
ReSYCLator: Transforming CUDA C++ source code into SYCL
Tobias Stauber
Peter Sommerlad
tobias.stauber@hsr.ch

peter.sommerlad@hsr.ch
IFS Institute for Software at FHO-HSR Hochschule für Technik

Rapperswil, Switzerland

Figure 1: Transforming CUDA C++ code to SYCL using C++ AST Rewriting.

ABSTRACT
CUDA™ while very popular, is not as flexible with respect to tar-
get devices as OpenCL™. While parallel algorithm research might
address problems first with a CUDA C++ solution, those results are
not easily portable to a target not directly supported by CUDA. In
contrast, a SYCL™ C++ solution can operate on the larger variety
of platforms supported by OpenCL.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IWOCL’19, May 13–15, 2019, Boston, MA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6230-6/19/05. . . $15.00
https://doi.org/10.1145/3318170.3318190

ReSYCLator is a plug-in for the C++ IDE Cevelop[2], that is
itself an extension of Eclipse-CDT. ReSYCLator bridges the gap
between algorithm availability and portability, by providing au-
tomatic transformation of CUDA C++ code to SYCL C++. A first
attempt basing the transformation on NVIDIA®’s Nsight™ Eclipse
CDT plug-in showed that Nsight™’s weak integration into CDT’s
static analysis and refactoring infrastructure is insufficient. There-
fore, an own CUDA-C++ parser and CUDA language support for
Eclipse CDT was developed (CRITTER) that is a sound platform
for transformations from CUDA C++ programs to SYCL based on
AST transformations.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments; Source code generation; Software main-
tenance tools.

https://doi.org/10.1145/3318170.3318190

IWOCL’19, May 13–15, 2019, Boston, MA, USA Tobias Stauber and Peter Sommerlad

KEYWORDS
CUDA C++, SYCL, C++, Eclipse CDT, integrated development envi-
ronment
ACM Reference Format:
Tobias Stauber and Peter Sommerlad. 2019. ReSYCLator: Transforming
CUDA C++ source code into SYCL. In International Workshop on OpenCL
(IWOCL’19), May 13–15, 2019, Boston, MA, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3318170.3318190

1 INTRODUCTION
NVIDIA®’s CUDA language is very popular but in addition to being
bound to devices from a single vendor it also introduces special syn-
tax to C respectively C++ used to call kernel functionls. This limits
CUDA support in integrated development environments (IDEs) to
what is provided by NVIDIA®, such as the Nsight™ plug-in for
Eclipse CDT. However, working with a single source language and
its relatively long availability makes it still attractive for developers,
such as in parallel algorithm research.

The vendor lock-in is a reason why some industries would like
to switch to more open solutions that allow more heterogeneous
target hardware. OpenCL itself also has a long history, but its classic
separate compilation model of kernels, e.g., as strings in the host
language passed to the run-time compiler, is a limiting factor in
IDE support. The more recently developed SYCL circumvents the
limitations of CUDA and OpenCL by integrating heterogeneous
parallel computation in standard C++ syntax.

With the plethora of existing CUDAparallel algorithm implemen-
tations it would be great to ease their porting to SYCL to mitigate
the vendor lock-in and to allow additional heterogeneous platforms,
such as FPGAs to run them.

1.1 Institute for Software’s history in
Refactoring

Our institute has a long history in implementing refactoring tools
for Eclipse-based IDEs. We started out more than a decade ago
to implement refactoring support for Eclipse CDT, such as AST-
rewriting [3], heuristics for keeping the transformed code as close
to its original representation, such as keeping comments around[7],
and also worked on source-to-source transformation of sequential
C++ to parallel C++ including generating C++ source code targeting
FPGAs in the EU-FP7 REPARA project [4] [1]. The result of our
work on better supporting C++ modernization is currently made
available through the free-to-use IDE Cevelop[2]

2 CUDA SYNTAX TO BE TRANSFORMED
The underlying concepts of CUDA as well as OpenCL/SYCL are not
inherently different. That makes transformation feasible. However,
manual transformation can be very tedious. Here we give a brief
overview of key elements of CUDA syntax that will be transformed.
Unfortunately, at the time of this writing, no formal specification of
CUDA syntax is available in contrast to standard C++[6], so what
is described here is derived from the CUDA programming guide[5]
that presents the NVCC CUDA dialect.

2.1 Marking CUDA Kernels
Kernel functions in CUDA are marked with the following specifiers:

__host__ function is executable on the host CPU (redundant,
unless combined with __device__)

__global__ kernel function that is executable on the GPU
device and can be called with the special call syntax

__device__ function executable and callable only on the de-
vice, unless combined with __host__

These identifiers are implemented as macros, which makes detect-
ing them in the parsed AST already a challenge. Similar specifiers
are used for memory space designation (__device__,
__constant__, __shared__, __managed__).

2.2 Invoking Kernels
For calling a kernel, there is a special syntax. This syntax consists of
<<< to start the launch-parameter list, and >>> to close it (Listing 1).
kernelname <<<grid_dimensions ,

block_dimensions , bytes_of_shared_mem ,

stream >>>(args);

Listing 1: Special CUDA kernel invocation syntax

The first mandatory argument, grid_dimensions, is of type
int1, uint3, or dim3, and defines how many blocks are contained
in the grid in each dimension (x, y, z).

The second argument, block_dimensions, is also mandatory,
and of type int, uint3, or dim3. It defines how many threads per
dimension exist in a block.

The number of bytes of shared memory allocated for each block
in the grid are passed as an optional argument size_t (bytes_of_-
shared_mem).

The optional argument stream tells the CUDA runtime on which
stream this kernel should be run. This valuemust be of type cudaStream_-
t and defaults to the default-stream if omitted.

The concept of CUDA streams is not handled yet, but it can be
transformed to SYCL queues.

2.3 Special Indicdes
In a CUDA kernel, each running thread has a set of built-in vari-
ables allowing to calculate the current block’s position in the grid
(blockIdx) and a thread’s position in the block (threadIdx). Both
dimensions, provided by the special build-in variables gridDim and
blockDim, are given by the special CUDA arguments of a kernel
call. The member selectors .x, .y, .z allow indexing relative to
each thread running a kernel.

3 TRANSFORMING CUDA KERNELS TO SYCL
KERNELS

The information on CUDA kernel functions, memory management
operations (omitted above), and kernel implementations needs to be
detected in CUDA source code and transformed to corresponding
SYCL mechanisms in C++. Most of the remaining plain C++ code
can be taken literally.

3.1 Adjusting kernel function signatures
A first step in the transformation is to find CUDA kernel function
definitions and declarations, i.e., by looking for those that have
1The number given will be implicitly converted to a dim3{number,1,1}

https://doi.org/10.1145/3318170.3318190

ReSYCLator: Transforming CUDA C++ source code into SYCL IWOCL’19, May 13–15, 2019, Boston, MA, USA

the attribute global attached, because the __global__ macro is
expanded to (__attribute__((global))) in the case of the GCC
compiler as in Listing 2. Using the Microsoft Visual Studio Com-
piler toolchain the macro would be expanded to __declspec(__-
global__).
__global__ void matrixMultiplicationKernel(

float *A,

float *B,

float *C,

int & N);

Listing 2: Declaring a CUDA kernel

In the C++ AST of Eclipse CDT macros are expanded, while also
the original source code with the unexpanded macro is referred by
it. Macros are one of the aspects that makes AST-based code trans-
formations tricky in C++. However, the AST nodes representing
the CUDA kernel specifier get removed. Then the CUDA parame-
ter declarations need to be extended to include the SYCL-specific
nd_item dimension parameter as their first parameter. The dimen-
sion template argument of nd_item is introduced by transforming
the function declaration into a template function with an integer
template parameter. As a remaining step the pointer parameters
of a typical CUDA kernel, need to be mapped to SYCL accessors
(Listing 4) or SYCL global pointers (Listing 3). The latter is used
in the transformation, because it allows a more direct mapping of
the kernel function body. However, in the future a SYCL-specific
refactoring from global pointer parameters to accessors could be
provided using Cevelop’s refactoring infrastructure. Such a refac-
toring could be beneficial also for existing or manually transformed
SYCL code.
using namespace cl::sycl;

template <int dimensions >

void matrixMultiplicationKernel(

nd_item <dimensions > item ,

global_ptr <float > A,

global_ptr <float > B,

global_ptr <float > C,

global_ptr <int > N);

Listing 3: SYCL declaration with global pointers

// template aliases provided automatically

template <cl::sycl:: access ::mode mode ,

int dim >

using Accessor = cl::sycl::accessor <

float , dim , mode ,

cl::sycl:: access :: target :: global_buffer >;

template <int dim >

using ReadAccessor = Accessor <

cl::sycl:: access ::mode::read ,dim >;

template <int dim >

using WriteAccessor = Accessor <

cl::sycl:: access ::mode::write , dim >;

template <int dim >

void matrixMultiplicationKernel(

nd_item <dim > item ,

ReadAccessor <dim > A,

ReadAccessor <dim > B,

WriteAccessor <dim > C,

int N);

Listing 4: SYCL declaration with accessors

3.2 Transforming kernel function bodies
After the kernel signature has been adjusted to SYCL, the actual
kernel code needs to be transformed. One major substitution to take
place, is to translate the CUDA-specific index variables (threadIdx,
blockIdx) and dimension variables (blockDim, gridDim) to their
corresponding accesses via the SYCL nd_item parameter. Each
CUDA index and dimension variable provides three member acces-
sors (x, y, z) that map to SYCL dimension indices 0, 1, 2 respectively.
For the rest of the mapping see Table 1 where DIM denotes a mem-
ber accessor and its corresponding index respectively.

CUDA variable SYCL nd_item call
threadIdx.DIM item.get_local_id(DIM)

blockIdx.DIM item.get_group(DIM)

blockDim.DIM item.get_local_range(DIM)

gridDim.DIM item.get_local_id(DIM)

Table 1: Mapping CUDA variables to SYCL nd_itemmember
functions

Taking the original CUDA implementation from Listing 5 will re-
sult in the following transformed SYCL kernel function in Listing 6.
Note that, due to a SYCL compiler warning, array index operator
uses on global_pointer were translated to explicit pointer arith-
metic. In the future this kludge might no longer be required to
produce valid code.

__global__ void

matrixMultiplicationKernel(float *A, float *

B, float *C, int N) {

int ROW = blockIdx.y * blockDim.y +

threadIdx.y;

int COL = blockIdx.x * blockDim.x +

threadIdx.x;

float tmpSum = 0;

if (ROW < N && COL < N) {

/* Each thread computes a single element

of the block */

for (int i = 0; i < N; i++) {

tmpSum += A[ROW * N + i] *

B[i * N + COL];

}

}

IWOCL’19, May 13–15, 2019, Boston, MA, USA Tobias Stauber and Peter Sommerlad

C[ROW * N + COL] = tmpSum;

}

Listing 5: CUDA matrix multiplication kernel

template <int dim >

void matrixMultiplicationKernel(

nd_item <dim > item ,

global_ptr <float > A,

global_ptr <float > B,

global_ptr <float > C,

global_ptr <int > N)

{

int ROW = item.get_group (1) *

item.get_local_range (1)

+ item.get_local_id (1);

int COL = item.get_group (0) *

item.get_local_range (0)

+ item.get_local_id (0);

float tmpSum = 0;

if (ROW < N && COL < N) {

for (int i = 0; i < N; i++) {

tmpSum += *(A + ROW * N + i) *

*(B + i * N + COL);

}

}

*(C + ROW * N + COL) = tmpSum;

}

Listing 6: Transformed SYCL kernel function

4 TRANSFORMING CUDA KERNEL CALL
SITE

A typical call site of a CUDA kernel consists of the following parts:

• pointer definitions for memory blocks to be allocated
• preparation of memory through cudaMalloc calls
• initializing kernel input data
• preparing kernel grid dimensions depending on data size
and layout, if not fixed

• the CUDA kernel call (see Listing 1)
• synchronizing with the device
• obtaining the results
• freeing the memory

The example program in Listing 12 shows this and compares a CPU
matrix multiplication result with the GPU results.

All these parts have to be adapted to the concepts and syntax of
SYCL. Fortunately, some of the parts can be eliminated in total, such
as the explicit freeing of memory, because SYCL employs the C++
scope-based resource management idiom with automatic clean-up
when leaving a scope.

4.1 SYCL memory buffer set up
As one can see in Listing 12 a typical CUDA program needs to
call allocation and deallocation functions symmetrically to provide
memory for device use. This is not considered a relevant style in
C++, where the RAII pattern(resource-acquisition is initialization)–
also called scope-bound resource management (SBRM) provides
a cleaner and less error-prone mechanism. So the definition of
pointers and cudaMalloc and cudaFree calls are replaced by SYCL
buffers, that automatically manage memory allocation, transfer to
and from, and synchronization with the computing device.

As an example, for the usage of one of the input matrices (A) the
lines declaring the pointer, allocating device memory, synchroniz-
ing results as well as freeing the memory again as shown in the
excerpt from Listing 12 in Listing 7, get replaced by the correspond-
ing code that is synthesized from the CUDA code in Listing 8. Note
that in contrast to a cudaMalloc() call that allocates bytes, the
SYCL buffer variable definition automatically takes the size of the
element type into account. The refactoring detects if the expression
can just drop the sizeof expression from a multiplication. In case
of a more complex, or simpler size computation the division by
sizeof(elementtype) is explicitly introduced.
/* Declare device memory pointers */

float *d_A;

/* Allocate CUDA memory */

cudaMallocManaged (&d_A , SIZE*sizeof(float));

/* Synchronize device and host memory */

cudaDeviceSynchronize ();

/* Free the CUDA memory */

cudaFree(d_A);

Listing 7: Setting up and cleaning up CUDA input data.

/* Replacement statement with simplified

size expression */

cl::sycl::buffer <float > d_A(SIZE);

Listing 8: SYCL buffer declaration replaces all lines in
Listing 7

4.2 SYCL memory accessors from CUDA
pointer accesses

The example code in Listing 12 contains nested loops initializing the
input matrices. For simplicity, this loop does two dimensional index
transformation manually in the allocated area using the pointers.
Since SYCL accesses all buffer memory through SYCL accessors, a
corresponding accessor object has to be created for each such access.
It is important that these accessor objects are defined in a scope
as local as possible, because their lifetime is used to synchronize
between host and kernel access to the underlying buffer. Because
the latter is quite expensive, it is also important that the accessors
to a SYCL buffer are not created within close loops. Therefore, the
transformation will introduce a scope surrounding the initialization
loops and defines two accessor variables in that newly introduced
scope. The accessor variables’ names are composed from the prefix
"acc_" and the buffer name. This is a situation where AST-based
transformations shine, because the AST subtree consisting of the

ReSYCLator: Transforming CUDA C++ source code into SYCL IWOCL’19, May 13–15, 2019, Boston, MA, USA

usages is put into the newly introduced compound statement. You
can also see the comment-retainment heuristic in action from [7],
because the comment associated with the outer for-loop is also
attached in front of the new compound statement.

Furthermore, the index accesses through the original pointer
variables, e.g., d_A, need to be adjusted to use the newly introduced
accessor variable acc_d_A. The transformed code for the loops
populating matrices A and B from Listing 12 is shown in Listing 9.

/* Fill values into A and B */

{

auto acc_d_B = d_B.get_access <cl::sycl::

access ::mode::read_write >();

auto acc_d_A = d_A.get_access <cl::sycl::

access ::mode::read_write >();

/* Fill values into A and B */

for (int i { 0 }; i < N; i++) {

for (int j { 0 }; j < N; j++) {

acc_d_B[N * i + j] = cos(j);

acc_d_A[j + N * i] = sin(i);

}

}

}

Listing 9: Introducing scope for SYCL accessors

The underlying scope-introduction algorithm employs slicing
and scope matching to find or introduce a minimal scope for all
CUDA-pointer based accesses. This avoids blocking SYCL buffer
access from the kernel, caused by an accessor being still alive. At
the end of its lifetime towards the end of the scope, a SYCL accessor
releases its lock on the memory region managed by its associated
SYCL buffer. From the example in Listing 12 a similar transforma-
tion would happen for the section commented with "Compare the
results".

4.3 Transforming a CUDA kernel call to a SYCL
compute-queue submission

In contrast to the relatively simple CUDA kernel call syntax, acti-
vating a kernel in SYCL is a bit more elaborated, because it requires
introducing a compute queue that the kernel is submitted to. The
special arguments to a CUDA kernel call specifying the underlying
grid and block dimensions that are computed need to be mapped to
SYCL’s nd_range values. The CUDA types for dimensions allows a
bit more flexibility, such as changing the values after initialization
that complicates the mapping. This results in a slightly complicated
determination of the SYCL range value, that needs to slice the code
backwards from the CUDA kernel call to see the computed dim3
dimensions, if not given as literals. The details of this algorithm are
omitted for brevity here ([9]).

Each CUDA kernel call, such as the one in Listing 10 is replaced
by a newly introduced compound statement that provides a local
scope for the required SYCL objects required for creating a compute
queue and submitting the kernel to it. The submit() call takes a
lambda expression that is used to create the necessary accessor
objects, like shown in section 4.2. Next the lambda calls parallel_for
on the handler objects passing the dimensions and accessors to the

actual kernel, which is again wrapped in a lambda resulting in the
code given in Listing 11. The forward-declared class type used as
a template argument to parallel_for is used by SYCL as a unique
identifier. So this name (abbreviated here as class matrixMul_f0)
must be synthesized in a way that guarantees uniqueness.
dim3 block_dim;

dim3 grid_dim;

/* initialize block_dim , grid_dim */

matrixMultiplicationKernel <<<grid_dim ,

block_dim >>>(d_A , d_B , d_C , N);

Listing 10: Kernel call to be transformed

{

gpu_selector selector { };

device selectedDevice { selector };

queue compute_queue { selectedDevice };

compute_queue.submit(

[&](handler& cgh) {

auto acc_d_A = d_A.get_access <

read_write >(cgh);

auto acc_d_B = d_B.get_access <

read_write >(cgh);

auto acc_d_C = d_C.get_access <

read_write >(cgh);

cgh.parallel_for <class matrixMul_f0 >(

nd_range <2>(grid_dim * block_dim ,

block_dim),

[=](nd_item <> item) {

matrixMultiplicationKernel(

item , acc_d_A , acc_d_B , acc_d_C ,

N);

}

);

});

}

Listing 11: Submitting transformed kernel

This concludes the transformations required to map CUDA C++
code to SYCL: transforming kernels, mappingmemorymanagement
and access, and kernel calls. In some areas the resulting code gets
simpler, especially with respect to resource management. In some
others, such as calling the kernel, the CUDA "magic" is replaced by
the more transparent but elaborated SYCL compute queue submis-
sion. The complete converted program can be seen in Listing 13
in the Appendix. The required SYCL header include directives are
also inserted automatically.

5 TOOLING ARCHITECTURE
To complete the paper, a brief overview of the underlying tooling
architecture is given. The initial prototype attempted to use the
Nsight™ Eclipse CDT plug-in and attempted to build the transfor-
mation on top of it as given in Figure 2. While a working example
transformation could be created, that "solution" showed that the
internal parsing infrastructure and its relatively inaccessibility were

IWOCL’19, May 13–15, 2019, Boston, MA, USA Tobias Stauber and Peter Sommerlad

not up to what is needed for sound code analysis and transforma-
tion.

Figure 2: Architectural overview initial prototype.

The second attempt created a CUDAparsing infrastructure (CRIT-
TER) and embedded this into the existing Eclipse CDT C++ AST
and transformation infrastructure[10]. The ILTIS layer [8] abstracts
many CDT internals required to ease porting AST transformation
plug-ins to newer CDT releases. With that basis the ReSYCLator
CUDA to SYCL transformation is on a much sounder platform for
future extensions as shown in Figure 3.

Figure 3: Architectural overview relying on own CUDA
parser.

The following Figure 4 shows the internal dependencies/exten-
sion point implementations of the individual Eclipse components
created during this project. Note the output specified as "SYCL AST"
is not actually a component. The Eclipse framework and Eclipse
CDT provide the right hand facilities. The CUDA C++ parser is

build by expanding Eclipse CDT’s C++ parser and AST with addi-
tional syntax. To fit everything in the workspace environment of
Eclipse CDT, CUDA language support infrastructure needed to be
created in addition to the CUDA C++ parser. This allows to seam-
lessly work with CUDA sources as well as with SYCL C++ sources
within the same Eclipse/Cevelop workspace.

Figure 4: Plug-in dependencies of CUDA C++ parser SYCL
transformation. Triangles mark plug-in extensions.

6 OUTLOOK AND FUTUREWORK
Creating such tooling during a Master’s degree fixed time frame
requires omitting some desirable features. For example, creating
SYCL kernels that directly rely on accessors instead of global_ptr
is one of the omissions made to be able to complete the transfor-
mation. The mapping of multiple dimensions within the kernel
instead of the generated "pointer arithmetic" is another. But we be-
lieve the created infrastructure with its automated tests provides a
good starting point for further productizing. The interactive nature
under the control of the developer in an IDE allows to be only par-
tially complete and still eases the porting, in contrast to an almost
impossible fully automatic solution.

A future product might provide SYCL-specific code analysis
and refactoring options to suggest code improvements, e.g., for
detecting sub-optimal SYCL mechanism usages, or for improving
the generated SYCL code of a transformation. As of today, some
existing C++ refactorings, such as "Extract using declaration" for
qualified names, already can improve readability of the generated
SYCL code that uses fully-qualified names for SYCL components.

More CUDA features, such as transforming CUDA streams to
SYCL queues and more sophisticated management of selectors and
devices. Also other memory regions, such as shared memory or
CUDA’s "write-to-symbol" mechanism, need to be handled by the
transformation.

As a side effect the CUDA parsing and AST infrastructure and
its integration into the refactoring AST rewriting engine of Eclipse
CDT will allow better IDE support for CUDA developers as well.

ReSYCLator: Transforming CUDA C++ source code into SYCL IWOCL’19, May 13–15, 2019, Boston, MA, USA

ACKNOWLEDGMENTS
To our Codeplay friends who inspired work on CUDA to SYCL
transformation and their support during Tobias’ master project
work.

REFERENCES
[1] Silvano Brugnoni, Thomas Corbat, Peter Sommerlad, Toni Suter, Jens Korinth,

David de la Chevallerie, and Andreas Koch. 2016. Automated Generation of
Reconfigurable Systems-on-Chip by Interactive Code Transformations for High-
Level Synthesis. In FSP 2016; Third International Workshop on FPGAs for Software
Programmers; Proceedings of. VDE, 1–11.

[2] IFS Institute for Software. 2019. Cevelop. https://cevelop.com
[3] Emanuel Graf, Guido Zgraggen, and Peter Sommerlad. 2007. Refactoring sup-

port for the C++ development tooling. Companion to the 22nd ACM SIGPLAN
conference on Object oriented programming systems and applications companion -
OOPSLA ’07 (2007). https://doi.org/10.1145/1297846.1297885

[4] G. Gyimesi, D. Bán, I. Siket, R. Ferenc, S. Brugnoni, T. Corbat, P. Sommerlad,
and T. Suter. 2016. Enforcing Techniques and Transformation of C/C++ Source
Code to Heterogeneous Hardware. In 2016 Intl IEEE Conferences on Ubiquitous
Intelligence Computing, Advanced and Trusted Computing, Scalable Computing
and Communications, Cloud and Big Data Computing, Internet of People, and Smart
World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). 1173–1180. https:
//doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0180

[5] NVidia. 2018. CUDA C Programming Guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html

[6] Richard Smith (Ed.). 2017. ISO/IEC 14882:2017 Information technology — Program-
ming languages — C++ (fifth ed.). International Organization for Standardization.
1605 pages. https://www.iso.org/standard/68564.html

[7] Peter Sommerlad, Guido Zgraggen, Thomas Corbat, and Lukas Felber. 2008.
Retaining commentswhen refactoring code. Companion to the 23rd ACM SIGPLAN
conference on Object oriented programming systems languages and applications -
OOPSLA Companion ’08 (2008). https://doi.org/10.1145/1449814.1449817

[8] Tobias Stauber. 2018. Cevelop Plug-in Development. Term Project. FHO HSR
Rapperswil.

[9] Tobias Stauber. 2018. CUDA to SYCL. Term Project. FHO HSR Rapperswil.
[10] Tobias Stauber. 2019. CRITTER* CUDA® Language Support Based on Eclipse

CDT™. Master Thesis. FHO HSR Rapperswil.

A LONGER CODE EXAMPLES
int main() {

size_t N = 16;

/* Matrix dimension */

size_t SIZE = N * N;

/* Declare device memory pointers */

float *d_A;

float *d_B;

float *d_C;

/* Allocate CUDA memory */

cudaMallocManaged (&d_A , SIZE * sizeof(float));
cudaMallocManaged (&d_B , SIZE * sizeof(float));
cudaMallocManaged (&d_C , SIZE * sizeof(float));
/* Fill values into A and B */

for (int i { 0 }; i < N; i++) {

for (int j { 0 }; j < N; j++) {

d_B[N * i + j] = cos(j);

d_A[j + N * i] = sin(i);

}

}

/* Define grid and block dimensions */

dim3 block_dim;

dim3 grid_dim;

if (N * N > 512) {

block_dim = {512, 512};

grid_dim = {(N + 512 - 1) / 512, (N + 512 - 1) /

512};

} else {

block_dim = {N, N};

grid_dim = {1, 1};

}

/* Invoke kernel */

matrixMultiplicationKernel <<<grid_dim , block_dim >>>(d_A
, d_B , d_C , N);

/* Synchronize device and host memory */

cudaDeviceSynchronize ();

float *cpu_C;

cpu_C = new float[SIZE];
/* Run matrix multiplication on the CPU for reference

*/

float sum;

for (int row { 0 }; row < N; row++) {

for (int col { 0 }; col < N; col++) {

sum = 0.f;

for (int n { 0 }; n < N; n++) {

sum += d_A[row * N + n] * d_B[n * N + col];

}

cpu_C[row * N + col] = sum;

}

}

double err { 0 };

/* Compare the results */

for (int ROW { 0 }; ROW < N; ROW++) {

for (int COL { 0 }; COL < N; COL++) {

err += cpu_C[ROW * N + COL] - d_C[ROW * N + COL];

}

}

std::cout << "Error: " << err << std::endl;

/* Free the CUDA memory */

cudaFree(d_A);

cudaFree(d_B);

cudaFree(d_C);

}

Listing 12: main() calling CUDA matrix multiplication
kernel

#include <iostream >

#include <CL/sycl.hpp >

#include <vector >

#include <stdlib.h>

#include <time.h>

#include <math.h>

template <int dimensions >

void matrixMultiplicationKernel(cl::sycl::nd_item <

dimensions > item ,

cl::sycl::global_ptr <float > A, cl::sycl::global_ptr <

float > B,

cl::sycl::global_ptr <float > C, int N);

template <int dimensions >

void matrixMultiplicationKernel(cl::sycl::nd_item <

dimensions > item ,

cl::sycl::global_ptr <float > A, cl::sycl::global_ptr <

float > B,

cl::sycl::global_ptr <float > C, int N)

{

int ROW = item.get_group (1) * item.get_local_range (1) +

item.get_local_id (1);

int COL = item.get_group (0) * item.get_local_range (0) +

item.get_local_id (0);

float tmpSum = 0;

if (ROW < N && COL < N) {

/* Each thread computes a single element of the block

*/

for (int i = 0; i < N; i++) {

https://cevelop.com
https://doi.org/10.1145/1297846.1297885
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0180
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0180
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.iso.org/standard/68564.html
https://doi.org/10.1145/1449814.1449817

IWOCL’19, May 13–15, 2019, Boston, MA, USA Tobias Stauber and Peter Sommerlad

tmpSum += *(A + ROW * N + i) *

*(B + i * N + COL);

}

}

*(C + ROW * N + COL) = tmpSum;

}

int main() {

size_t N = 16;

/* Matrix dimension */

size_t SIZE = N * N;

/* Declare device memory pointers */

/* Allocate CUDA memory */

cl::sycl::buffer <float > d_A(SIZE);

cl::sycl::buffer <float > d_B(SIZE);

cl::sycl::buffer <float > d_C(SIZE);

/* Fill values into A and B */

{

auto acc_d_B = d_B.get_access <cl::sycl:: access ::mode

::read_write >();

auto acc_d_A = d_A.get_access <cl::sycl:: access ::mode

::read_write >();

/* Fill values into A and B */

for (int i { 0 }; i < N; i++) {

for (int j { 0 }; j < N; j++) {

acc_d_B[N * i + j] = cos(j);

acc_d_A[j + N * i] = sin(i);

}

}

}

/* Define grid and block dimensions */

cl::sycl::range < 3 > block_dim;

cl::sycl::range < 3 > grid_dim;

if (N * N > 512) {

block_dim = cl::sycl::range <3> { 512, 512, 1 };

grid_dim = cl::sycl::range <3> { (N + 512 - 1) / 512, (

N + 512 - 1) / 512, 1 };

} else {

block_dim = cl::sycl::range <3> { N, N, 1 };

grid_dim = cl::sycl::range <3> { 1, 1, 1 };

}

/* Invoke kernel */

{

cl::sycl:: gpu_selector selector { };

cl::sycl:: device selectedDevice { selector };

cl::sycl::queue compute_queue { selectedDevice };

compute_queue.submit(

[&](cl::sycl:: handler& cgh) {

auto acc_d_A = d_A.get_access <cl::sycl:: access ::

mode::read_write >(cgh);

auto acc_d_B = d_B.get_access <cl::sycl:: access ::

mode::read_write >(cgh);

auto acc_d_C = d_C.get_access <cl::sycl:: access ::

mode::read_write >(cgh);

cgh.parallel_for <class
matrixMultiplicationKernel_functor0 >(

cl::sycl::nd_range <3>(grid_dim * block_dim ,

block_dim),

[=](cl::sycl::nd_item <> item) {

matrixMultiplicationKernel(item , acc_d_A ,

acc_d_B , acc_d_C , N);

});

});

};

float *cpu_C;

cpu_C = new float[SIZE];

/* Run matrix multiplication on the CPU for reference

*/

float sum;

{

auto acc_d_A = d_A.get_access <cl::sycl:: access ::mode

::read_write >();

auto acc_d_B = d_B.get_access <cl::sycl:: access ::mode

::read_write >();

for (int row { 0 }; row < N; row++) {

for (int col { 0 }; col < N; col++) {

sum = 0.f;

for (int n { 0 }; n < N; n++) {

sum += acc_d_A[row * N + n] * acc_d_B[n * N +

col];

}

cpu_C[row * N + col] = sum;

}

}

}

double err { 0 };

/* Compare the results */

{

auto acc_d_C = d_C.get_access <cl::sycl:: access ::mode

::read_write >();

/* Compare the results */

for (int ROW { 0 }; ROW < N; ROW++) {

for (int COL { 0 }; COL < N; COL++) {

err += cpu_C[ROW * N + COL] - acc_d_C[ROW * N +

COL];

}

}

}

std::cout << "Error: " << err << std::endl;

}

Listing 13: Complete converted SYCL matrix multiplication

	Abstract
	1 Introduction
	1.1 Institute for Software's history in Refactoring

	2 CUDA syntax to be transformed
	2.1 Marking CUDA Kernels
	2.2 Invoking Kernels
	2.3 Special Indicdes

	3 Transforming CUDA kernels to SYCL kernels
	3.1 Adjusting kernel function signatures
	3.2 Transforming kernel function bodies

	4 Transforming CUDA kernel call site
	4.1 SYCL memory buffer set up
	4.2 SYCL memory accessors from CUDA pointer accesses
	4.3 Transforming a CUDA kernel call to a SYCL compute-queue submission

	5 Tooling architecture
	6 Outlook and Future Work
	Acknowledgments
	References
	A Longer Code Examples

