
Tobias Stauber

Parsing CUDA® for Transformation
to SYCL™ in an IDE

Original CUDA code
(before transformation)

Resulting SYCL code
(after transformation)

CUDA Simple Decl SpecifierCUDA AST Name

ASTTranslationUnit

__global__ void

CPPASTFunctionDefinition

kernel_name

CPPASTFunctionDeclarator { ... }

CPPASTParameterDeclaration

int CPPASTDeclarator

x

CPPASTParameterDeclaration

int CPPASTDeclarator

y

CPPASTParameterDeclaration

int CPPASTDeclarator

res

AST parsed by CRITTER*

evelop
+ +

Your C++ deserves It

From CUDA to SYCL

Kernel Call

AST Augmentation for CUDA to SYCL Transformation

NC = Normal Context (__host__ or none)
MC = Constant Memory (__constant__)
MS = Shared Memory (__shared__)
MM = Managed Memoyr (__managed__)
MD = Device Memory (__device__)
AD = Ambigouous __device__ tag
EG = Gloabl Execution Space (__global__)
ED = Device Execution Space (__device__)
DH = Device and Host Execution Space
 (__host__ and __device__)
KB = In Body of a Kernel Function
DB = In Body of a Device Function
DHB = In Body of a DH Function
ID = Implicit Device Memory

decl-spec = C++ Declaration Specifier
decl = C++ Declaration
dtor = C++ Declarator

CUDA Parser States for Gathering Information About MSS & ESS

In order to facilitate further support for the transformation from CUDA to SYCL, the parsed AST is enhanced
with information about its variables' Memory Space (MSS) and its functions' Execution Space (ESS). Thus
making it possible to quickly evaluate in what scope a name can be resolved. For this purpose an additional
state machine was embedded into the CUDA parser. By means of this state machine, targets which are of
heightened interest for the transformation, such as device functions or field references to CUDA built-in variables,
 are recognized as such during parsing.

Memory Management

Future Work

Example for an Automated Transformation of a Kernel

float *array;
cudaMallocManaged(&array, 1024 * sizeof(float));
for (int i = 0; i < 1024; i++) {
 array[i] = 1.0f;
}
cudaFree(array);

using namespace cl::sycl;
buffer<float> array(1024);
{
 auto acc_array = array.get_access<access::mode::read_write>();
 for (int i = 0; i < 1024; i++) {
 acc_array[i] = 1.0f;
 }
}

kernel_name<<<1,1024>>>(x, y, res);

{
 using namespace cl::sycl;
gpu_selector selector { };
device selectedDevice { selector };
queue compute_queue { selectedDevice };
compute_queue.submit(
[&](handler& cgh) {
cgh.parallel_for<class kernel_name_functor>(nd_range<1> {

 range<1> {1024}, range<1> {1024}}, [=](nd_item<> item) {
kernel_name(item, x, y, res);
}

);
});

}

#include <CL/sycl.hpp>

template<int dim>
void kernel_name(nd_item<dim> item, global_ptr<int> x,
 global_ptr<int> y, global_ptr<int> res) {
 int id = item.get_group(0) * item.get_local_range(0) +
 item.get_local_id(0);
 res[id] = x[id] * y[id];
}

__global__ void kernel_name(int *x, int *y, int *res) {
 int id = blockIdx.x * blockDim.x + threadIdx.x;
 res[id] = x[id] * y[id];
}

The CUDA parser creates a new AST node for the kernel-
call expression. This node can be automatically transformed
into the equivalent SYCL construct shown on the right.
(The "using-directives" are only used for clarification)

The CUDA to SYCL transformation keeps track of the
CUDA memory management calls and tries to deduce
which pointers' memory is allocated by the CUDA runtime.

Transformation of Shared Memory
Currently, shared memory can not be converted. In the transformation's next iteration support
for shared and constant memory will be added. CUDA shared memory will be mapped to local
memory in SYCL. For this, an accessor will be passed to the kernel function. In the same step
support for transforming variables declared in the host-code but using device memory
can be added.

Support for Error Handling
In most of the analyzed CUDA code, macros are used for evaluating the error codes
returned by the calls to the CUDA runtime API. As the SYCL specification declares
exceptions that are to be thrown if something went wrong, the CUDA error handling
actions should be implemented for the corresponding SYCL exceptions. This could be
done by wrapping the code, into which the macro expands, in a "try-catch" statement.

Support for Non-Managed CUDA Memory
While the CUDA managed memory can be transformed directly into a SYCL buffer,
the manually handled memory uses two pointers, one for the host copy, and one for
the device's copy. Those have to be merged into a single SYCL buffer. Thereby, the
calls to the memory movement functions should be analyzed, and the results used
to deduce which accessor-mode is used best for the corresponding SYCL accessor.

begin
body

exit fun decl

(EG|ED|DH)

begin
decl

begin
s
decl

exit body

(KB|DB|DHB)

d
decl-spec

g|_dh_
decl-spec

c
decl-spec

end decl

s
decl-spec

NC

fun
dtor

var dtor
AD

end
decl

MS

end
decl

ID

end decl

MD
m

decl-spec

MM

end decl
MC

end decl
MS

