– Arbitration type chosen base on # of LSUs

▪ Distribute (load balance) across physical interfaces

Global

Memory

Load Unit

Arbitration

Interconnect

Pipeline

Load Unit

Programmable Solutions Group 170

Kernel Argument Constant Memory

▪ Written to global memory and likely constant cache by the host

– Can be modified later by the host, shared by all work-groups

▪ Use for read-only data that all work-groups access

– E.g. high-bandwidth table lookups

▪ constants kernel arguments are also stored in on-chip memory if possible

– Optimized for 100% cache hit performance

– Default size is 16kB

– Shared by all constant arguments

– Can be set at kernel compile time

__kernel void my_kernel(__constant float * restrict coef)

…

Programmable Solutions Group 171

Complete Picture

Load Unit Load Unit

Coalesce

Load Unit

Cachestream

decoupled

Constant Load

Unit

Constant Cache

Arbitration

Constant Load

Unit

Low Bandwidth

high BW

Pipeline

Global Memory

Programmable Solutions Group 172

Global / Constant Cache Interconnect Area Report

▪ Global interconnect – accessing external memory (e.g. DDR4)

– Number of global loads and stores affects area

▪ Constant cache interconnect – accessing memory marked as constant

– Number of reads affects replication which affects area

– Include tips for improving performance

Programmable Solutions Group 173

File Scope __constant

▪ File scope __constant variables supported

▪ Dedicated on-chip ROM resources allocated for each variable

– Not shared with __constant arguments, not stored in global memory

– In-lined into the kernel compute unit

__constant int my_array[4] = {0x0, 0x1, 0x2, 0x3};

__kernel void my_kernel (__global int * my_buffer)

{

size_t gid = get_global_id(0);

my_buffer[gid] += my_array[gid % 4];

}

Programmable Solutions Group 174

Heterogeneous Memory

▪ Some BSPs offer more than one type of global memory

– DDR, QDR, HMC, etc.

▪ Memory location can be set per kernel argument using

– Using buffer_location(“MEMORY_NAME”)

__kernel void foo (

global int *x, // Default memory location (usually DDR)

global __attribute__((buffer_location("DDR"))) int *y,

global __attribute__((buffer_location("QDR"))) int *z,

global __attribute__((buffer_location("HMC"))) int *x)

cl::Buffer mybuf(context, CL_MEM_HETEROGENEOUS_INTEL, size, NULL, &errNum);

Programmable Solutions Group 175

Global Memory Banking Optimizations

Global memory addresses can be set as ▪

interleaved or partitioned by bank(controller)

Burst▪ -interleaved is the default

Best for sequential traffic and for load –
balancing between memory banks

Same behavior as GPUs–

Interleaving granularity set by BSP in XML▪

Usually – width*maxburst

Bank 2

Bank 1

…

Bank 2

Bank 1

Burst-

Interleaved Address

0x7FFF_FFFF

0x7FFFFC00

0x7FFF_F800

0x0000_0800

0x0000_0400

0x0000_0000

Bank 2

Bank 1

Separate

Partitions

<!-- DDR3-1600 -->

<global_mem name="DDR" max_bandwidth="25600" interleaved_bytes="1024" config_addr="0x018">

<interface name="board" port="kernel_mem0" type="slave" width="512" maxburst="16" address="0x00000000" size="0x100000000" latency="240"/>

<interface name="board" port="kernel_mem1" type="slave" width="512" maxburst="16" address="0x100000000" size="0x100000000" latency="240"/>

</global_mem>

board_spec.xml

Programmable Solutions Group 176

Manually Partitioning Global Memory

▪ Turn off interleaving

– aoc <kernel file>.cl -no-interleaving <memory_type>

▪ Allocate each memory buffer to one of the banks

– Use CL_CHANNEL… flags

– Allocate each buffer to designated memory bank only

cl::Buffer mybuf(context, CL_CHANNEL_2_INTELFPGA, size, 0, 0);

Flag Bank Allocated

CL_CHANNEL_1_INTELFPGA Allocates to lowest available memory region

CL_CHANNEL_2_INTELFPGA Allocates to the second memory bank

CL_CHANNEL_n_INTELFPGA Allocates to the nth bank (as long as the board supports it)

Programmable Solutions Group

Matrix Multiplication: Global Memory (default)

Kernel
A

B

C

A

B

C

DIMM1

DIMM2

Load A

Load B

Store C

for (int i = 0; i < WIDTH; i++) {

Csub += A[y * WIDTH + i] * B[x + WIDTH * i];

}

C[y * WIDTH + x] = Csub;

Programmable Solutions Group

for (int i = 0; i < WIDTH; i++) {

Csub += A[y * WIDTH + i] * B[x + WIDTH * i];

}

C[y * WIDTH + x] = Csub;

Matrix Multiplication: Global Memory (partitioned)

▪ Optimize matrix A and B access

– By using separate banks

▪ C is rarely accessed so don’t care

Kernel A

B

C

DIMM1

DIMM2

Load A

Load B

Store C

aoc MatrixMult.cl -no-interleaving DDR

Programmable Solutions Group 179

Optimizing Memory Accesses Agenda

▪ Overview

▪ Global/constant memory

▪ Local memory

▪ Private memory

▪ Host memory

Programmable Solutions Group

On-chip Memory Systems

▪ “Local” and some “private” memories use on-chip RAM resources

– Much better performance than global memories

▪ Local memory system is customized to your application at compile time

– Dependent on data type and usage

– Banking configuration (number of banks, width), and interconnect

customized to minimize contention

– Big advantage over fixed-architecture accelerators

– If your code is optimized for another architecture, undo the fixed-architecture

workaround

Programmable Solutions Group 181

Statically Allocating Local Memory

__kernel void mykernel (__global float* ina, …) {

__local float ina_local[64];

ina_local[get_local_id(0)] = ina[get_global_id(0)];

barrier(CLK_LOCAL_MEM_FENCE);

…

// Usage of any element of ina_local

}

Statically allocate

local pointer

Cache data in

local memory

Barrier ensures all work-

items in the workgroup have

loaded data into cache

before moving on.

Discussed in an upcoming

slide.

Programmable Solutions Group 182

Dynamically Allocated Local Memory

▪ Not preferred

▪ For Intel® FPGA, a static amount is always allocated at compile time

– Dynamically allocated size must be <= statically allocated size

__kernel void mykernel (__global float* ina, __local float *ina_local…) {

ina_local[get_local_id(0)] = a[get_global_id(0)];

barrier(CLK_LOCAL_MEM_FENCE);

…

// Usage of any element of ina_local

}

cl::Kernel::setArg(0, &global_mem_buffer);

cl::Kernel:setArg(1, NULL)
Host Code

local memory

pointer argument

arg_value must be NULL

when argument is local!

Kernel

Code

Programmable Solutions Group 183

Local Memory Kernel Argument Allocation

▪ Physical pointer kernel arguments size set at compile time

▪ By default 16kB of local memory is allocated for each variable

▪ cl::Kernel::setArg() cannot request data larger than the statically

allocated size

▪ Use local_mem_size attribute to manually set size, must be power of 2

– Specify a pointer size in bytes

__kernel void my_kernel (

__local float * A,

__attribute__((local_mem_size(1024))) __local float* B,

__attribute__((local_mem_size(32768))) __local float* C)

{ …

16kB allocated for A 1kB allocated for B

32kB allocated for C

Programmable Solutions Group 184

Efficient On-chip Memory Systems

▪ Loads/stores with stall-free properties ideal

– Have fixed latency

– Access latency is lower

– Use less resources

– Can be included in stall-free execution regions of the pipeline

▪ Lead to simpler interconnect

– No arbitration is needed

▪ Can be scheduled more efficiently

– See discussions on dependencies

Programmable Solutions Group 185

On-chip memory architecture

Basic memory architectures map to dual▪ -ported M20Ks

Concurrently – accomodates #loads + #stores ≤ 2

Kernels may require many complex accesses▪

Compiler optimizes kernel pipeline, interconnect and memory system ▪

Through – splitting, coalescing, banking, replication, double-pumping, port sharing

Local Memory Interconnect

M20K

M20K

M20K

M20K

M20K

M20K

Kernel Pipeline

port 0

port 1

Programmable Solutions Group 186

Interconnect: Port Sharing

▪ Interconnect includes access arbitration to memory ports

▪ With no optimization, sharing ports destroys performance

– Pipeline stalls due to arbitration for concurrent accesses

– Unless mutually exclusive accesses

▪ Key to high local-memory efficiency is stall-free memory accesses

– Concurrent memory accesses can access memory without contention

Memory
Port0

store
load

load
load

Port1

load
load

load

Arbitration

nodes

Programmable Solutions Group 187

Automatic Double Pumping

Block

RAM

Clk

Port 1

Port 2

Block

RAM

2xClk

Port 1

Port 2

Port 3

Port 4

Block

RAM

2xClk

Port 1

Port 2

Port 3

Port 4

2x clock domain

T

Memory

2x clock

Port0

Port3

store
load

load
load

Port1
Port2

load
load

load

1x 2x

Programmable Solutions Group 188

Replication

Block

RAM

Up to four

ports with

doublepump

1-3 write

Y-read

Block

RAM

Block

RAM

Memory

2x clock

Port0

Port3

store
load

load
load

Port1
Port2

load
load

load Memory

2x clock

Port0

Port3

Port1
Port2

Programmable Solutions Group 189

Local Memory Replication Example

__kernel

void foo_replication (int ind1, int ind2, int val, int calc) {

__local int array[1024];

int res = 0;

array[ind1] = val;

#pragma unroll

for (int i = 0; i < 9; i++)

res += array[ind2+i];

calc = res;

}

ST

LD

1 write port, 9 read ports

Up to 3 read ports, 1 write port per replicant (double pump)

Therefore, replication factor = 3 needed for stall free accesses

Programmable Solutions Group 190

Compiler Code Analysis

▪ Double pumping/replication done with minimal understanding of kernel pipeline

– Just assume that ALL loads and stores are concurrent

▪ Compiler analyzes kernel code for more advanced optimizations

– Based access patterns and decomposition of the address

▪ Example, B[i][j] accesses address =

– B + ((i * 32 + j) * sizeof(float))

– Access is always at a 32-bit boundary

– More powerful information inferred from related accesses

local float B[1024][32];

…

B[i][j] = …

Programmable Solutions Group

Static Coalescing

▪ Components often access consecutive addresses (variable A)

▪ Code specifies 2 consecutive stores to array A

▪ Compiler merges consecutive memory accesses into a wider accesses

– Leads to fewer ports used and therefore less contention

– One wider store to A

__kernel void example() {

__local int A[32][2], B[32][2];

…

A[lid][0] = B[lid][0];

A[lid][1] = B[lid + x][1];

Memory

Memory

191

Programmable Solutions Group

Coalescing

__kernel

void foo_coal (int ind1, int ind2, int val,

int calc)

{

__local int array[1024];

int res = 0;

#pragma unroll

for (int i = 0; i < 4; i++)

array[ind1*4 + i] = val;

#pragma unroll

for (int i = 0; i < 4; i++)

res += array[ind2*4 + i];

calc = res;

}

192

Programmable Solutions Group 193

Automatic Banking

▪ Can the compiler do better for access to array B?

– Currently 2 loads: B[lid][0] and B[lid + x][1]

– The loads will access two disjoint partitions of the memory

▪ Solution: Compiler can partition memory into multiple banks to create

concurrent accesses

– Create separate memories for B with individual set of ports

kernel void example() {
local int A[32][2], B[32][2];
…
int lid = get_local_id(0);
A[lid][0] = B[lid][0];
A[lid][1] = B[lid + x][1];
…

}

1 access / bank

Memory

Memory

Memory

Programmable Solutions Group 194

Banking

Use multiple banks on lower bits to implement the memory

__kernel

void foo_banking (int ind1, int ind2,

int val1, int val2, int calc) {

__local int array[1024][2];

array[ind1][0] = val1;

array[ind2][1] = val2;

calc = (array[ind2][0] +

array[ind1][1]);

}

Programmable Solutions Group 195

Memory Geometry Unrelated to Array Shape

▪ Compiler creates memory geometry based on how an array is accessed, not

how it’s declared

▪ Array could be banked:

▪ Coalesced

▪ Or coalesced and banked:
0 1 2 3

4 5 6 7

…

Bank 0

Bank 1

local int lmem[N];

0 1 2 3

4 5 6 7

…

Bank 0

Bank 1

Bank 2

Bank 3

local int lmem[N];

0 1 2 3

4 5 6 7

…

Bank 0local int lmem[N];

Programmable Solutions Group 196

2D Possible Geometries

▪ 2D, coalesced and banked:

▪ 2D, coalesced

▪ 2D, banked

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

Bank 0

Bank 1

Bank 2

Bank 3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

Bank 0, element 0

Bank 0, element 1

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Bank 0

Bank 1

Bank 2

Bank 3

local int lmem[N][4];

local int lmem[N][4];

local int lmem[N][4];

Programmable Solutions Group 197

Local Memory in the Area Report

▪ Many different local memory properties shown in HTML area report

– Overall state:

– Optimal : Stall-free, no replication or replication did not use extra block RAM

– Good but replicated: Stall-free

– Potentially inefficient: Possible stalls

– Total size, replication factors, stallable/stall-free, merging, banking, # reads + writes

– Full details of each reported property in Best Practices Guide

– Private variables implemented in on-chip RAM reported as local

Programmable Solutions Group 198

Local Memory – Replication

▪ Replication applied to achieve a stall-free access

– Message: Local memory: Good but replicated.

▪ Local memory systems with replication can still be optimal if no additional block

RAMs are used

– Replicated using unused depth in block RAM

Programmable Solutions Group 199

Local Memory - Banking

▪ Proper banking can help solve stalls

▪ Inefficient local memory constructs flagged

Area report messages will often

contain suggestions on fixing

problems in your design

Programmable Solutions Group 200

HTML System Viewer – Local Memory

▪ Examine each load or store unit

– Type, stall-free status, latency

▪ View memory implementation

– Banking

– Replication

▪ Visualize each access

Programmable Solutions Group

Displays detailed information of memory layout

▪ Select memories and banks to show

▪ Shows number/type of ports, and sharing/arbitration

logic if any

▪ Shows each read/write site

– Includes access width

– Stall-free or stallable (Red indicates stallable)

Kernel Memory Viewer

201

Programmable Solutions Group 202

Local Memory Configuration with Attributes

▪ Use attributes to force the compiler to choose a certain local memory

configuration

▪ Use when compiler unable to infer optimal implementation

int __attribute__((memory,

numbanks(2),

bankwidth(32),

doublepump,

numwriteports(1)

numreadports(4))) lmem[128];

Example

Programmable Solutions Group 203

Local Memory Attributes

Control Memory Architecture Using Attributes

Attribute Effect

register/memory Controls whether a register or onchip memory implementation is used

numbanks(N) Sets the number of banks

bankwidth(N) Sets the bank width in bytes

singlepump/doublepump Controls whether the memory is single- or double-pumped

numreadports(N) Specifies that the memory must have N read ports

numwriteports(N) Specifies that the memory must have N write ports

merge(“label”,
“direction”)

Forces two or more variables to be implemented in the same

memory system

bank_bits(b0,b1,…,bn) Forces the memory system to split into 2n banks, with {b0, b1, ...,

bn} forming the bank-select bits

Programmable Solutions Group 204

numbanks(N) and bankwidth(N) Memory

Attribute Usage
▪ Same local memory integer array lmem[4] implemented in different

configurations

__local int

__attribute__((numbanks(2),

bankwidth(8)))

lmem[4];

0 1 2 3

lmem

Bank 0

Bank 1

__local int

__attribute__((numbanks(4),

bankwidth(4)))

lmem[4];

0 1 2 3

lmem

Bank 0

Bank 1

Bank 2

Bank 3

Programmable Solutions Group

__kernel void bank_arb_consecutive_multidim (

int raddr, int waddr,

int wdata, int upperdim, int rdata) {

__local int a[2][4][128];

#pragma unroll

for (int i = 0; i < 4; i++)

a[upperdim][i][(waddr & 0x7f)] = wdata + i;

int rdata = 0;

#pragma unroll

for (int i = 0; i < 4; i++)

rdata += a[upperdim][i][(raddr & 0x7f)];

}

Bank Bits Example:

Default Implementation

205

Simultaneous Accesses

Default banking on lower bits.

Arbitration needed on the multiple

middle index accesses

Programmable Solutions Group

Bank Bits Example:
bankbits Solution

206

__kernel void bank_arb_consecutive_multidim (

int raddr, int waddr,

int wdata, int upperdim, int rdata) {

__local int __attribute__((bank_bits(8,7),bankwidth(4)))

a[2][4][128];

#pragma unroll

for (int i = 0; i < 4; i++)

a[upperdim][i][(waddr & 0x7f)] = wdata + i;

int rdata = 0;

#pragma unroll

for (int i = 0; i < 4; i++)

rdata += a[upperdim][i][(raddr & 0x7f)];

}

Simultaneous Accesses,

No arbitration needed with

optimal banking

Programmable Solutions Group 207

Local Memory Attribute Example

▪ Using attributes to control replication factor

▪ No replication needed

local int

__attribute__((singlepump,

numreadports(3),

numwriteports(1))))

lmem[16];

M20k

M20k

lmem

read_0

read_1

write

M20k

read_2

local int

__attribute__((doublepump,

numreadports(3),

numwriteports(1))))

lmem[16];

M20k

lmem

read_0

read_1

write

read_2

Programmable Solutions Group

Conclusions

▪ Memory systems and interconnects customized for your kernel

▪ Write simple code, especially memory indexing

– More likely to be statically decomposed

– Be aware of implemented banking

– Possible to transpose array to infer better banked behavior

▪ Be aware of loads/stores to the same bank

– <= 4 will get never-stall without replication (double pumped)

▪ Enable replication by limiting number of stores

Programmable Solutions Group 209

Matrix Multiplication Design Example:

Analyze Local Memory Access Pattern
▪ Non-linear access of local array B_local

▪ For each iteration of k, pointer for array B_local jumps by BLOCK_SIZE

– Large stride on each access makes it difficult for compiler to create a good

coalesced/banked local memory configuration

▪ Local memory access pattern is important, dictates implementation of local

memory

//Loop through block and doing the following

A_local[local_y][local_x]= A[a + WIDTH * local_y + local_x];

B_local[local_y][local_x] = B[b + WIDTH * local_y + local_x];

barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll

for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += A_local[local_y][k] * B_local[k][local_x];

Programmable Solutions Group 210

Matrix Multiplication: Swapping Indices

▪ Convert the access to local memory B_local to be linear and thus much

easier for the compiler to analyze

▪ Sometimes the compiler will figure this out for you, but if in doubt you can

always do this easily in your source code

B_local[local_y][local_x] = B[b + WIDTH * local_y + local_x];

…

Csub += A_local[local_y][k] * B_local[k][local_x];

B_local[local_x][local_y] = B[b + WIDTH * local_y + local_x];

…

Csub += A_local[local_y][k] * B_local[local_x][k];

Programmable Solutions Group 211

Matrix Multiplication: Local Memory Optimized

Note the difference in

A_local and B_local

addressing scheme.

#define BLOCK_SIZE 64

#define WIDTH 1024

__kernel __attribute((reqd_work_group_size(BLOCK_SIZE, BLOCK_SIZE, 1)))

__attribute((num_simd_work_items(SIMD_WORK_ITEMS)))

void matrixMul(__global float *restrict C, __global float *restrict A,

__global float *restrict B)

{

__local float As[BLOCK_SIZE][BLOCK_SIZE];

__local float Bs[BLOCK_SIZE][BLOCK_SIZE];

// Initialize x(gid(0)), y(gid(1)), local_x, local_y, aBegin, aEnd, aStep, bStep (Hidden)

float Csub = 0.0f;

for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {

A_local[local_y][local_x]= A[a + WIDTH * local_y + local_x];

B_local[local_x][local_y) = B[b + WIDTH * local_y + local_x];

barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll

for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += A_local[local_y][k] * B_local[local_x][k];

barrier(CLK_LOCAL_MEM_FENCE);

}

C[get_global_id(1) * WIDTH + get_global_id(0)] = Csub;

}

Programmable Solutions Group 212

Matrix Multiplication: Area Report - Local Memory

Programmable Solutions Group 213

Matrix Multiplication Design Example:

HTML System Viewer - Local Memory

▪ Looking at load unit for B_local

– 2048 Bits, Pipelined, Stall-free

Programmable Solutions Group

Local Memory Optimizations

214

Exercise 5

Programmable Solutions Group 215

Optimizing Memory Accesses Agenda

▪ Overview

▪ Global/constant memory

▪ Local memory

▪ Private memory

▪ Host memory

Programmable Solutions Group 216

Private Memory Implemented as Registers

▪ Private variables and arrays can be implemented as:

– On-chip memory systems.

– Pipeline registers or FIFOs

▪ Unless the private variables match a register conversion rule, the result is

equivalent to local memory

– All tradeoffs, reports, and discussion about local memory applies

▪ Scalar variables (float, int, char, etc.) almost always implemented in registers

▪ Aggregate types (arrays, struct and vectors) can be converted to registers

– If members accessed can be determined at compile-time.

__kernel void MyKernel(…)

{

__private float pData[4];

…

}

Programmable Solutions Group 217

Private Memory Implemented in RAM

▪ If accesses are not constant, memory implemented in on-chip RAM

– temp is implemented in RAM

– loads/stores are used to access data

kernel void foo(global int* restrict A, global int* restrict B) {

int temp[20];

for(unsigned i = 0; i < 20; i++) {

temp[i] = A[i];

}

for(unsigned i = 0; i < 20; i++) {

B[i] = temp[i] + temp[N-1-i];

}

}

Programmable Solutions Group 218

Private Memory Implemented as Registers

(Constant access)
▪ Accesses are all constant

– Each element of temp becomes a register
int temp[20];

#pragma unroll

for(unsigned i = 0; i < 20; i++)

temp[i] = A[i];

#pragma unroll

for(unsigned i = 0; i < 20; i++)

B[i] = temp[i] + temp[N-1-i];

int temp[20];

#pragma unroll

for(unsigned i = 0; i < 20; i++)

temp[i] = A[i];

B[i] = temp[0] + temp[1] + temp[2] + temp[3] + temp[4];

Programmable Solutions Group 219

Private Memory Implemented as Registers (Size

Requirement)
▪ Private memory of size < 64 bytes always converted to registers

– Compiler heuristic

– temp becomes a 160-bit register

– Shift operations are used to extract the 32-bit data to operate on

kernel void foo(global int* restrict A, global int* restrict B)

{

int temp[5];

for(unsigned i = 0; i < 5; i++) {

temp[i] = A[i];

}

for(unsigned i = 0; i < 5; i++) {

B[i] = temp[i] + temp[N-1-i];

}

}

Programmable Solutions Group

data_out[9]

Private Memory Describing Shift Registers

▪ Shift register inferred

ww
data_in

pixel_t sr[2*W+3];

while(keep_going) {

// Shift data in

#pragma unroll

for(int i=1; i<2*W+3; ++i)

sr[i] = sr[i-1];

sr[0] = data_in;

…

// Tap output data

data_out ={sr[0], sr[1], sr[2],

sr[W], sr[W+1], sr[W+2],

sr[2*W], sr[2*W+1], sr[2*W+2]}

…

}

Shift Operation

Access to constant locations

Programmable Solutions Group 221

Shift Register Implementation

▪ Inference result from access pattern

▪ Each element of the shift register is converted from memory to register

▪ All registers are then clustered together into 1 or several shift registers

▪ Shift registers can be backed by any array shape

– The compiler will infer shift registers after the arrays are broken into individual

elements

Shift register has frequent accesses

▪ If conversion to shift registers fails, due to the coding style, a large number of

loads and stores to memory will be instantiated

Programmable Solutions Group 222

Area Report: Private Variables Implemented as

Registers
▪ Private variables implemented as

registers annotated

Programmable Solutions Group 223

Area Report: Private Variables Implemented as Shift

Registers
▪ Private variables implemented as shift

registers reported

– See details about the individual registers

used to implement the whole array

Access patterns

determines implementation

Programmable Solutions Group 224

Area Report: Private Variables Implemented as

Barrel Shifters
▪ Arrays that are indexed dynamically may be

implemented as a high-overhead barrel shifters

▪ Warning issued

– Static indexing would yield much better results

Programmable Solutions Group 225

Area Report: Private Variables Implemented as

ROM
▪ Private large constant array can be implemented as ROM

▪ ROMs are replicated for each read

▪ Resources used are shown on lines where accesses occur

LEs FFs RAMs DSPs Two accesses to
private constant tbl[]

Programmable Solutions Group 227

Floating-Point Optimizations

▪ Apply to half, float and double data types

▪ AOC has the ability to optionally optimize for floating-point operations

– Optimizations will cause small differences in floating-point results

– Not IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008) compliant

▪ AOC floating-point optimizations:

– Tree Balancing

– Reducing Rounding Operations

▪ Other optimizations

– Floating-point vs. fixed-point representations

– Use a device with hard floating point

Programmable Solutions Group

Tree-Balancing

▪ Floating-point operations are not associative

– Rounding after each operation affects the outcome

– ie. ((a+b) + c) != (a+(b+c))

▪ By default the compiler doesn’t reorder floating-point operations

– May creates an imbalance in a pipeline, costs latency and possibly area

▪ Manually enable compiler to balance operations

– For example, create a tree of floating-point additions in SGEMM, rather than a chain

– Use -fp-relaxed=true flag when calling aoc

Programmable Solutions Group 229

Arithmetic Order of Operation Rules

▪ Strict order of operation rules apply in OpenCL™

▪ By default, AOC honors those rules

– May lead to long, unbalanced, slower, less-efficient floating-point operations

▪ Example: Result = (((A * B) + C) + (D * E)) + (F * G)

x + + +

x x

Long Vine of Operations

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 230

Tree Balancing

▪ Allow AOC to reorder operations to convert into a tree pipeline structure

– Possibly affects the precision, not consistent with IEEE 754

▪ Enable AOC tree balancing with –fp-relaxed option

– Design needs to tolerate the small differences in floating-point results

x

+
+

Same Operation, Balanced Tree Implementation

x

x
+

Result = (((A * B) + C) + (D * E)) + (F * G)

aoc -fp-relaxed <kernel_file>.cl

Programmable Solutions Group

Tree Balancing and Resource Savings

+

+ +

+

+ +

+

+

+

+

+

+

+

+

R
e
g

2
 R

e
g

is
te

rs

3
 R

e
g

is
te

rs

4
 R

e
g

is
te

rs

5
 R

e
g

is
te

rs

6
 R

e
g

is
te

rs

Programmable Solutions Group 232

Rounding Operations

▪ For a series of floating-point operations, IEEE 754 require multiple rounding

operation

▪ Rounding can require significant amount of hardware resources

▪ Fused floating-point operation

– Perform only one round at the end of the tree of the floating-point operations

– Leads to more accurate results

– Other processor architectures support certain fused instructions such as fused

multiply and accumulate (FMAC)

– AOC can fuse any combination of floating-point operators

Programmable Solutions Group 233

Reducing Rounding Operations

▪ AOC will not reduce rounding operations by default

▪ Enable AOC rounding reduction with -fpc option

– Not IEEE 754 compliant

– Use when program can tolerate these differences in floating-point results

1. Removes floating-point rounding operations whenever possible

– Round floating-point operation only once at the end of the tree of operations

– Applies to *, +, and -

2. Carry additional mantissa bits to maintain precision

– Carries additional bits through calculations, removed at the end of the tree of operations

3. Changes rounding mode to round toward zero

aoc -fpc <kernel_file>.cl

Programmable Solutions Group 234

Implementing Arbitrary Precision Integers

▪ Include the library in your .cl file #include "ihc_apint.h"

▪ Aoc run with the option -l $INTELFPGAOCLSDKROOT/include/kernel_headers

#include "ihc_apint.h"

__kernel void fixed_point_add(__global const unsigned int * restrict a,

__global const unsigned int * restrict b,

__global unsigned int * restrict result)

{

size_t gid = get_global_id(0);

ap_uint10 temp, temp2;

ap_uint20 temp_result;

temp = a[gid]; temp2 = b[gid];

temp_result = ((int20_t)a) * b;

result[gid] = temp_result;

}

Datatypes available are ap_uint<bit size> and

ap_int <bit size>

Make sure to cast one of the arguments to account

for bit growth to prevent overflow

Programmable Solutions Group 235

Summary

▪ NDRange kernel attribute customizes Compute Unit architecture

▪ Effective Loop Pipelining

▪ Communication through Channels / Pipes

▪ Memory Optimizations

▪ Data Type Considerations

Programmable Solutions Group

References

▪ Intel® OpenCL™ collateral (www.altera.com/OpenCL)

– White papers

– Demos and Design Examples

– Intel FPGA SDK for OpenCL Getting Started Guide

– Intel FPGA SDK for OpenCL Programming Guide

– Intel FPGA SDK for OpenCL Best Practices Guide

– Free Intel FPGA OpenCL Online Trainings

▪ Khronos* Group OpenCL Page

▪ OpenCL 1.2 Reference Card

– https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf

236
*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

http://www.altera.com/OpenCL
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf

Programmable Solutions Group

Follow-on Training

▪ Single-Threaded vs. Multi-Threaded Kernels online training

▪ Building Custom Platforms online training

237

https://www.altera.com/support/training/course.html?courseCode=OOPNCLKERN
https://www.altera.com/support/training/course.html?courseCode=OOPNCLCSTBOARD

Programmable Solutions Group 238

Many Ways to Learn

Videos
Online Training

Virtual Classes

Instructor-led Training

*Other names and brands may be claimed as the property of others

http://www.youtube.com/user/alteracorp
http://www.altera.com/training/online
http://wl.altera.com/servlets/searchclass?locations=Virtual Classroom
http://www.altera.com/training/ilt
http://www.altera.com/training
http://www.altera.com/training

Programmable Solutions Group 239

Instructor-Led and Virtual Training Curriculum

*Other names and brands may be claimed as the property of others

Quartus®

Prime

Software:

Foundation

Introduction

to

Verilog

Introduction

to

VHDL

Quartus®

Software

Debug

Advanced

VHDL

Advanced

Verilog

Advanced

Platform

Designer

Designing

with the

Nios® II

Processor

Advanced

Timing

Analysis

Timing

Closure

Quartus®

Prime

Software:

Timing

Analysis

Developing

Software for

the Nios II

Processor

Building

Gigabit

Interfaces in

28-nm

Devices

DSP Builder

Advanced

Blockset

Partial

Reconfig-

uration

Introduction

to OpenCL™

for Intel

FPGAs

Developing

Software for

an ARM*-

based SoC

FPGA

Designing

with an

ARM*-based

SoC FPGA

Foundation Classes

Advanced Follow-On

Classes

Specialized Classes

Available as a Virtual Class

Recommended

progression

Possible Future Classes

Please provide your recommendations for new courses

__

__

Creating PCI

Express™

Links Using

FPGAs

Optimizing

OpenCL™

(2 days)

Intel Quartus

Pro Edition

Features

for High End

Design

Each course is 1 day long

except for Optimizing

OpenCL™ course
Performance

Optimization

with Stratix®

10 HyperFlex

Architecture

Advanced

Optimization

with Stratix®

10 HyperFlex

Architecture

Building

Interfaces

with Arria® 10

High-Speed

Transceivers

Developing a

Custom

OpenCL™

BSP

OpenCL™ on

FPGAs for

Parallel

Software

Programmers

High-Level

Synthesis

Advanced

Optimization

Techniques

Intel

HyperFlex

Architecture

Optimization

Workshop

Introduction

to High-Level

Synthesis

with Intel

FPGAs

Introduction

to

Platform

Designer

Programmable Solutions Group 240

▪ Intel FPGA Technology Landing Pages

– Single page collecting resources related to

particular FPGA topics and applications

▪ Intel® FPGA Technical Training materials

▪ Intel Programmable Solutions Group

(PSG) community forum for self-help

▪ Intel PSG wiki site for design examples

▪ Intel PSG Knowledge Base Solutions

▪ Intel PSG Self Servicing License Center

▪ Please contact your sales and field

support if you need further assistance

Intel® FPGA Technical Support Resources

https://www.altera.com/support/support-resources.html
https://www.altera.com/support/training/curricula.html
https://www.altera.com/support/support-resources/communities.html
http://www.alterawiki.com/wiki/Main_Page
https://www.altera.com/bin/search?q=&client=www&output=xml_no_dtd&proxystylesheet=www&sort=date:D:L:d1&oe=UTF-8&ie=UTF-8&ud=1&access=p&entqr=3&entsp=a&entqrm=0&site=www_spt_kdb&filter=0&partialfields=(type:how-to|type:errata|type:answers)&tlen=200&rc=1
https://mysupport.altera.com/AlteraLicensing/license/index.html

Programmable Solutions Group

Optimizing the Hough Transform

241

Exercise 4

Programmable Solutions Group 242

Legal Disclaimers/Acknowledgements

Intel technologies’ features and benefits depend on system configuration and

may require enabled hardware, software or service activation. Performance

varies depending on system configuration. Check with your system manufacturer

or retailer or learn more at www.intel.com.

Intel, the Intel logo, Intel Inside, the Intel Inside logo, MAX, Stratix, Cyclone, Arria,

Quartus, HyperFlex, Intel Atom, Intel Xeon and Enpirion are trademarks of Intel

Corporation or its subsidiaries in the U.S. and/or other countries.

OpenCL is the trademark of Apple Inc. used by permission by Khronos

*Other names and brands may be claimed as the property of others

© Intel Corporation

http://www.intel.com/

