How to Deploy AI Software to Self Driving Cars

Rod Burns, Gordon Brown, Meenakshi Ravindran and Nicolas Miller
Codeplay - Connecting AI to Silicon

Products
ComputeCpp
C++ platform via the SYCL™ open standard, enabling vision & machine learning e.g. TensorFlow™
ComputeAorta
The heart of Codeplay’s compute technology enabling OpenCL™, SPIR™, HSA™ and Vulkan™

Company
High-performance software solutions for custom heterogeneous systems
Enabling the toughest processor systems with tools and middleware based on open standards
Established 2002 in Scotland
~70 employees

Addressable Markets
Automotive (ISO 26262)
IoT, Smartphones & Tablets
High Performance Compute (HPC)
Medical & Industrial

Technologies: Vision Processing
Machine Learning
Artificial Intelligence
Big Data Compute

Customers

© 2019 Codeplay Software Ltd.
Agenda

Emergent hardware for AI in automotive

Overview of OpenCL/SYCL programming model

Mapping typical hardware to the OpenCL/SYCL programming model

The Renesas R-Car architecture

Extending OpenCL & SYCL for R-Car

Optimising machine learning algorithms using R-Car
Autonomous driving is one of the biggest challenges in technology

The automotive industry needs to deliver the latest AI technologies with safety, high performance and low power consumption
Delivering an autonomous vehicle is a huge software and hardware challenge.

It requires scaling up software development to very high levels of complexity, performance and risk.

Whilst maintaining low power consumption.
Renesas R-Car architecture

- Embedded automotive architecture
- Optimized for computer vision processing and machine learning
- Designed for low latency, low power consumption and low cost
SYCL-BLAS, SYCL-DNN

SYCL

OpenCL
Agenda

Emergent hardware for AI in automotive

Overview of OpenCL/SYCL programming model

Mapping typical hardware to the OpenCL/SYCL programming model

The Renesas R-Car architecture

Extending OpenCL & SYCL for R-Car

Optimising machine learning algorithms using R-Car
1. A processing element executes a single work-item
1. A processing element executes a single work-item
2. Each work-item can access private memory, a dedicated memory region for each processing element
1. A processing element executes a single work-item.
2. Each work-item can access private memory, a dedicated memory region for each processing element.
3. A compute unit executes a work-group, composed of multiple work-items, one for each processing element in the compute unit.
1. A processing element executes a single work-item
2. Each work-item can access private memory, a dedicated memory region for each processing element
3. A compute unit executes a work-group, composed of multiple work-items, one for each processing element in the compute unit
4. Each work-item can access local memory, a dedicated memory region for each compute unit
1. A processing element executes a single work-item
2. Each work-item can access private memory, a dedicated memory region for each processing element
3. A compute unit executes a work-group, composed of multiple work-items, one for each processing element in the compute unit
4. Each work-item can access local memory, a dedicated memory region for each compute unit
5. A device can execute multiple work-groups
1. A processing element executes a single work-item
2. Each work-item can access private memory, a dedicated memory region for each processing element
3. A compute unit executes a work-group, composed of multiple work-items, one for each processing element in the compute unit
4. Each work-item can access local memory, a dedicated memory region for each compute unit
5. A device can execute multiple work-groups
6. Each work-item can access global memory, a single memory region available to all processing elements
Private memory < Local memory < Global memory
Work-item

Private memory
Work-item

Work-group

Private memory

Local memory
Work-item

Work-group

Work-group barrier

Kernel

Private memory

Local memory
Cross-platform, single-source, high-level, C++ programming layer
Built on top of OpenCL and based on standard C++11
Delivering a heterogeneous programming solution for C++
__global__ vec_add(float *a, float *b, float *c) {
 return c[i] = a[i] + b[i];
}

float *a, *b, *c;
vec_add<<<range>>>(a, b, c);

vector<float> a, b, c;
#pragma parallel_for
for(int i = 0; i < a.size(); i++) {
 c[i] = a[i] + b[i];
}

cgh.parallel_for<vec_add>(range, [=](cl::sycl::id<2> idx) {
 c[idx] = a[idx] + c[idx];
});
SYCL separates the storage and access of data through the use of buffers and accessors

SYCL provides data dependency tracking based on accessors to optimise the scheduling of tasks
Buffers and accessors are type safe access across host and device.

Buffers manage data across the host and one or more devices.

Accessors are used to describe access requirements.

- CG A
- CG B
Buffer

- host_buffer accessor
 - Request access to a buffer immediately on the host
- global_buffer accessor
 - Request access to a buffer in the global memory region
- constant_buffer accessor
 - Request access to a buffer in the constant memory region
- local accessor
 - Allocate memory in the local memory region

CG
Benefits of data dependency task graphs

● Allows you to describe your tasks in terms of relationships
 ○ Removes the need to enqueue explicit copies
 ○ Removes the need for complex event handling

● Allows the runtime to make data movement optimizations
 ○ Preemptively copy data to a device before kernels are executed
 ○ Avoid unnecessarily copying data back to the host after execution on a device
Agenda

Emergent hardware for AI in automotive

Overview of OpenCL/SYCL programming model

Mapping typical hardware to the OpenCL/SYCL programming model

The Renesas R-Car architecture

Extending OpenCL & SYCL for R-Car

Optimising machine learning algorithms using R-Car
CPU
1. A CPU has a region of dedicated memory
1. A CPU has a region of dedicated memory
2. CPU memory is connected to the CPU via a bus
1. A CPU has a region of dedicated memory
2. The CPU memory is connected to the CPU via a bus
3. A CPU has a number of cores
1. A CPU has a region of dedicated memory
2. The CPU memory is connected to the CPU via a bus
3. A CPU has a number of cores
4. A CPU has a number of caches of different levels
1. A CPU has a region of dedicated memory
2. The CPU memory is connected to the CPU via a bus
3. A CPU has a number of cores
4. A CPU has a number of caches of different levels
5. Each CPU core has dedicated registers
1. Lanes of the CPU core
 SIMD instructions are mapped to work-items
1. Lanes of the CPU core SIMD instructions are mapped to work-items
2. CPU registers and their associated caches are mapped to private memory
1. Lanes of the CPU core SIMD instructions are mapped to work-items
2. CPU registers and their associated caches are mapped to private memory
3. A section of DDR is mapped to local memory
1. Lanes of the CPU core SIMD instructions are mapped to work-items
2. CPU registers and their associated caches are mapped to private memory
3. A section of DDR is mapped to local memory
4. The rest of DDR is mapped to global memory
GPU
1. A GPU has a region of dedicated DDR memory which is connected to the CPU.
1. A GPU has a region of dedicated DDR memory which is connected to the CPU.

2. A GPU is divided into a number of compute units.
1. A GPU has a region of dedicated DDR memory which is connected to the CPU
2. A GPU is divided into a number of compute units
3. Each compute unit has dedicated shared memory
1. A GPU has a region of dedicated DDR memory which is connected to the CPU
2. A GPU is divided into a number of compute units
3. Each compute unit has dedicated shared memory
4. Each compute unit has a number of processing elements
1. A GPU has a region of dedicated DDR memory which is connected to the CPU
2. A GPU is divided into a number of compute units
3. Each compute unit has dedicated shared memory
4. Each compute unit has a number of processing elements
5. Each processing element has dedicated processing element local memory
Compute units on are mapped to the optimal work-group size.
Processing elements on are mapped to work-items.
DDR memory is mapped to global memory
Compute unit shared memory is mapped to local memory
Processing element local memory is mapped to private memory.
Agenda

Emergent hardware for AI in automotive

Overview of OpenCL/SYCL programming model

Mapping typical hardware to the OpenCL/SYCL programming model

The Renesas R-Car architecture

Extending OpenCL & SYCL for R-Car

Optimising machine learning algorithms using R-Car
CVEngine
1. The CVEngine has is connected to off-chip DDR which is connected to the CPU.
1. The CVEngine has is connected to off-chip DDR which is connected to the CPU
2. The CVEngine has a number of clusters
1. The CVEngine has is connected to off-chip DDR which is connected to the CPU
2. The CVEngine has a number of clusters
3. The CVEngine has a region of on-chip SRAM, also connected to the CPU
1. The CVEngine has is connected to off-chip DDR which is connected to the CPU
2. The CVEngine has a number of clusters
3. The CVEngine has a region of on-chip SRAM, also connected to the CPU
4. Each cluster has 4 cores each with a number of processing elements
1. The CVEngine has is connected to off-chip DDR which is connected to the CPU
2. The CVEngine has a number of clusters
3. The CVEngine has a region of on-chip SRAM, also connected to the CPU
4. Each cluster has 4 cores each with a number of processing elements
5. Each core has dedicated registers and can access DDR memory via caches
1. The CVEngine has an on-chip DDR which is connected to the CPU.
2. The CVEngine has a number of clusters.
3. The CVEngine has a region of on-chip SRAM, also connected to the CPU.
4. Each cluster has 4 cores each with a number of processing elements.
5. Each core has dedicated registers and can access DDR memory via caches.
6. Each core also has dedicated local SRAM.
1. The CVEngine has is connected to off-chip DDR which is connected to the CPU
2. The CVEngine has a number of clusters
3. The CVEngine has a region of on-chip SRAM, also connected to the CPU
4. Each cluster has 4 cores each with a number of processing elements
5. Each core has dedicated registers and can access DDR memory via caches
6. Each core also has dedicated local SRAM
7. The local SRAM is connected to the on-chip SRAM and DDR via DMA
Each cluster maps to the optimal work-group size
Cores provide an extra level of subdivision within work-groups.

So each core maps to a sub-group.

Sub-groups are available in OpenCL 2.x but not yet available in SYCL so this will require an extension.
Each processing element within a core maps to a single work-item
Off-chip DDR memory is mapped to global memory
On-chip SRAM memory is mapped to local memory.
Registers are mapped to private memory
Since SRAM can be written to and read from the CPU and can be accessed by all work-groups similar to global memory, SRAM can also be used to allocate low-latency on-chip buffers.
Since each core has its own dedicated local SRAM
Local SRAM can be mapped to a sub-group local memory
Sub-group local memory is not yet available in OpenCL or SYCL so this will require an extension
Since there is DMA connections from SRAM and DDR to local SRAM

The CVEngine can support asynchronous memory copies from on-chip memory buffers and global memory buffers into sub-group local memory and vise versa

These asynchronous copies cannot be represented in OpenCL or SYCL so will require an extension
Work-item

Work-group

Kernel

Private memory

Local memory

Global memory

Work-group barrier

Kernel barrier
Work-item

Work-group

Kernel

Work-group barrier

Kernel barrier

Private memory

Local memory

Global memory

On-chip memory
Asynchronous sub-group copies
Agenda

Emergent hardware for AI in automotive

Overview of OpenCL/SYCL programming model

Mapping typical hardware to the OpenCL/SYCL programming model

The Renesas R-Car architecture

Extending OpenCL & SYCL for R-Car

Optimising machine learning algorithms using R-Car
Disclaimer

The features that I present here are Codeplay extensions and are not standard SYCL features
CVEngine

On-chip memory

Local memory

Work-group

Sub-group

Cache (multiple levels)

Global memory

On-chip memory

Local memory

Work-group

Sub-group

Cache (multiple levels)

Global memory
● On-chip memory
 ○ On-chip memory is allocated in OpenCL/SYCL similarly to regular buffers
 ■ ComputeAorta (OpenCL) provides an extension API
 ■ ComputeCpp (SYCL) provides an extension buffer property `use_onchip_memory`
 ○ On-chip memory buffers are accessed in OpenCL/SYCL kernels in the same way as regular buffers
We construct a SYCL buffer as normal, but provide the \texttt{use_onchip_memory} buffer property.

This property takes an enumeration; either \texttt{require}, which means that SYCL runtime has to use it or \texttt{prefer}, which means the SYCL runtime should try to use it.
● Sub-groups
 ○ Sub-groups are exposed following the OpenCL 2.x feature and as a natural extension to the SYCL execution model
 ■ ComputeAorta (OpenCL) provides kernel builtins for querying sub-group info and invoking a sub-group barrier
 ■ ComputeCpp (SYCL) provides an extension to `nd_item` to expose a `sub_group` object, similar to `group`, which exposes member functions for querying sub-group info and invoking a sub-group barrier
 ○ The size of sub-groups cannot be specified explicitly by the users, they are determined by the implementation
class kernel;

using namespace cl::sycl;

{
 queue deviceQueue;

 buffer<float, 1> deviceBuffer(hostData, size);

 deviceQueue.submit([&](handler &cgh){
 auto deviceAcc=
 deviceBuffer.get_access<access::mode::read_write>(cgh);

 cgh.parallel_for<kernel>(nd_range<1>(range<1>(size), range<1>(32)),
 [=](nd_item<1> ndItem){
 ... // Parallel loop body
 });
 });
}

We query in-kernel sub-group information and invoke sub-group barriers via the `sub_group` class and the `nd_item` has a member function called `get_sub_group` that will return a `sub_group` object.

If an implementation does not support sub-groups using `sub_group` is undefined.
Sub-group local memory

- Sub-group local memory is exposed with extensions which follow the OpenCL/SYCL memory model
 - ComputeAorta (OpenCL) provides a new address space which can be used to allocate sub-group local memory
 - ComputeCpp (SYCL) provides a new accessor access target; `access::target::subgroup_local`, that behaves similarly to `access::target::local`
class kernel;

using namespace cl::sycl;

{
 queue deviceQueue;

 buffer<float, 1> deviceBuffer(hostData, size);

deviceQueue.submit([&](handler &cgh){

 auto deviceAcc =
 deviceBuffer.get_access<access::mode::read_write>(cgh);

 auto subGroupLocalMem = accessor<float, 1, access::mode::read_write, access::target::subgroup_local>(cgh, range<1>(32));

 cgh.parallel_for<kernel>(nd_range<1>(range<1>(size), range<1>(32)), [=](nd_item<1> ndItem){
...
 subGroupLocalMem[idx] = ...;
...
 });

});

}

We allocate sub-group local memory by constructing an accessor with the `subgroup_local` access target.
Asynchronous sub-group copies

- Asynchronous sub-group copies are exposed following the OpenCL/SYCL feature for asynchronous work-group copies
 - ComputeAorta (OpenCL) provides a `plane_t` type to represent a non-accessible buffer and kernel builtins for invoking an asynchronous in-kernel copies between a `plane_t` and a sub-group local memory allocation
 - ComputeCpp (SYCL) provides a new accessor access target; `access::target::plane`, and a member function to the `sub_group` extension; `async_sub_group_copy`, to perform an asynchronous in-kernel copy from a plane accessor to a sub-group local accessor
We construct a plane accessor using the `plane` access target.

We perform asynchronous in-kernel sub-group copies by calling the `sub_group` member function `async_sub_group_copy`.

This returns a `device_event` that can be used to wait on the copy to complete.
Agenda

Emergent hardware for AI in automotive

Overview of OpenCL/SYCL programming model

Mapping typical hardware to the OpenCL/SYCL programming model

The Renesas R-Car architecture

Extending OpenCL & SYCL for R-Car

Optimising machine learning algorithms using R-Car
Input Image
The entire image will fit into global memory

Global memory has a high access latency
On-chip memory has a much lower access latency

- Only part of the image will fit into on-chip memory at once, so we have to tile it
- Executing a kernel per tile incurs host-side overhead

Note that because convolutions are gather operations the input data must include a halo.
Copy

{0, 0}
{1, 0}
{0, 1}
{1, 1}

Compute

Convo

{0, 0}
{1, 0}
{0, 1}
{1, 1}
By double buffering copy and computation you can hide the latency of copying into on-chip memory.

However, the R-Car CVEngine provides further sub-group local memory which has an even lower access latency than on-chip memory.
Asynchronously copying each part of the input data that is associated with a sub-group to sub-group local memory will further lower access latency.

Again, only part of the image data that is associated with a sub-group will fit into sub-group local memory at once, so again we have to tile it.

In this case the tiling is done in-kernel.
cgh.parallel_for<convo2d>(ndRange, [=](nd_item<1> ndItem){
 auto subGroup = ndItem.get_sub_group();

 auto numTiles = calculate_num_tiles(subGroup.get_group_range(), TILE_SIZE);

 auto currentTileRange = calculate_tile_range(subGroup, 0);
 auto nextTileRange = calculate_tile_range(subGroup, 1);

 subGroup.async_sub_group_copy(currentTileLocalMem, currentTilePlain, currentTileRange) .wait();
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain, nextTileRange);

 for (int tile = 0; tile < numTiles; ++tile) {
 compute_tile(subGroup, currentTileRange, output);
 copyEvent.wait();

 if (tile == (numTiles - 1)) {
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain, nextTileRange);

 currentTileRange = nextTileRange;
 nextTileRange = calculate_tile_range(subGroup, tile + 1);

 swap(currentTileLocalMem, nextTileLocalMem);
 swap(currentTilePlain, nextTilePlain);
 }
 }
});
This kernel is operating on a tile that is stored in on-chip memory.
We want to perform the computation of the part of the input that each sub-group corresponds to in sub-group local memory.

But all the memory required may not fit into sub-group local memory at once.

So we calculate how many tiles are required for a sub-group.
cgh.parallel_for<convo2d>(ndRange, [=](nd_item<1> ndItem){
 auto subGroup = ndItem.get_sub_group();

 auto numTiles = calculate_num_tiles(subGroup.get_group_range(), TILE_SIZE);

 auto currentTileRange = calculate_tile_range(subGroup, 0);
 auto nextTileRange = calculate_tile_range(subGroup, 1);

 subGroup.async_sub_group_copy(currentTileLocalMem, currentTilePlain, currentTileRange) .wait();
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain, nextTileRange);

 for (int tile = 0; tile < numTiles; ++tile) {
 compute_tile(subGroup, currentTileRange, output);
 copyEvent.wait();

 if (tile == (numTiles - 1)) {
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain, nextTileRange);

 currentTileRange = nextTileRange;
 nextTileRange = calculate_tile_range(subGroup, tile + 1);

 swap(currentTileLocalMem, nextTileLocalMem);
 swap(currentTilePlain, nextTilePlain);
 }
 }
});

First we initiate and wait on the copy of the first tile so we can perform the computation on it

Then we initiate, but don’t wait for the copy of the second tile, so that copy will happen in parallel to the computation of the first tile
Then we iterate over the tiles, performing the computation of the current tile and then waiting on the copy for the next tile.
cgh.parallel_for<convo2d>(ndRange, [=](nd_item<1> ndItem){
 auto subGroup = ndItem.get_sub_group();

 auto numTiles = calculate_num_tiles(subGroup.get_group_range(), TILE_SIZE);
 auto currentTileRange = calculate_tile_range(subGroup, 0);
 auto nextTileRange = calculate_tile_range(subGroup, 1);

 subGroup.async_sub_group_copy(currentTileLocalMem, currentTilePlain, currentTileRange)
 .wait();
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
 nextTileRange);

 for (int tile = 0; tile < numTiles; ++tile) {
 compute_tile(subGroup, currentTileRange, output);

 copyEvent.wait();

 if (tile == (numTiles - 1)) {
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
 nextTileRange);

 currentTileRange = nextTileRange;
 nextTileRange = calculate_tile_range(subGroup, tile + 1);

 swap(currentTileLocalMem, nextTileLocalMem);
 swap(currentTilePlain, nextTilePlain);
 }
 }
});

Finally, if there are further tiles to be processed, then we initiate the copy for the next tile and then swap the accessors for the next iteration of the loop.
By double buffering asynchronous copies and the computation in each sub-group you can hide the latency of copying into sub-group local memory.
Conclusion

● The Renesas R-Car CVEngine is designed to efficiently accelerate complex machine learning algorithms in a low power environment.

● The OpenCL/SYCL programming memory can be efficiently applied and extended when necessary to support very unique hardware architectures.

● This allows automotive systems to take advantage of AI software stacks based on open standards.
We’re Hiring!
codeplay.com/careers/

Thank you for listening

@codeplaysoft /codeplaysoft codeplay.com