
Breaking the last line of performance border
Michal Mrozek

IWOCL 2019

Legal Notice and Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration
will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more
complete information about performance and benchmark results, visit http://www.intel.com/benchmarks.

Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.

© 2019 Intel Corporation.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

* Other names and brands may be claimed as the property of others.

http://www.intel.com/benchmarks

Legal Disclaimer and Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR

OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO

LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS

INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,

MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,

operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information

and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when

combined with other products.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are

trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel

microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the

availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent

optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are

reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.

Notice revision #20110804

3

Quick introduction

4

clDNN:

• Contains kernels-primitives optimized for DNN
inference acceleration on Intel® SKL+ GPU devices

• Supports most of commonly known latest neural
network topologies

• Delivered with Intel® OpenVino™ Deep Learning
Deployment Toolkit which supports Caffe, Tensor-
Flow, ONNX and MX-Net models.

• Check out here https://github.com/opencv/dldt

Neo Compute Runtime:

• Unified OpenCL driver supporting BDW+ Intel®
GPU devices

• Check out here https://github.com/intel/compute-runtime

https://github.com/intel/clDNN
https://github.com/intel/compute-runtime

Agenda

5

• Primitive vs Graph

• Let’s optimize graphs!

• Offload execution

• Utilizing padding

• Data Fusing

• Primitive Fusing

• Kernel Selection

• Optimizing execution order

• Kernel level optimizations

• Performance Results

Intel Technology

Primitive vs Graph

6

Primitive vs Graph

7

A B C

A B CIDLE IDLE

Application

Driver

UMD/KMD/OS

GPU

A,B,C

A B C

Application

Driver

UMD/KMD/OS

GPU

Primitive based:

• No locality

• Bubbles

• Lot of driver calls

• Many command

buffers

Graph based:

• No bubbles

• Good locality

• One Command

Buffer

• Good GPU

utilization

Graph Compilation

Graph compilation

8

Offline execution

Layout selection

Padding

Fusing

Execution order

Kernel selection

Kernel optimizations

Intel Technology

Let’s optimize graphs!

9

Layout selection

10

ConvolutionA

Output in byxf

ConvolutionB

Input in yxfb

Change Layout

byxf->yxfbD

Data(byxf)

Data2(yxfb)

Layout selection

11

Convolution1

Output in byxf

Convolution1’

Output in yxfb

Convolution2

Input in byxf

Convolution2’

Input in yxfb

BFYX

BFYX

BFYX
BYXF

BYXF

BYXF

BYXF BYXF

YXFB

YXFB

1

2 3
4

5

6

7 8
9

• Layout changing kernel

eliminated

• Memory footprint reduced

Data(byxf) Data(yxfb)

How:

Have multiple versions of kernels

accepting / producing different layouts

Offline execution

12

Convolution

Convolution

weights

Reorder

Weights

Optimized

Convolution

Weights

Reorder

Weights

+

Convolution

Convolution

weights

Optimized

Convolution

Weights

D

Graph Compilation

Expensive reorder done only once at graph compilation stage.

Optimized weights reused for subsequent runs.

Padding

13

convA convB

I need padded

input to offer

best

performance!

Hello, here is my

output, does it

work for you?

DATA

OpenCL

Buffer

Padding types - physical

14

PADDING

DATA
Good:

• Best performance for compute bound kernels

Bad:

• Requires management of special pool with allocations

• Increases memory footprint

• Reduces memory bandwidth

How:

• Buffer created with larger size

• Data “outside” of buffer filled with zeroes

Padding types - logical

15

Good:

• Input allocations without any

changes may be used

Bad:

• Worst performance for compute bound kernels (

code contains branches which is not good for

SIMD architecture)

How:

• Kernel logic contains code preventing out of bounds access (returning

zeroes for those accesses)

Shared Local

Memory

Padding types - virtual

16

Good:

• Input allocation without any

changes may be used

• Best performance for compute &

memory bound kernels

Bad:

• Requires to use Shared Local Memory

How:

• Data is downloaded to Shared Local Memory

• Data in shared local memory is surrounded with padding

PADDING

DATADATA

OpenCL

Buffer

Memory Fusing

17

ConvA

ConvA

results

ConvB ConvC

ConvB

results

ConvC

results

Concatenation

ConvD

Concatenation

results

ConvA ConvB ConvC

Fused

Buffer

ConvD

• Concatenation kernel eliminated

• Memory transfers reduced

• Smaller memory footprint (half memory

needed)

D

Primitive Fusing

18

ConvA
ConvA

results
ConvB

“Add”

Add results =

ConvA results +

ConvB results

Add

results

ConvA

“ConvB + Add”

Combined results =

ConvB(ConvAresults)

+ ConvAresults

ConvC

ConvB

results

ConvC

ConvA

results

Combined

results

• Add kernel eliminated (now part of

fused ConvB kernel)

• ConvA results read from memory

only once by fused kernel, used to

compute ConvB results and sum

with ConvA results

• Smaller memory footprint (no ConvB

results buffer)

• Memory transfers reduced

D

Out Of Order Queue

Optimizing Execution Order

19

Inception2

output

Inc3a

pool

Inc3a

1x1

Inc3a

3x3red

Inc3a

5x5red

Inc3a

5x5

Inc3a

3x3

Inc3a

poolproj

Inception3a

output

• Independent kernels grouped together to enable concurrent

execution

• Dependencies resolved via Barrier calls

• Much better GPU utilization

Aggregated

Command Buffer

Kernel

1
Kernel

2

Unleashing concurrency – queues with events

20

In Order

Queue 1

In Order

Queue 2

Out of Order

Queue 3

Kernel 1

Kernel 4

Kernel 6

Kernel 2

Kernel 5

Kernel 7

Kernel 3

Kernel 8

Kernel 9

Kernel 10

Kernel

3

Kernel

4
Kernel

5

Kernel

6
Kernel

7

Kernel

8

Kernel

9

Kernel

10

Kernel Selector & Auto-Tuner

21

BFYX

BFYX

BFYX
BYXF

BYXF

BYXF

BYXF BYXF

YXFB

YXFB

1

2 3
4

5

6

7 8
9

conv
Format = BFYX

Pading = 1,1

Kernel = 3x3

Input = 8,128,13,13

Output = 8,256,15,15

Split = 1;

Dilatation = 1,1,1,1

Bias = yes

Kernel Selector

impl1

Support:

Require:

Batching, padding, split,

bias, all formats

Batch % 8 == 0

Ofm % 32 ==0

impl2

Support:

Require:

Batching, padding, split,

bias, yxfb format only

No limitations

Kernel level optimizations – use __constant

22

How:

If buffer is read only during kernel execution, instead of declaring it __global

put it in __constant address space. This will hint the compiler to optimize

reading schemes as value may not change during kernel execution so

subsequent reads of the same value are not necessary.

D

D

Kernel level optimizations – pass scalars to compiler

23

How:

Instead of passing arguments as scalars, create dedicated version of kernel

that has this argument value present in compile time. This way compiler can

easier apply many optimizations (i.e. loop unrolling)

D

D

Intel Technology

Performance Results

24

Gain with buffer fusing

25

Gain with optimizing execution order

26

Primitive Fusing

27

Offline Execution

28

Summary and Call to Action

29

OpenCL is great to build neural network libraries !

To the Khronos OpenCL Working Group:

• All those optimizations doesn’t require any vendor extensions!

Try our compute libraries and give us feedback!

 Check out how we implemented those optimizations in clDNN library
https://github.com/opencv/dldt/tree/2019/inference-engine/thirdparty/clDNN

 Check out how our OpenCL driver supports those optimizations
https://github.com/intel/compute-runtime

 Send Issues and Pull Requests

To OpenCL Developers:

• Try those techniques and optimize your kernels!

https://github.com/opencv/dldt/tree/2019/inference-engine/thirdparty/clDNN
https://github.com/intel/compute-runtime

Thank You!

30

Much thanks to Tomasz Poniecki and Ben Ashbaugh for help with material
preparation, guidance and detailed review.

