
Heterogeneous Active Messages (HAM) —
Implementing Lightweight Remote Procedure Calls in C++

Matthias Noack
noack@zib.de

Zuse Institute Berlin
Distributed Algorithms and Supercomputing

1 / 252019-05-13, IWOCL’19: Distributed & Heterogeneous Programming in C/C++

Context

What I do at ZIB:
• HPC-related computer science research

• programming models
• performance and portability

• development of scientific codes
• user training/consulting for the HLRN supercomputer
• evaluation of upcoming HPC technologies

Audience Survey
• Who is working in HPC?
• Who is familiar with RPCs/RMIs?
• Who is familiar with active messages?

2 / 25

You may remember me from such events
as SC, ISC, IPDPS, or IXPUG . . .

Context

What I do at ZIB:
• HPC-related computer science research

• programming models
• performance and portability

• development of scientific codes
• user training/consulting for the HLRN supercomputer
• evaluation of upcoming HPC technologies

Audience Survey
• Who is working in HPC?
• Who is familiar with RPCs/RMIs?
• Who is familiar with active messages?

2 / 25

You may remember me from such events
as SC, ISC, IPDPS, or IXPUG . . .

Context

What I do at ZIB:
• HPC-related computer science research

• programming models
• performance and portability

• development of scientific codes
• user training/consulting for the HLRN supercomputer
• evaluation of upcoming HPC technologies

Audience Survey
• Who is working in HPC?
• Who is familiar with RPCs/RMIs?
• Who is familiar with active messages?

2 / 25

You may remember me from such events
as SC, ISC, IPDPS, or IXPUG . . .

Context

What I do at ZIB:
• HPC-related computer science research

• programming models
• performance and portability

• development of scientific codes
• user training/consulting for the HLRN supercomputer
• evaluation of upcoming HPC technologies

Audience Survey
• Who is working in HPC?
• Who is familiar with RPCs/RMIs?
• Who is familiar with active messages?

2 / 25

You may remember me from such events
as SC, ISC, IPDPS, or IXPUG . . .

Context

What I do at ZIB:
• HPC-related computer science research

• programming models
• performance and portability

• development of scientific codes
• user training/consulting for the HLRN supercomputer
• evaluation of upcoming HPC technologies

Audience Survey
• Who is working in HPC?
• Who is familiar with RPCs/RMIs?
• Who is familiar with active messages?

2 / 25

You may remember me from such events
as SC, ISC, IPDPS, or IXPUG . . .

Context

What I do at ZIB:
• HPC-related computer science research

• programming models
• performance and portability

• development of scientific codes
• user training/consulting for the HLRN supercomputer
• evaluation of upcoming HPC technologies

Audience Survey
• Who is working in HPC?
• Who is familiar with RPCs/RMIs?
• Who is familiar with active messages?

2 / 25

You may remember me from such events
as SC, ISC, IPDPS, or IXPUG . . .

What is this talk about?

Problem:

• Find the most light-weight, pure C++ implementation to do Remote Procedure
Calls (RPCs) between possibly distributed and heterogeneous processes in an
HPC context.
• processes run executables from the same source
• processes spawn and die together

• We do not require versioning, security, etc., and do not want the complexity of
Interface Definition Languages (IDLs) and code generators.

Why?

• Foundation for an efficient and flexible C++ offloading framework.
• Target all architectures that can run a process and communicate somehow
over an accessibe API.
• includes CPUs, Xeon Phi accelerators, NEC Vector Engine, . . .
• excludes direct support for current GPUs

3 / 25

What is this talk about?

Problem:
• Find the most light-weight, pure C++ implementation to do Remote Procedure
Calls (RPCs) between possibly distributed and heterogeneous processes in an
HPC context.

• processes run executables from the same source
• processes spawn and die together

• We do not require versioning, security, etc., and do not want the complexity of
Interface Definition Languages (IDLs) and code generators.

Why?

• Foundation for an efficient and flexible C++ offloading framework.
• Target all architectures that can run a process and communicate somehow
over an accessibe API.
• includes CPUs, Xeon Phi accelerators, NEC Vector Engine, . . .
• excludes direct support for current GPUs

3 / 25

What is this talk about?

Problem:
• Find the most light-weight, pure C++ implementation to do Remote Procedure
Calls (RPCs) between possibly distributed and heterogeneous processes in an
HPC context.
• processes run executables from the same source
• processes spawn and die together

• We do not require versioning, security, etc., and do not want the complexity of
Interface Definition Languages (IDLs) and code generators.

Why?

• Foundation for an efficient and flexible C++ offloading framework.
• Target all architectures that can run a process and communicate somehow
over an accessibe API.
• includes CPUs, Xeon Phi accelerators, NEC Vector Engine, . . .
• excludes direct support for current GPUs

3 / 25

What is this talk about?

Problem:
• Find the most light-weight, pure C++ implementation to do Remote Procedure
Calls (RPCs) between possibly distributed and heterogeneous processes in an
HPC context.
• processes run executables from the same source
• processes spawn and die together

• We do not require versioning, security, etc., and do not want the complexity of
Interface Definition Languages (IDLs) and code generators.

Why?

• Foundation for an efficient and flexible C++ offloading framework.
• Target all architectures that can run a process and communicate somehow
over an accessibe API.
• includes CPUs, Xeon Phi accelerators, NEC Vector Engine, . . .
• excludes direct support for current GPUs

3 / 25

What is this talk about?

Problem:
• Find the most light-weight, pure C++ implementation to do Remote Procedure
Calls (RPCs) between possibly distributed and heterogeneous processes in an
HPC context.
• processes run executables from the same source
• processes spawn and die together

• We do not require versioning, security, etc., and do not want the complexity of
Interface Definition Languages (IDLs) and code generators.

Why?

• Foundation for an efficient and flexible C++ offloading framework.
• Target all architectures that can run a process and communicate somehow

over an accessibe API.
• includes CPUs, Xeon Phi accelerators, NEC Vector Engine, . . .
• excludes direct support for current GPUs

3 / 25

What is this talk about?

Problem:
• Find the most light-weight, pure C++ implementation to do Remote Procedure
Calls (RPCs) between possibly distributed and heterogeneous processes in an
HPC context.
• processes run executables from the same source
• processes spawn and die together

• We do not require versioning, security, etc., and do not want the complexity of
Interface Definition Languages (IDLs) and code generators.

Why?
• Foundation for an efficient and flexible C++ offloading framework.

• Target all architectures that can run a process and communicate somehow
over an accessibe API.
• includes CPUs, Xeon Phi accelerators, NEC Vector Engine, . . .
• excludes direct support for current GPUs

3 / 25

What is this talk about?

Problem:
• Find the most light-weight, pure C++ implementation to do Remote Procedure
Calls (RPCs) between possibly distributed and heterogeneous processes in an
HPC context.
• processes run executables from the same source
• processes spawn and die together

• We do not require versioning, security, etc., and do not want the complexity of
Interface Definition Languages (IDLs) and code generators.

Why?
• Foundation for an efficient and flexible C++ offloading framework.
• Target all architectures that can run a process and communicate somehow

over an accessibe API.

• includes CPUs, Xeon Phi accelerators, NEC Vector Engine, . . .
• excludes direct support for current GPUs

3 / 25

What is this talk about?

Problem:
• Find the most light-weight, pure C++ implementation to do Remote Procedure
Calls (RPCs) between possibly distributed and heterogeneous processes in an
HPC context.
• processes run executables from the same source
• processes spawn and die together

• We do not require versioning, security, etc., and do not want the complexity of
Interface Definition Languages (IDLs) and code generators.

Why?
• Foundation for an efficient and flexible C++ offloading framework.
• Target all architectures that can run a process and communicate somehow

over an accessibe API.
• includes CPUs, Xeon Phi accelerators, NEC Vector Engine, . . .
• excludes direct support for current GPUs

3 / 25

User Perspective

What we want:
• execute some function in the address space of a remote process

int fun(int a, int b) {
return a + b;

}

4 / 25

User Perspective

What we want:
• execute some function in the address space of a remote process

int fun(int a, int b) {
return a + b;

}

• with something as close as possible to std::async:
int main () {

int a, b; / / init somehow

/ / run asynchronously
auto res_future =

std :: async(fun , a, b);
int c = res_future .get ();

} 4 / 25

User Perspective

What we want:
• execute some function in the address space of a remote process

int fun(int a, int b) {
return a + b;

}

• for an RPC we need a target process, and some kind of closure to transfer:
int main () {

int a, b; / / init somehow
node_t target ; / / target process

/ / offload asynchronously
auto res_future = / / f2f() generates a closure

offload :: async(target , f2f (&fun , a, b));
int c = res_future .get ();

} 4 / 25

Active Messages and Heterogeneity

The most simple RPC implementation:

0. use identical binaries for each process
1. send an active message containing a function pointer
2. call the function at the receiver
⇒ only works if processes are homogeneous

• fails as soon as different binaries are generated
• due to different architectures, compilers, options, . . .

Heterogeneous Active Messages (HAM):

• enable a similar approach for differing, i.e. heterogeneous binaries
• e.g. by an efficient addresses translation mechanism

5 / 25

Active Messages and Heterogeneity

The most simple RPC implementation:

0. use identical binaries for each process
1. send an active message containing a function pointer
2. call the function at the receiver

⇒ only works if processes are homogeneous
• fails as soon as different binaries are generated
• due to different architectures, compilers, options, . . .

Heterogeneous Active Messages (HAM):

• enable a similar approach for differing, i.e. heterogeneous binaries
• e.g. by an efficient addresses translation mechanism

5 / 25

Active Messages and Heterogeneity

The most simple RPC implementation:

0. use identical binaries for each process
1. send an active message containing a function pointer
2. call the function at the receiver
⇒ only works if processes are homogeneous

• fails as soon as different binaries are generated
• due to different architectures, compilers, options, . . .

Heterogeneous Active Messages (HAM):

• enable a similar approach for differing, i.e. heterogeneous binaries
• e.g. by an efficient addresses translation mechanism

5 / 25

Active Messages and Heterogeneity

The most simple RPC implementation:

0. use identical binaries for each process
1. send an active message containing a function pointer
2. call the function at the receiver
⇒ only works if processes are homogeneous

• fails as soon as different binaries are generated
• due to different architectures, compilers, options, . . .

Heterogeneous Active Messages (HAM):

• enable a similar approach for differing, i.e. heterogeneous binaries
• e.g. by an efficient addresses translation mechanism

5 / 25

Active Messages and Heterogeneity

The most simple RPC implementation:

0. use identical binaries for each process
1. send an active message containing a function pointer
2. call the function at the receiver
⇒ only works if processes are homogeneous

• fails as soon as different binaries are generated
• due to different architectures, compilers, options, . . .

Heterogeneous Active Messages (HAM):

• enable a similar approach for differing, i.e. heterogeneous binaries
• e.g. by an efficient addresses translation mechanism

5 / 25

HAM (Heterogeneous Active Messages) and HAM-Offload

HAM-Offload APIHAM-Offload API

M
PI

TC
P/

IP

In
te
l

SC
IF

N
EC

VE
O
/D

M
A

6 / 25

HAM (Heterogeneous Active Messages) and HAM-Offload

HAM-Offload APIHAM-Offload API

HAM

M
PI

TC
P/

IP

In
te
l

SC
IF

N
EC

VE
O
/D

M
A

Problem: the RPC mechanism
a) kernel code deployment
b) efficient kernel invocation

Solution:
a) symmetric execution model:
• build heterogeneous binaries from same source
b) Heterogeneous Active Messages
• provide code address translation between
heterogeneous processes in O(1)
• use the C++ type-system to:

• generate message handlers
• build translation data structures

6 / 25

HAM (Heterogeneous Active Messages) and HAM-Offload

HAM-Offload APIHAM-Offload API

HAM Comm. Backend

M
PI

TC
P/

IP

In
te
l

SC
IF

N
EC

VE
O
/D

M
A

Problem:
• generic means to transfer Heterogeneous
Active Messages and data

Solution:
• an abstract Communication Backend
• direct data transfers between offload targets
• implemented for different technologies

6 / 25

HAM (Heterogeneous Active Messages) and HAM-Offload

HAM-Offload API

HAM-Offload API

HAM Comm. Backend

M
PI

TC
P/

IP

In
te
l

SC
IF

N
EC

VE
O
/D

M
A

Problem:
• unified API for intra- and inter-node offloading

Solution:
• HAM-Offload C++ API
• offload primitives built on top of HAM and the
communication back-end
• light-weight runtime for message execution
• similar functionality as vendor solutions

6 / 25

HAM-Offload Performance

Cost for offloading an empty kernel, i.e. the minimal overhead:

NEC VE, Type 10B

Intel Xeon Phi 5110P

0 20 40 60 80

Offload Cost: HAM−Offload vs. Vendor−Provided Solutions

6.1 µs

1.8 µs

79.4 µs

51.8 µs

HAM−Offload Vendor−Solution

. . . vs. Intel LEO (pragma-based compiler extension)
• 28.6× speed-up, i.e. 96.5% overhead reduction

. . . vs. NEC VEO (low-level C-API)
• 13.1× speed-up, i.e. 92.3% overhead reduction

⇒ while being language-only and high-level

7 / 25

HAM-Offload Performance

Cost for offloading an empty kernel, i.e. the minimal overhead:

NEC VE, Type 10B

Intel Xeon Phi 5110P

0 20 40 60 80

Offload Cost: HAM−Offload vs. Vendor−Provided Solutions

6.1 µs

1.8 µs

79.4 µs

51.8 µs

HAM−Offload Vendor−Solution

. . . vs. Intel LEO (pragma-based compiler extension)
• 28.6× speed-up, i.e. 96.5% overhead reduction

. . . vs. NEC VEO (low-level C-API)
• 13.1× speed-up, i.e. 92.3% overhead reduction

⇒ while being language-only and high-level

7 / 25

HAM-Offload Performance

Cost for offloading an empty kernel, i.e. the minimal overhead:

NEC VE, Type 10B

Intel Xeon Phi 5110P

0 20 40 60 80

Offload Cost: HAM−Offload vs. Vendor−Provided Solutions

6.1 µs

1.8 µs

79.4 µs

51.8 µs

HAM−Offload Vendor−Solution

. . . vs. Intel LEO (pragma-based compiler extension)
• 28.6× speed-up, i.e. 96.5% overhead reduction

. . . vs. NEC VEO (low-level C-API)
• 13.1× speed-up, i.e. 92.3% overhead reduction

⇒ while being language-only and high-level

7 / 25

HAM-Offload Performance

Cost for offloading an empty kernel, i.e. the minimal overhead:

NEC VE, Type 10B

Intel Xeon Phi 5110P

0 20 40 60 80

Offload Cost: HAM−Offload vs. Vendor−Provided Solutions

6.1 µs

1.8 µs

79.4 µs

51.8 µs

HAM−Offload Vendor−Solution

. . . vs. Intel LEO (pragma-based compiler extension)
• 28.6× speed-up, i.e. 96.5% overhead reduction

. . . vs. NEC VEO (low-level C-API)
• 13.1× speed-up, i.e. 92.3% overhead reduction

⇒ while being language-only and high-level
7 / 25

HAM (Heterogeneous Active Messages) and HAM-Offload

HAM-Offload API

HAM-Offload API

HAM Comm. Backend

M
PI

TC
P/

IP

In
te
l

SC
IF

N
EC

VE
O
/D

M
A

Problem: the RPC mechanism
a) kernel code deployment
b) efficient kernel invocation

Solution:
a) symmetric execution model:
• build heterogeneous binaries from same source
b) Heterogeneous Active Messages
• provide code address translation between
heterogeneous processes in O(1)
• use the C++ type-system to:

• generate message handlers
• build translation data structures

8 / 25

HAM Structure
active msg base

void operator(void* msg)

key t handler key

execution policy

static void handler(void* msg)

Derived

active msg

static key t handler key static

Derived, Policy
msg handler registry

handler t get handler(key t key)

map: key t → handler t

function

void operator()

tuple<migratable<Pars>. . .> args;

Res, Pars, FunPtr

offload msg

void operator()

Functor

9 / 25

HAM RPC at Runtime

/ / offload asynchronously
auto res_future =

ham :: async(target , f2f (&fun , a, b));

function
+ args ham::function

f2f()
offload_msg

ham::async()

send()

receive buffer

active_msg_base

reinterpret_cast<>()

offload_msg
handler()operator()()

result

Pr
oc

es
s

A
Pr

oc
es

s
B

10 / 25

HAM RPC at Runtime

/ / offload asynchronously
auto res_future =

ham :: async(target , f2f (&fun , a, b));

function
+ args ham::function

f2f()
offload_msg

ham::async()

send()

receive buffer

active_msg_base

reinterpret_cast<>()

offload_msg
handler()operator()()

result

Pr
oc

es
s

A
Pr

oc
es

s
B

10 / 25

HAM Structure
active msg base

void operator(void* msg)

key t handler key

execution policy

static void handler(void* msg)

Derived

active msg

static key t handler key static

Derived, Policy
msg handler registry

handler t get handler(key t key)

map: key t → handler t

function

void operator()

tuple<migratable<Pars>. . .> args;

Res, Pars, FunPtr

offload msg

void operator()

Functor

function functor
• generated by f2f
• function signature as
template type parameter
• function address as
template value
parameter

migratable wrapper
• hooks for serialisa-
tion/deserialisation
• conversion ctor from T
• conversion operator to T

11 / 25

HAM RPC at Runtime

/ / offload asynchronously
auto res_future =

ham :: async(target , f2f (&fun , a, b));

function
+ args ham::function

f2f()
offload_msg

ham::async()

send()

receive buffer

active_msg_base

reinterpret_cast<>()

offload_msg
handler()operator()()

result

Pr
oc

es
s

A
Pr

oc
es

s
B

12 / 25

HAM Structure
active msg base

void operator(void* msg)

key t handler key

execution policy

static void handler(void* msg)

Derived

active msg

static key t handler key static

Derived, Policy
msg handler registry

handler t get handler(key t key)

map: key t → handler t

function

void operator()

tuple<migratable<Pars>. . .> args;

Res, Pars, FunPtr

offload msg

void operator()

Functor

offload_msg

• inherits a function
instantiation
• inherits from

active_msg, passing its
type upwards (CRTP)

• just an example of how
HAM is used in
HAM-Offload

13 / 25

HAM RPC at Runtime

/ / offload asynchronously
auto res_future =

ham :: async(target , f2f (&fun , a, b));

function
+ args ham::function

f2f()
offload_msg

ham::async()

send()

receive buffer

active_msg_base

reinterpret_cast<>()

offload_msg
handler()operator()()

result

Pr
oc

es
s

A
Pr

oc
es

s
B Receving side:

• typeless buffer
• all messages inherit from

active_msg_base
• can be called with the
receive buffer

14 / 25

HAM Structure
active msg base

void operator(void* msg)

key t handler key

execution policy

static void handler(void* msg)

Derived

active msg

static key t handler key static

Derived, Policy
msg handler registry

handler t get handler(key t key)

map: key t → handler t

function

void operator()

tuple<migratable<Pars>. . .> args;

Res, Pars, FunPtr

offload msg

void operator()

Functor

active_msg_base

• trivial, callable base class
• looks up its

handler_key at the
msg_handler_registry
and calls it

15 / 25

HAM Structure
active msg base

void operator(void* msg)

key t handler key

execution policy

static void handler(void* msg)

Derived

active msg

static key t handler key static

Derived, Policy
msg handler registry

handler t get handler(key t key)

map: key t → handler t

function

void operator()

tuple<migratable<Pars>. . .> args;

Res, Pars, FunPtr

offload msg

void operator()

Functor

active_msg_base

• trivial, callable base class
• looks up its

handler_key at the
msg_handler_registry
and calls it

msg_handler_registry

• LUT: handler key to local
function address in O(1)

15 / 25

HAM Structure
active msg base

void operator(void* msg)

key t handler key

execution policy

static void handler(void* msg)

Derived

active msg

static key t handler key static

Derived, Policy
msg handler registry

handler t get handler(key t key)

map: key t → handler t

function

void operator()

tuple<migratable<Pars>. . .> args;

Res, Pars, FunPtr

offload msg

void operator()

Functor

active_msg_base

• trivial, callable base class
• looks up its

handler_key at the
msg_handler_registry
and calls it

msg_handler_registry

• LUT: handler key to local
function address in O(1)

execution_policy

• the actual handler
• upcasts to Derived

15 / 25

HAM Structure
active msg base

void operator(void* msg)

key t handler key

execution policy

static void handler(void* msg)

Derived

active msg

static key t handler key static

Derived, Policy
msg handler registry

handler t get handler(key t key)

map: key t → handler t

function

void operator()

tuple<migratable<Pars>. . .> args;

Res, Pars, FunPtr

offload msg

void operator()

Functor

active_msg

• links the message type to
its handler key, i.e. O(1)
look-up
• static member init.
provides hook for
collecting handler
addresses prior to main

⇒ collect addresses and
typeid().name()

15 / 25

HAM Address Translation

Binary A, Sender
e.g. x86-64

active msg type 0

handler 0xA. . .

key 0

. . .

msg handler table

key handler

0 0xA. . .

. . .

Binary B, Receiver
e.g. ARM64

active msg type 0

handler 0xB. . .

key 0

. . .

msg handler table

key handler

0 0xB. . .

. . .

transfer

lookup

ca
ll

ex
ec

ut
e

• keys are valid across binaries,
addresses are not
• keys are defined by the
lexicographical order of the
message-type’s typeid
names

⇒ coordination of global keys
without communication
• requires compatible C++ ABIs
across compilers (icc, clang,
gcc, ncc) and platforms (x86,
KNC/KNL, VE, ARM)

⇒ most ABIs refer to the IA-64
C++ ABI for the relevant parts

16 / 25

Handler Maps and C++ RTTI Names
==================== BEGIN HANDLER MAP =====================
typeid_name :

N3ham3msg10active_msgINS_7offload6detail11offload_msgINS2_7runtime17
terminate_functorENS0_23execution_policy_directEEES7_EE

handler_address : 0 x440d10
typeid_name :

N3ham3msg10active_msgINS_7offload6detail18offload_result_msgINS_
8 functionIPFiiEXadL_ZZ13ham_user_mainiPPcEN3$_08

__invokeEiEEEENS0_24default_execution_policyEEESC_EE
handler_address : 0 x42a7e0
typeid_name :

N3ham3msg10active_msgINS_7offload6detail18offload_result_msgINS_
8 functionIPFvvEXadL_Z7

fun_onevEEEENS0_24default_execution_policyEEES9_EE
handler_address : 0 x42db20
==================== END HANDLER MAP =======================
index: 0, handler_address : 0 x440d10
index: 1, handler_address : 0 x42a7e0
index: 2, handler_address : 0 x42db20

17 / 25

Functions, Functors, and Lambdas

The function template:
/ / function signature as template type parameter
/ / function pointer as template value parameter
template < typename Result , typename ... Pars ,

Result (* FunctionPtr)(Pars ...) >
class function < Result (*)(Pars ...) , FunctionPtr > {
public :

/ / variadic constructor template
/ / takes compatible argument types
template < typename ... Args >
function (Args &&... arguments);

Result operator ()() const;

private :
std :: tuple <migratable <Pars >... > args;

};
18 / 25

HAM Structure
active msg base

void operator(void* msg)

key t handler key

execution policy

static void handler(void* msg)

Derived

active msg

static key t handler key static

Derived, Policy
msg handler registry

handler t get handler(key t key)

map: key t → handler t

function

void operator()

tuple<migratable<Pars>. . .> args;

Res, Pars, FunPtr

offload msg

void operator()

Functor

function functor
• generated by f2f
• function signature as
template type parameter
• function address as
template value
parameter

migratable wrapper
• hooks for serialisa-
tion/deserialisation
• conversion ctor from T
• conversion operator to T

19 / 25

Functions, Functors, and Lambdas
The function template:

/ / function signature as template type parameter
/ / function pointer as template value parameter
template < typename Result , typename ... Pars ,

Result (* FunctionPtr)(Pars ...) >
class function < Result (*)(Pars ...) , FunctionPtr > {
public :

/ / variadic constructor template
/ / takes compatible argument types
template < typename ... Args >
function (Args &&... arguments);

Result operator ()() const;

private :
std :: tuple <migratable <Pars >... > args;

};
20 / 25

Functions, Functors, and Lambdas

The function template:
/ / function signature as template type parameter
/ / function pointer as template value parameter
template < typename Result , typename ... Pars ,

Result (* FunctionPtr)(Pars ...) >
class function < Result (*)(Pars ...) , FunctionPtr > { ... };

Cumbersome instantiation:
function < decltype (fun_ptr), fun_ptr >(/ * a r g u m e n t s * /);

20 / 25

Functions, Functors, and Lambdas
The function template:

/ / function signature as template type parameter
/ / function pointer as template value parameter
template < typename Result , typename ... Pars ,

Result (* FunctionPtr)(Pars ...) >
class function < Result (*)(Pars ...) , FunctionPtr > { ... };

Cumbersome instantiation:
function < decltype (fun_ptr), fun_ptr >(/ * a r g u m e n t s * /);

Hence the f2f (variadic macro):

/ / f2f = "function to functor"
/ / NOTE: the ’&’ is required
f2f (&fun , / * a r g u m e n t s * /);

20 / 25

Functions, Functors, and Lambdas
The function template:

/ / function signature as template type parameter
/ / function pointer as template value parameter
template < typename Result , typename ... Pars ,

Result (* FunctionPtr)(Pars ...) >
class function < Result (*)(Pars ...) , FunctionPtr > { ... };

Cumbersome instantiation:
function < decltype (fun_ptr), fun_ptr >(/ * a r g u m e n t s * /);

Hence the f2f (with C++17):
template <auto fun_ptr >
using f2f = function < decltype (fun_ptr), fun_ptr >;
/ / C++17 f2f syntax:
/ / NOTE: the ’&’ before fun can be skipped
f2f <fun >(/ * a r g u m e n t s * /);

20 / 25

Functions, Functors, and Lambdas

So what about Lambdas?
• capturing lambdas are not tractable as their state is inaccessible
• captureless lambdas have an implicit conversion operator to function pointer,
which is constexpr since C++17
⇒ can be used as template value argument

21 / 25

Functions, Functors, and Lambdas

So what about Lambdas?
• capturing lambdas are not tractable as their state is inaccessible
• captureless lambdas have an implicit conversion operator to function pointer,
which is constexpr since C++17
⇒ can be used as template value argument

Requires a little convincing, though:
/ / NOT possible, lambda used as template argument
f2f <[](/ * P a r s * /){ / * d o s o m e t h i n g * / }>

(/ * a r g s * /);

/ / possible: unary + operator triggers
/ / conversion to function pointer
f2f <+[](/ * P a r s * /){ / * d o s o m e t h i n g * / }>

(/ * a r g s * /);

21 / 25

Functions, Functors, and Lambdas

So what about Lambdas?
• capturing lambdas are not tractable as their state is inaccessible
• captureless lambdas have an implicit conversion operator to function pointer,
which is constexpr since C++17
⇒ can be used as template value argument

The ’+’ can be somewhat hidden:
/ / lambda to function (L as type argument)
template < typename L, typename Args ...>
auto l2f(L lambda , Args &&... args) {

/ / conversion to pointer through +
return f2f <+ lambda >(std :: forward <Args >(args)...);

}
/ / resulting syntax:
l2f ([](/ * P a r s * /){ / * d o s t h . * / },

/ * a r g s * /);
21 / 25

Functions, Functors, and Lambdas

Final syntaxes:
/ / some offloaded function
int square (int x) {

return x * x;
}
/ / offload functor, f2f as macro (pre C++17)
offload :: async (target , f2f (& square , 42));
/ / offload functor, f2f auto template (C++17)
offload :: async (target , f2f <square >(42));

/ / offload anonymous lambda (C++17)
offload :: async (target , l2f([](int x) { return x * x; },

42));

22 / 25

Handler Maps and C++ RTTI Names
==================== BEGIN HANDLER MAP =====================
typeid_name :

N3ham3msg10active_msgINS_7offload6detail11offload_msgINS2_7runtime17
terminate_functorENS0_23execution_policy_directEEES7_EE

handler_address : 0 x440d10
typeid_name :

N3ham3msg10active_msgINS_7offload6detail18offload_result_msgINS_
8 functionIPFiiEXadL_ZZ13ham_user_mainiPPcEN3$_08

__invokeEiEEEENS0_24default_execution_policyEEESC_EE
handler_address : 0 x42a7e0
typeid_name :

N3ham3msg10active_msgINS_7offload6detail18offload_result_msgINS_
8 functionIPFvvEXadL_Z7

fun_onevEEEENS0_24default_execution_policyEEES9_EE
handler_address : 0 x42db20
==================== END HANDLER MAP =======================
index: 0, handler_address : 0 x440d10
index: 1, handler_address : 0 x42a7e0
index: 2, handler_address : 0 x42db20

23 / 25

Handler Maps and C++ RTTI Names
==================== BEGIN HANDLER MAP =====================
typeid_name :

N3ham3msg10active_msgINS_7offload6detail11offload_msgINS2_7runtime17
terminate_functorENS0_23execution_policy_directEEES7_EE

handler_address : 0 x440d10
typeid_name :

N3ham3msg10active_msgINS_7offload6detail18offload_result_msgINS_
8 functionIPFiiEXadL_ZZ13ham_user_mainiPPcEN3$_08

__invokeEiEEEENS0_24default_execution_policyEEESC_EE
handler_address : 0 x42a7e0
typeid_name :

N3ham3msg10active_msgINS_7offload6detail18offload_result_msgINS_
8 functionIPFvvEXadL_Z7

fun_onevEEEENS0_24default_execution_policyEEES9_EE
handler_address : 0 x42db20
==================== END HANDLER MAP =======================
index: 0, handler_address : 0 x440d10
index: 1, handler_address : 0 x42a7e0
index: 2, handler_address : 0 x42db20

23 / 25

Compiler-dependent name for code
generated from Lambda expression.

Summary
Implementing an RPC mechanism like HAM reveals three things when it comes to
distributed and heterogeneous systems:

C++ is already capable of a lot, even without language support:
• library solutions, template code generation, wrappers, smart-pointers, . . .

Limitations of the current standard:
• mostly implementation-defined, i.e. unstandardised aspects
⇒ review and reduce

• ABI, RTTI, types like long double, . . .
⇒ ensure compiler interoperability of (new) features

Seemingly incompatible features:
• complex, compiler-generated code, e.g. from lambda expressions
⇒ take distributed/heterogeneous systems into account

24 / 25

Summary
Implementing an RPC mechanism like HAM reveals three things when it comes to
distributed and heterogeneous systems:

C++ is already capable of a lot, even without language support:
• library solutions, template code generation, wrappers, smart-pointers, . . .

Limitations of the current standard:
• mostly implementation-defined, i.e. unstandardised aspects
⇒ review and reduce

• ABI, RTTI, types like long double, . . .
⇒ ensure compiler interoperability of (new) features

Seemingly incompatible features:
• complex, compiler-generated code, e.g. from lambda expressions
⇒ take distributed/heterogeneous systems into account

24 / 25

Summary
Implementing an RPC mechanism like HAM reveals three things when it comes to
distributed and heterogeneous systems:

C++ is already capable of a lot, even without language support:
• library solutions, template code generation, wrappers, smart-pointers, . . .

Limitations of the current standard:
• mostly implementation-defined, i.e. unstandardised aspects
⇒ review and reduce

• ABI, RTTI, types like long double, . . .
⇒ ensure compiler interoperability of (new) features

Seemingly incompatible features:
• complex, compiler-generated code, e.g. from lambda expressions
⇒ take distributed/heterogeneous systems into account

24 / 25

Summary
Implementing an RPC mechanism like HAM reveals three things when it comes to
distributed and heterogeneous systems:

C++ is already capable of a lot, even without language support:
• library solutions, template code generation, wrappers, smart-pointers, . . .

Limitations of the current standard:
• mostly implementation-defined, i.e. unstandardised aspects
⇒ review and reduce

• ABI, RTTI, types like long double, . . .
⇒ ensure compiler interoperability of (new) features

Seemingly incompatible features:
• complex, compiler-generated code, e.g. from lambda expressions
⇒ take distributed/heterogeneous systems into account

24 / 25

EoP

Thank you.
Feedback? Questions? Ideas?

noack@zib.de
https://github.com/noma/ham

25 / 25

https://github.com/noma/ham

