
Evaluating data parallelism in C++ programming
models using the Parallel Research Kernels
Jeff Hammond, Exascale Co-Design Group
Tim Mattson, Parallel Computing Lab
Intel Corporation

13 May 2019

Acknowledgements: Rob van der Wijngaart, Alex Duran,
Jim Cownie, Alexey Kukanov, Pablo Reble, Xinmin Tian,
Martyn Corden, Tom Scoglund and the rest of the RAJA
team at LLNL, CodePlay SYCL team, …

Jeff Hammond
Exascale Co-Design Group

Abstract

Modern C++ provides a wide range of parallel constructs in the language itself, as
well as tools to implement general and domain-specific parallel frameworks for both
CPUs and accelerators. Examples include Threading Building Blocks (TBB), RAJA,
Kokkos, HPX, Thrust, SYCL, and Boost.Compute, which complement the C++17
parallel STL.
This talk will describe our attempts to systematically compare these models against
lower-level models like OpenMP and OpenCL. One goal is to understand the
tradeoffs between performance, programmability and portability in these
frameworks to educate HPC programmers.
The experiments are based on the Parallel Research Kernels
(https://github.com/ParRes/Kernels/), which is a collection of application proxies
associated with high-performance scientific computing applications such as partial
differential equation solvers, deterministic neutron transport, 3D Fast Fourier
Transforms, and dense linear algebra.

https://github.com/ParRes/Kernels/

Jeff Hammond
Exascale Co-Design Group

Notices and Disclaimers
© 2018 Intel Corporation. Intel, the Intel logo, Xeon and Xeon logos are trademarks of Intel Corporation in the U.S. and/or other countries

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. . Performance
varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at
intel.com/performance/datacenter.

Some results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational
purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

The cost reduction scenarios described are intended to enable you to get a better understanding of how the purchase of a given Intel based product, combined
with a number of situation-specific variables, might affect future costs and savings. Circumstances will vary and there may be unaccounted-for costs related to
the use and deployment of a given product. Nothing in this document should be interpreted as either a promise of or contract for a given level of costs or cost
reduction.
Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and
roadmaps.

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision
#20110804.
Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as
"Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may
cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including
the performance of that product when combined with other products. For more information go to www.intel.com/benchmarks
*Other names and brands may be claimed as the property of others.

http://www.intel.com/benchmarks
http://www.intel.com/benchmarks

Jeff Hammond
Exascale Co-Design Group

Additional Disclaimer

I am not an official spokesman for any Intel products. I do not
speak for my collaborators, whether they be inside or outside
Intel.
I work on system pathfinding and workload analysis, not
software products. I am not a developer of Intel software tools.
You may or may not be able to reproduce any performance
numbers I report, but the code is on GitHub* and I will provide
anything else you need to attempt to reproduce my results.
Hanlon’s Razor (blame stupidity, not malice).

Jeff Hammond
Exascale Co-Design Group

• To MPI or not to MPI…

• One-sided vs. two-sided?

• Does your MPI/PGAS need a +X?

• Static vs. dynamic execution model?

• What synchronization motifs
maximize performance across scales?

Application programmers can afford to
rewrite/redesign applications zero to one
times every 20 years…

HPC software design challenges (2014)

Jeff Hammond
Exascale Co-Design Group

• Intranode parallelism is growing
much fast than internode…

• Intranode parallelism is far more
diverse than internode parallelism.

• After ~20 years, internode behavior is
converged to some subset of MPI-3.

• Big Cores, Little Cores, GPU, FPGA all
require (very) different programming
models.

HPC software design challenges (2018)

How do we maximize productivity+performance+portability?

Jeff Hammond
Exascale Co-Design Group

• Intranode parallelism is growing
much fast than internode…

• Intranode parallelism is far more
diverse than internode parallelism.

• After ~20 years, internode behavior is
converged to some subset of MPI-3.

• Big Cores, Little Cores, GPU, FPGA all
require (very) different programming
models.

HPC software design challenges (2018)

How do we maximize productivity+performance+portability?How do we measure productivity+performance+portability?

Jeff Hammond
Exascale Co-Design Group

Parallel Research Kernels

Jeff Hammond
Exascale Co-Design Group

Standard methods:

• NAS Parallel Benchmarks

• Mini/Proxy Applications

• HPC Challenge

There are numerous examples of
these on record, covering a wide range
of programming models, but is source
available and curated?

What is measured?

• Productivity (?), elegance (?)

• Implementation quality
(runtime or application)

• Asynchrony/overlap

• Semantics:

• Automatic load-balancing (AMR)

• Atomics (GUPS)

• Two-sided vs. one-sided, collectives

Programming model evaluation

Jeff Hammond
Exascale Co-Design Group https://chapel-lang.org/presentations/Chamberlain-Dagstuhl-presented.pdf

https://chapel-lang.org/presentations/Chamberlain-Dagstuhl-presented.pdf

Jeff Hammond
Exascale Co-Design Group

Goals of the Parallel Research Kernels

1. Universality: Cover broad range of performance critical application patterns.

2. Simplicity: Concise pencil-and-paper definition and transparent reference
implementation. No domain knowledge required.

3. Portability: Should be implementable in any sufficiently general
programming model.

4. Extensibility: Parameterized to run at any scale. Other knobs to adjust
problem or algorithm included.

5. Verifiability: Automated correctness checking and built-in performance
metric evaluation.

6. Hardware benchmark: No! Use HPCChallenge, Xyz500, etc. for this.

Jeff Hammond
Exascale Co-Design Group

• Dense matrix transpose
• Synchronization: global
• Synchronization: point to point
• Scaled vector addition
• Atomic reference counting
• Vector reduction
• Sparse matrix-vector multiplication
• Random access update
• Stencil computation
• Dense matrix-matrix multiplication
• Branch
• Particle-in-cell
• AMR

Outline of PRK Suite

tra
nsp

ose

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

Star-
shaped
stencil

Static kernels

A B C+= + S *

Jeff Hammond
Exascale Co-Design Group

Language Seq. OpenMP MPI PGAS Threads Others?

C89 √ √ Many SHMEM

C99/C11 √ √√√ UPC √ Cilk, ISPC

C++17 √ √√√ Grappa √
Kokkos, RAJA, TBB,

PSTL, SYCL,
OpenCL, CUDA…

Fortran √ √√√ coarrays “pretty”, OpenACC

Python √ Numpy
Chapel √ √

√√√ = Traditional, task-based, and target are implemented identically in Fortran, C and C++.

Additional language support includes Rust, Julia, and Matlab/Octave.

Jeff Hammond
Exascale Co-Design Group

ISC 2016

0

5000

10000

15000

20000

25000

30000

35000

24 48 96 192 384 768 1536 3072 6144 12288

M
FL

O
PS

Cores

MPI1 MPISHM MPIOPENMP MPIRMA SHMEM
BUPC BUPCsem CRAYUPC CHARM++1 GRAPPA

https://link.springer.com/chapter/10.1007%2F978-3-319-41321-1_17

https://link.springer.com/chapter/10.1007%2F978-3-319-41321-1_17

https://github.com/ParRes/Kernelshttps://github.com/ParRes/Kernels

https://github.com/ParRes/Kernels

https://github.com/ParRes/Kernelshttps://github.com/ParRes/Kernelshttps://travis-ci.org/ParRes/Kernels

https://github.com/ParRes/Kernels

https://github.com/ParRes/Kernelshttps://github.com/ParRes/Kernelshttps://travis-ci.org/ParRes/Kernels

https://github.com/ParRes/Kernels

Jeff Hammond
Exascale Co-Design Group

for i in range(1,m):
for j in range(1,n):

A[i][j] = A[i-1][j]
+ A[i][j-1]
- A[i-1][j-1]

A[0][0] = -A[m-1][n-1]

• Proxy for discrete ordinates
neutron transport; much simpler
than SNAP or Kripke.

• Proxy for dynamic programming,
which is used in sequence
alignment (e.g. PairHMM).

• Wraparound to create dependency
between iterations.

Synch point-to-point

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

Jeff Hammond
Exascale Co-Design Group

B[2:n-2,2:n-2] += W[2,2] * A[2:n-2,2:n-2]
+ W[2,0] * A[2:n-2,0:n-4]
+ W[2,1] * A[2:n-2,1:n-3]
+ W[2,3] * A[2:n-2,3:n-1]
+ W[2,4] * A[2:n-2,4:n-0]
+ W[0,2] * A[0:n-4,2:n-2]
+ W[1,2] * A[1:n-3,2:n-2]
+ W[3,2] * A[3:n-1,2:n-2]
+ W[4,2] * A[4:n-0,2:n-2]

• Proxy for structured mesh
codes. 2D stencil to
emphasize non-compute.

• Supports arbitrary radius
star and square stencils via
code generator for C11 and
C++ models, which was
inspired by OpenCL.

Stencil

Star-
shaped
stencil

Jeff Hammond
Exascale Co-Design Group

for i in range(order):
for j in range(order):

B[i][j] += A[j][i]
A[j][i] += 1.0

• Proxy for 3D FFT, bucket sort…

• Local transpose of square tiles
supports blocking to reduce TLB
pressure.

Transpose

tra
nsp

ose

Jeff Hammond
Exascale Co-Design Group

C++ and parallelism

Jeff Hammond
Exascale Co-Design Group

I study molecular dynamics, but to tell the
truth I am interested more in the dynamics
than in the molecules, and I care most about
questions of principle.

Phil Pechukas, Columbia University Chemical Physics Professor

Jeff Hammond
Exascale Co-Design Group

I study C++ parallelism, but to tell the truth I
am interested more in the parallelism than
in the C++, and I care most about questions
of practice.

Jeff Hammond
Exascale Co-Design Group

Why C++ parallelism?

• C++ is a kitchen sink language – it has pretty much every feature that exists
in programming languages (other than simplicity and orthogonality).

• Used across essentially all markets/domains where parallelism or
performance matter.

• Fortran and Rust usage domain-specific.

• Interpreted languages do not satisfy performance requirements.

• C++ can be extended to do all sorts of things within the language itself.
Variadic templates for fun and profit!

• Mattson’s Law: No new languages!

Jeff Hammond
Exascale Co-Design Group

Overview of Parallel C++ models

• TBB (Intel OSS) - parallel threading abstraction for CPU architectures.

• KOKKOS (Sandia) – parallel execution and data abstraction for CPU and GPU
architectures (OpenMP, Pthreads, CUDA, …).

• RAJA (Livermore) – parallel execution for CPU and GPU architectures
(OpenMP, TBB, CUDA, …). CHAI/Umpire adds GPU data abstraction.

• PSTL (ISO standard) – parallel execution abstraction for CPU architectures;
designed for future extensions for GPU, etc. (e.g. Thrust and HPX).

• SYCL (Khronos standard) - parallel execution and data abstraction that
extends the OpenCL model (supports CPU, GPU, FPGA, …).

Jeff Hammond
Exascale Co-Design Group

Model for forN reduce scan Hierarchy/Composition
TBB::parallel Y Y Y Y Threads
C++17 PSTL Y N^ Y Y Threads+SIMD
RAJA Y Y Y Y Threads+SIMD; CUDA
KOKKOS Y Y Y Y Team+Thread+SIMD
Boost.Compute Y N*^ Y Y N
SYCL Y 3 N N Group(+Subgroup)+Item
OpenCL Y 3 N N Group+Item
OpenMP 5 Y Y Y Y Y**

* Boost.Compute supports embedded OpenCL, which in turn exposes 3D loop nests.
** OpenMP nested parallelism is unpleasant. You can nest “parallel for” or switch paradigms

to “taskloop” and give up on accelerator support.
^ One can always implement a collapsed N-d loop but that adds div/mod to loop body.

Jeff Hammond
Exascale Co-Design Group

• TBB

• Nested, blocked forall w/ affinity
control and load-balancing

• RAJA

• Nested, blocked, permuted forall w/
fine-grain policy control.

• KOKKOS

• Nested, blocked, permuted forall.

• C++17 (parallel STL)

• Parallel STL evolving towards GPU etc.

• Boost.Compute

• Effectively parallel STL over OpenCL.

• SYCL

• OpenCL execution model

• Parallel STL over SYCL exists...

HPC-like vs STL-like vs OpenCL-like

STL-like

OpenCL-like

HPC-like

The HPC-like models capture the popular OpenMP idioms while hiding complexity.

Jeff Hammond
Exascale Co-Design Group

Performance Experiments
https://github.com/ParRes/Kernels/tree/master/Cxx11

Star-
shaped
stencil

https://github.com/ParRes/Kernels/tree/master/Cxx11

Jeff Hammond
Exascale Co-Design Group

The performance data has been removed…

• The experimental results are meant to be illustrative of what can be learned from the PRKs.
We encourage you to run your own experiments, since performance data tends to go stale
rather quickly. Please email Jeff if you need any assistance with this task.

• The results I showed demonstrated the following:

• TBB beats OpenMP for naïve usage because TBB parallel_for compels the user to block
for cache, whereas OpenMP requires the user to implement it themselves.

• Kokkos naturally handles NUMA-aware allocation, whereas STL containers do not. It’s
necessary to avoid the STL when NUMA-awareness is required.

• Kokkos, RAJA, TBB, PSTL, OpenCL and SYCL all produce the same quality of results (i.e.
performance) when the code is written the same way. There is no inherent advantage or
disadvantage to any of these models from a performance perspective.

Jeff Hammond
Exascale Co-Design Group

Summary

• Parallel C++ models effectively hide the complexity of underlying models like
OpenMP and OpenCL without introducing any overhead (on CPUs).

• Implementation differences between OpenMP and TBB schedulers show
places where OpenMP runtimes can be improved.

• PSTL (based on TBB in Intel’s implementation) works well on CPUs but is
limited by STL semantics. PSTL portability requires evolution of C++ towards
HPX, Thrust…

• SYCL provides a modern C++ abstraction and single-source compilation on
top the OpenCL execution model.

• GPU-oriented models lack (rely on external libraries for) important primitives.

Jeff Hammond
Exascale Co-Design Group

Where do we go next?

• Continuously trying to keep up with RAJA and other moving targets…

• Evaluate performance on other platforms, particularly non-CPU ones.

• Performance optimization, particularly in stencil – how productive is tuning
in different models?

• Write additional kernels:

• Branch 2.0 (orient towards lane divergence, not branch predictor)

• Reduce (different patters, variable implementation quality)

• Julia vs Python vs Octave doesn’t matter to me but others care.

Jeff Hammond
Exascale Co-Design Group

References
• R. F. Van der Wijngaart, A. Kayi, J. R. Hammond, G. Jost, T. St. John, S.

Sridharan, T. G. Mattson, J. Abercrombie, and J. Nelson. ISC 2016. Comparing
runtime systems with exascale ambitions using the Parallel Research Kernels.

• E. Georganas, R. F. Van der Wijngaart and T. G. Mattson. IPDPS 2016. Design
and Implementation of a Parallel Research Kernel for Assessing Dynamic
Load-Balancing Capabilities.

• R. F. Van der Wijngaart and T. G. Mattson. HPEC 2014. The Parallel Research
Kernels.

