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Quick introduction
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clDNN:

• Contains kernels-primitives optimized for DNN 
inference acceleration on Intel® SKL+ GPU devices

• Supports most of commonly known latest neural 
network topologies

• Delivered with Intel® OpenVino™ Deep Learning 
Deployment Toolkit which supports Caffe, Tensor-
Flow, ONNX and MX-Net models.

• Check out here https://github.com/opencv/dldt

Neo Compute Runtime:

• Unified OpenCL driver supporting BDW+ Intel® 
GPU devices

• Check out here https://github.com/intel/compute-runtime

https://github.com/intel/clDNN
https://github.com/intel/compute-runtime


Agenda
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• Primitive vs Graph

• Let’s optimize graphs!

• Offload execution

• Utilizing padding

• Data Fusing

• Primitive Fusing

• Kernel Selection

• Optimizing execution order

• Kernel level optimizations

• Performance Results



Intel Technology 

Primitive vs Graph
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Primitive vs Graph
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A B C

A B CIDLE IDLE

Application

Driver

UMD/KMD/OS

GPU

A,B,C

A B C

Application

Driver

UMD/KMD/OS

GPU

Primitive based:

• No locality

• Bubbles

• Lot of driver calls

• Many command 

buffers

Graph based:

• No bubbles

• Good locality

• One Command 

Buffer

• Good GPU 

utilization



Graph Compilation

Graph compilation
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Offline execution

Layout selection

Padding

Fusing

Execution order

Kernel selection

Kernel optimizations



Intel Technology 

Let’s optimize graphs!
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Layout selection
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ConvolutionA

Output in byxf

ConvolutionB

Input in yxfb

Change Layout

byxf->yxfbD

Data(byxf)

Data2(yxfb)



Layout selection
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Convolution1

Output in byxf

Convolution1’

Output in yxfb

Convolution2

Input in byxf

Convolution2’

Input in yxfb

BFYX

BFYX

BFYX
BYXF

BYXF

BYXF

BYXF BYXF

YXFB

YXFB

1

2 3
4

5

6

7 8
9

• Layout changing kernel 

eliminated

• Memory footprint reduced

Data(byxf) Data(yxfb)

How:

Have multiple versions of kernels 

accepting / producing different layouts



Offline execution
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Convolution

Convolution

weights

Reorder 

Weights

Optimized

Convolution

Weights

Reorder

Weights

+

Convolution

Convolution

weights

Optimized

Convolution

Weights

D

Graph Compilation

Expensive reorder done only once at graph compilation stage.

Optimized weights reused for subsequent runs.



Padding
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convA convB

I need padded 

input to offer 

best 

performance!

Hello, here is my 

output, does it 

work for you?

DATA



OpenCL 

Buffer

Padding types - physical
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PADDING

DATA
Good: 

• Best performance for compute bound kernels

Bad:

• Requires management of special pool with allocations

• Increases memory footprint

• Reduces memory bandwidth

How:

• Buffer created with larger size

• Data “outside” of buffer filled with zeroes



Padding types - logical
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Good: 

• Input allocations without any 

changes may be used

Bad:

• Worst performance for compute bound kernels ( 

code contains branches which is not good for 

SIMD architecture)

How:

• Kernel logic contains code preventing out of bounds access (returning 

zeroes for those accesses)



Shared Local 

Memory

Padding types - virtual
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Good: 

• Input allocation without any 

changes may be used

• Best performance for compute & 

memory bound kernels

Bad:

• Requires to use Shared Local Memory

How:

• Data is downloaded to Shared Local Memory

• Data in shared local memory is surrounded with padding

PADDING

DATADATA

OpenCL 

Buffer



Memory Fusing
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ConvA

ConvA

results

ConvB ConvC

ConvB

results

ConvC

results

Concatenation

ConvD

Concatenation 

results

ConvA ConvB ConvC

Fused

Buffer

ConvD

• Concatenation kernel eliminated

• Memory transfers reduced

• Smaller memory footprint (half memory 

needed)

D



Primitive Fusing
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ConvA
ConvA

results
ConvB

“Add”

Add results = 

ConvA results + 

ConvB results 

Add

results

ConvA

“ConvB + Add”

Combined results =

ConvB(ConvAresults)

+ ConvAresults

ConvC

ConvB

results

ConvC

ConvA

results

Combined

results

• Add kernel eliminated (now part of 

fused ConvB kernel)

• ConvA results read from memory 

only once by fused kernel, used to 

compute ConvB results and sum 

with ConvA results

• Smaller memory footprint (no ConvB

results buffer)

• Memory transfers reduced
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Out Of Order Queue

Optimizing Execution Order
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Inception2 

output

Inc3a

pool

Inc3a

1x1

Inc3a

3x3red

Inc3a

5x5red

Inc3a

5x5

Inc3a

3x3

Inc3a

poolproj

Inception3a

output

• Independent kernels grouped together to enable concurrent 

execution

• Dependencies resolved via Barrier calls

• Much better GPU utilization



Aggregated

Command Buffer

Kernel 

1
Kernel 

2

Unleashing concurrency – queues with events
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In Order 

Queue 1

In Order 

Queue 2

Out of Order 

Queue 3

Kernel 1

Kernel 4

Kernel 6

Kernel 2

Kernel 5

Kernel 7

Kernel 3

Kernel 8

Kernel 9

Kernel 10

Kernel 

3

Kernel 

4
Kernel 

5

Kernel 

6
Kernel 

7

Kernel 

8

Kernel 

9

Kernel 
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Kernel Selector & Auto-Tuner
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BFYX

BFYX

BFYX
BYXF

BYXF

BYXF

BYXF BYXF

YXFB

YXFB

1

2 3
4

5

6

7 8
9

conv
Format = BFYX

Pading = 1,1

Kernel = 3x3

Input = 8,128,13,13

Output = 8,256,15,15

Split = 1;

Dilatation = 1,1,1,1

Bias = yes

Kernel Selector

impl1

Support:

Require:

Batching, padding, split, 

bias, all formats

Batch % 8 == 0

Ofm % 32 ==0

impl2

Support:

Require:

Batching, padding, split, 

bias, yxfb format only

No limitations



Kernel level optimizations – use __constant
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How:

If buffer is read only during kernel execution, instead of declaring it __global 

put it in __constant address space. This will hint the compiler to optimize 

reading schemes as value may not change during kernel execution so 

subsequent reads of the same value are not necessary.

D

D



Kernel level optimizations – pass scalars to compiler
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How:

Instead of passing arguments as scalars, create dedicated version of kernel 

that has this argument value present in compile time. This way compiler can 

easier apply many optimizations ( i.e. loop unrolling )

D

D



Intel Technology 

Performance Results
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Gain with buffer fusing
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Gain with optimizing execution order
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Primitive Fusing
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Offline Execution
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Summary and Call to Action
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OpenCL is great to build neural network libraries !

To the Khronos OpenCL Working Group: 

• All those optimizations doesn’t require any vendor extensions!

Try our compute libraries and give us feedback!

 Check out how we implemented those optimizations in clDNN library 
https://github.com/opencv/dldt/tree/2019/inference-engine/thirdparty/clDNN

 Check out how our OpenCL driver supports those optimizations 
https://github.com/intel/compute-runtime

 Send Issues and Pull Requests

To OpenCL Developers: 

• Try those techniques and optimize your kernels!

https://github.com/opencv/dldt/tree/2019/inference-engine/thirdparty/clDNN
https://github.com/intel/compute-runtime


Thank You!
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Much thanks to Tomasz Poniecki and Ben Ashbaugh for help with material 
preparation, guidance and detailed review.




