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Abstract

Modern C++ provides a wide range of parallel constructs in the language itself, as 
well as tools to implement general and domain-specific parallel frameworks for both 
CPUs and accelerators. Examples include Threading Building Blocks (TBB), RAJA, 
Kokkos, HPX, Thrust, SYCL, and Boost.Compute, which complement the C++17 
parallel STL.
This talk will describe our attempts to systematically compare these models against 
lower-level models like OpenMP and OpenCL. One goal is to understand the 
tradeoffs between performance, programmability and portability in these 
frameworks to educate HPC programmers.
The experiments are based on the Parallel Research Kernels 
(https://github.com/ParRes/Kernels/), which is a collection of application proxies 
associated with high-performance scientific computing applications such as partial 
differential equation solvers, deterministic neutron transport, 3D Fast Fourier 
Transforms, and dense linear algebra.

https://github.com/ParRes/Kernels/
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Additional Disclaimer

I am not an official spokesman for any Intel products. I do not 
speak for my collaborators, whether they be inside or outside 
Intel.
I work on system pathfinding and workload analysis, not 
software products.  I am not a developer of Intel software tools.
You may or may not be able to reproduce any performance 
numbers I report, but the code is on GitHub* and I will provide 
anything else you need to attempt to reproduce my results.
Hanlon’s Razor (blame stupidity, not malice).
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• To MPI or not to MPI…

• One-sided vs. two-sided?

• Does your MPI/PGAS need a +X?

• Static vs. dynamic execution model?

• What synchronization motifs 
maximize performance across scales?

Application programmers can afford to 
rewrite/redesign applications zero to one 
times every 20 years… 

HPC software design challenges (2014)
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• Intranode parallelism is growing 
much fast than internode…

• Intranode parallelism is far more 
diverse than internode parallelism.

• After ~20 years, internode behavior is 
converged to some subset of MPI-3.

• Big Cores, Little Cores, GPU, FPGA all 
require (very) different programming 
models.

HPC software design challenges (2018)

How do we maximize productivity+performance+portability?
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• Intranode parallelism is growing 
much fast than internode…

• Intranode parallelism is far more 
diverse than internode parallelism.

• After ~20 years, internode behavior is 
converged to some subset of MPI-3.

• Big Cores, Little Cores, GPU, FPGA all 
require (very) different programming 
models.

HPC software design challenges (2018)

How do we maximize productivity+performance+portability?How do we measure productivity+performance+portability?
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Parallel Research Kernels
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Standard methods:

• NAS Parallel Benchmarks

• Mini/Proxy Applications

• HPC Challenge

There are numerous examples of 
these on record, covering a wide range 
of programming models, but is source 
available and curated?

What is measured?

• Productivity (?), elegance (?)

• Implementation quality
(runtime or application)

• Asynchrony/overlap

• Semantics:

• Automatic load-balancing (AMR)

• Atomics (GUPS)

• Two-sided vs. one-sided, collectives

Programming model evaluation
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https://chapel-lang.org/presentations/Chamberlain-Dagstuhl-presented.pdf
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Goals of the Parallel Research Kernels

1. Universality: Cover broad range of performance critical application patterns.

2. Simplicity: Concise pencil-and-paper definition and transparent reference 
implementation. No domain knowledge required.

3. Portability: Should be implementable in any sufficiently general 
programming model.

4. Extensibility: Parameterized to run at any scale. Other knobs to adjust 
problem or algorithm included.

5. Verifiability: Automated correctness checking and built-in performance 
metric evaluation.

6. Hardware benchmark: No!  Use HPCChallenge, Xyz500, etc. for this.
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• Dense matrix transpose
• Synchronization: global
• Synchronization: point to point
• Scaled vector addition
• Atomic reference counting
• Vector reduction
• Sparse matrix-vector multiplication
• Random access update
• Stencil computation
• Dense matrix-matrix multiplication
• Branch
• Particle-in-cell
• AMR

Outline of PRK Suite

tra
nsp

ose

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

Star-
shaped 
stencil

Static kernels

A B C+= + S *



Jeff Hammond
Exascale Co-Design Group

Language Seq. OpenMP MPI PGAS Threads Others?

C89 √ √ Many SHMEM

C99/C11 √ √√√ UPC √ Cilk, ISPC

C++17 √ √√√ Grappa √
Kokkos, RAJA, TBB, 

PSTL, SYCL,
OpenCL, CUDA…

Fortran √ √√√ coarrays “pretty”, OpenACC

Python √ Numpy
Chapel √ √

√√√ = Traditional, task-based, and target are implemented identically in Fortran, C and C++.

Additional language support includes Rust, Julia, and Matlab/Octave.
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ISC 2016

0

5000

10000

15000

20000

25000

30000

35000

24 48 96 192 384 768 1536 3072 6144 12288

M
FL

O
PS

 

Cores 

MPI1 MPISHM MPIOPENMP MPIRMA SHMEM
BUPC BUPCsem CRAYUPC CHARM++1 GRAPPA

https://link.springer.com/chapter/10.1007%2F978-3-319-41321-1_17

https://link.springer.com/chapter/10.1007%2F978-3-319-41321-1_17
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for i in range(1,m):
for j in range(1,n):

A[i][j] = A[i-1][j] 
+ A[i][j-1]
- A[i-1][j-1]

A[0][0] = -A[m-1][n-1]

• Proxy for discrete ordinates 
neutron transport; much simpler 
than SNAP or Kripke.

• Proxy for dynamic programming, 
which is used in sequence 
alignment (e.g. PairHMM).

• Wraparound to create dependency 
between iterations.

Synch point-to-point

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1
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B[2:n-2,2:n-2] += W[2,2] * A[2:n-2,2:n-2] 
+ W[2,0] * A[2:n-2,0:n-4]
+ W[2,1] * A[2:n-2,1:n-3]
+ W[2,3] * A[2:n-2,3:n-1]
+ W[2,4] * A[2:n-2,4:n-0]
+ W[0,2] * A[0:n-4,2:n-2]
+ W[1,2] * A[1:n-3,2:n-2]
+ W[3,2] * A[3:n-1,2:n-2]
+ W[4,2] * A[4:n-0,2:n-2]

• Proxy for structured mesh 
codes.  2D stencil to 
emphasize non-compute.

• Supports arbitrary radius 
star and square stencils via 
code generator for C11 and 
C++ models, which was 
inspired by OpenCL.

Stencil

Star-
shaped 
stencil
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for i in range(order):
for j in range(order):

B[i][j] += A[j][i]
A[j][i] += 1.0

• Proxy for 3D FFT, bucket sort… 

• Local transpose of square tiles 
supports blocking to reduce TLB 
pressure.

Transpose

tra
nsp

ose
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C++ and parallelism
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I study molecular dynamics, but to tell the 
truth I am interested more in the dynamics 
than in the molecules, and I care most about 
questions of principle.

Phil Pechukas, Columbia University Chemical Physics Professor 
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I study C++ parallelism, but to tell the truth I 
am interested more in the parallelism than 
in the C++, and I care most about questions 
of practice.
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Why C++ parallelism?

• C++ is a kitchen sink language – it has pretty much every feature that exists 
in programming languages (other than simplicity and orthogonality).

• Used across essentially all markets/domains where parallelism or 
performance matter.

• Fortran and Rust usage domain-specific.

• Interpreted languages do not satisfy performance requirements.

• C++ can be extended to do all sorts of things within the language itself.  
Variadic templates for fun and profit!

• Mattson’s Law: No new languages!
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Overview of Parallel C++ models

• TBB (Intel OSS) - parallel threading abstraction for CPU architectures.

• KOKKOS (Sandia) – parallel execution and data abstraction for CPU and GPU 
architectures (OpenMP, Pthreads, CUDA, …).

• RAJA (Livermore) – parallel execution for CPU and GPU architectures 
(OpenMP, TBB, CUDA, …).  CHAI/Umpire adds GPU data abstraction.

• PSTL (ISO standard) – parallel execution abstraction for CPU architectures; 
designed for future extensions for GPU, etc. (e.g. Thrust and HPX).

• SYCL (Khronos standard) - parallel execution and data abstraction that 
extends the OpenCL model (supports CPU, GPU, FPGA, …).
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Model for forN reduce scan Hierarchy/Composition
TBB::parallel Y Y Y Y Threads
C++17 PSTL Y N^ Y Y Threads+SIMD
RAJA Y Y Y Y Threads+SIMD; CUDA
KOKKOS Y Y Y Y Team+Thread+SIMD
Boost.Compute Y N*^ Y Y N
SYCL Y 3 N N Group(+Subgroup)+Item
OpenCL Y 3 N N Group+Item
OpenMP 5 Y Y Y Y Y**

* Boost.Compute supports embedded OpenCL, which in turn exposes 3D loop nests.
** OpenMP nested parallelism is unpleasant.  You can nest “parallel for” or switch paradigms 

to “taskloop” and give up on accelerator support.
^ One can always implement a collapsed N-d loop but that adds div/mod to loop body.
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• TBB

• Nested, blocked forall w/ affinity 
control and load-balancing

• RAJA

• Nested, blocked, permuted forall w/ 
fine-grain policy control.

• KOKKOS

• Nested, blocked, permuted forall.

• C++17 (parallel STL)

• Parallel STL evolving towards GPU etc.

• Boost.Compute

• Effectively parallel STL over OpenCL.

• SYCL

• OpenCL execution model

• Parallel STL over SYCL exists... 

HPC-like vs STL-like vs OpenCL-like

STL-like

OpenCL-like

HPC-like

The HPC-like models capture the popular OpenMP idioms while hiding complexity.
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Performance Experiments
https://github.com/ParRes/Kernels/tree/master/Cxx11

Star-
shaped 
stencil

https://github.com/ParRes/Kernels/tree/master/Cxx11
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The performance data has been removed…

• The experimental results are meant to be illustrative of what can be learned from the PRKs.  
We encourage you to run your own experiments, since performance data tends to go stale 
rather quickly.  Please email Jeff if you need any assistance with this task.

• The results I showed demonstrated the following:

• TBB beats OpenMP for naïve usage because TBB parallel_for compels the user to block 
for cache, whereas OpenMP requires the user to implement it themselves.

• Kokkos naturally handles NUMA-aware allocation, whereas STL containers do not.  It’s 
necessary to avoid the STL when NUMA-awareness is required.

• Kokkos, RAJA, TBB, PSTL, OpenCL and SYCL all produce the same quality of results (i.e. 
performance) when the code is written the same way.  There is no inherent advantage or 
disadvantage to any of these models from a performance perspective.
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Summary

• Parallel C++ models effectively hide the complexity of underlying models like 
OpenMP and OpenCL without introducing any overhead (on CPUs).

• Implementation differences between OpenMP and TBB schedulers show 
places where OpenMP runtimes can be improved.

• PSTL (based on TBB in Intel’s implementation) works well on CPUs but is 
limited by STL semantics. PSTL portability requires evolution of C++ towards 
HPX, Thrust…

• SYCL provides a modern C++ abstraction and single-source compilation on 
top the OpenCL execution model.

• GPU-oriented models lack (rely on external libraries for) important primitives.
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Where do we go next?

• Continuously trying to keep up with RAJA and other moving targets…

• Evaluate performance on other platforms, particularly non-CPU ones.

• Performance optimization, particularly in stencil – how productive is tuning 
in different models?

• Write additional kernels:

• Branch 2.0 (orient towards lane divergence, not branch predictor)

• Reduce (different patters, variable implementation quality)

• Julia vs Python vs Octave doesn’t matter to me but others care.
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