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Additional Disclaimer

I am not an official spokesman for any Intel products. I do not 
speak for my collaborators, whether they be inside or outside 
Intel.
I work on system pathfinding and workload analysis, not 
software products.  I am not a developer of Intel software tools.
The PowerPoint C++ compiler is very lax about syntax – the code 
you see on the slides was derived from working code but has 
been modified for aesthetic appeal and may contain errors.
Hanlon’s Razor (blame stupidity, not malice).
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Reactive to OpenCL Pros and Cons:

• OpenCL has a well-defined, 
portable execution model.

• OpenCL is prohibitively verbose for 
many application developers.

• OpenCL remains a C API and only 
recently supported C++ kernels.

• Disjoint host and kernel source 
code is awkward.

Proactive about Future C++:

• SYCL is based on purely modern 
C++ and should feel familiar to 
C++11 users.

• SYCL expected to run ahead of 
C++Next regarding heterogeneity 
and parallelism. 

• Not held back by C99 or C++03 
compatibility goals.

SYCL: Reactive and Proactive Motivation
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Kokkos: Motivation and Goals

• DOE wants/needs to run applications across a wide range of architectures:

• CPU w/ big or small cores (e.g. Intel® Xeon® and Xeon Phi™)

• GPU w/ and w/o unified memory (e.g. LLNL Sierra and ORNL Titan)

• No common programming model across all platforms due to inconsistent 
vendor support for OpenMP* and OpenCL* L

• Goal: write one implementation which: 

• compiles and runs on multiple architectures

• obtains performant memory access patterns across architectures

• can leverage architecture-specific features where possible. 

The goal text above is taken verbatim from the Kokkos SC15 tutorial.
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DOE Exascale Systems (2021)

Kokkos will support both 
of these machines...
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Parallel Execution Model
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Default:

cl::sycl::host_selector{}

“…selects a SYCL device based on an 
implementation defined heuristic. 
Must select a host device if no other 
suitable OpenCL device can be found.”

Default:

Kokkos::initialize(..)

“…initializes the default execution space 
Kokkos::DefaultExecutionSpace.”

The default depends on the Kokkos 
configuration.  Kokkos documents the 
rule as:

ROCm > CUDA > OpenMP > Threads

(the priority of other cases is presumably 
documented in the source code)

Parallel execution – where to run by default?
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Available devices:

• cl::sycl::host_selector{}

• cl::sycl::cpu_selector{}

• cl::sycl::gpu_selector{}

• cl::sycl::accelerator_selector{}

Available devices:

• Kokkos::Threads

• Kokkos::OpenMP

• Kokkos::OpenMPTarget

• Kokkos::Cuda

• Kokkos::ROCm

• Kokkos::HPX

• Kokkos::Qthreads

Parallel execution – controlling where to run
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queue q(cpu_selector{});

buffer<double,1> d_A { h_A, range<1>(n) };

q.submit([&](handler& h) {
auto A = d_A. get_access<RW>(h);
h.parallel_for<>(range<1>{n}, [=] (item<1> i){
A[i]++;

});
});
q.wait();

namespace K = Kokkos;

K::initialize(argc, argv);
typedef K::OpenMP Space;

typedef K::View<double*, Space> vector;
vector A("A", n);

auto range = K::RangePolicy<Space>(0,n);
K::parallel_for(range, KOKKOS_LAMBDA(int i) {
A[i]++;

});

fence();

Parallel execution – example
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Data Management Model
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SYCL buffer class parameters:

• Datatype

• Dimensions (1,2,3)

• Allocator

Accessors control access permissions.

Kokkos view class parameters:

• Datatype (built-in or struct of built-in)

• Dimensions (0,1,2,3,4,5,6,7,8)

• Space (optional)

Views can be const (assign from non-const
view).

The Space may constrain the access rules (e.g. 
GPU cannot access host data unless UVM 
supported).

Array allocation parameters

https://github.com/kokkos/kokkos/wiki/View

https://github.com/kokkos/kokkos/wiki/View
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SYCL data movement between 
host«device(s) usually implicit based on 
DAG deps, but explicit available for tuning

Implicit:

• DAG dependence triggers data 
movement prior to kernel launch

Explicit:

• cl::sycl::handler::copy(..) requires 
source to be at least as big as target.

• cl::sycl::handler::update_host(..)

“Kokkos never performs a hidden deep copy.”

Kokkos::deep_copy (out, in) but there are strict 
rules on what can be copied:

1. Identical memory layout and padding 
(likely different for host and device, e.g. 
OpenMP and CUDA)

2. HostMirror b = create_mirror(a)

3. HostMirror b = create_mirror_view(a)

2 always copies but 3 is a no-op when a is host 
memory.

Accessing and moving data

https://github.com/kokkos/kokkos/wiki/View

https://github.com/kokkos/kokkos/wiki/View
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Compute Primitives
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// SYCL supports 1..3 dimensions

h.parallel_for<>(range<2>{n,n}, [=] (item<2> it) {
id<2> ij{it[0],it[1]};
id<2> ji{it[1],it[0]};
B[ij] = A[ji];

});

h.parallel_for<>(range<2>{n,n}, [=] (item<2> it) {
B[it[0] * n + it[1]] = A[it[1] * n + it[0]];

});

// MDRP = MDRangePolicy

// MDRP supports 2 to 6 dimensions
auto policy = K::MDRP<K::Rank<2>>({0,0},{n,n},{t,t});

K::parallel_for(policy, KOKKOS_LAMBDA(int i, int j) {
B(i,j) = A(j,i);

});

Parallel for and nested loops

I haven’t figured out which one I’m 
supposed to use, because the performance 

of the former has been much worse in 
some of my experiments…

Kokkos supports tiling and access pattern 
(row or column major), but it’s not clear 

how useful these are…

https://github.com/kokkos/kokkos/wiki/Kokkos::MDRangePolicy

https://github.com/kokkos/kokkos/wiki/Kokkos::MDRangePolicy
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Like OpenCL* and CUDA* C/C++, SYCL assumes 
the user or a library implements patterns like 
reduce and scan.

Intel is working on a language extension...

Khronos SYCL parallel STL is a library solution:

namespace pstl = std::experimental::parallel;

cl::sycl::queue q;
pstl::sycl::sycl_execution_policy<..> snp(q);
int result = pstl::reduce(snp, v.begin(), v.end());

K::parallel_reduce – reductions with built-in and 
custom reduction operators.

K::parallel_scan – prefix sum.

Kokkos built-in reductions include everything that 
MPI_Reduce supports, even the dumb stuff (prod).

Example:

double out(0);
K::parallel_reduce(n, [=] (int i, double & tmp) {

tmp += ...;
}, out);

Other parallel patterns

https://github.com/kokkos/kokkos/wiki/Data-Parallelismhttps://github.com/KhronosGroup/SyclParallelSTL

https://github.com/kokkos/kokkos/wiki/Data-Parallelism
https://github.com/KhronosGroup/SyclParallelSTL
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Nested Parallelism
This is where it all started for us J
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Kokkos vs SYCL

Kokkos Name SYCL Name

Thread team Work-group

Thread league Global range

Team scratch pad memory Local memory

Kokkos Construct SYCL Construct

parallel_for( TeamPolicy ) parallel_for_work_group( #wg, wg_size)

parallel_for( TeamThreadRange ) parallel_for_work_item (flex_range)

parallel_for( ThreadVectorRange ) – WG or WI scope parallel_for_sub_group

Barrier not implicit on ParFor( TeamThreadRange) Implicit barrier at PFWI boundaries

single( PerTeam ) – execute λ once per team Code at PFWG scope

single( PerThread ) – execute λ in single vec lane Code at PFSG scope
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// TTR = TeamThreadRange
// TVR = ThreadVectorRange

typedef typename K::TeamPolicy<>::member_type tm;

struct foo {
void operator() ( const tm& thread) const {

int i = thread.league_rank();
K::parallel_for(K::TTR(thread,jmax), [=] (const int& j) {

K::parallel_for(K::TVR(thread,kmax), [=] (const int& k) {
printf("foo %d %d %d\n", i, j, k);

});
});

}
};

const K::TeamPolicy<> policy( imax , K::AUTO , 1);
K::parallel_for( policy , foo() );

foo 1 0 0
foo 1 0 1
foo 1 1 0
foo 1 1 1
foo 1 2 0
foo 1 2 1
foo 2 0 0
foo 2 0 1
foo 2 1 0
foo 2 1 1
foo 3 0 0
foo 3 0 1
foo 2 2 0
foo 2 2 1
foo 0 0 0
foo 0 0 1
foo 0 1 0
foo 0 1 1
foo 0 2 0
foo 0 2 1
foo 3 1 0
foo 3 1 1
foo 3 2 0
foo 3 2 1

Kokkos: nested parallelism
int imax = 4;
int jmax = 3;
int kmax = 2;
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q.submit([&](cl::sycl::handler& h) {
h.parallel_for_work_group<class foo>(

cl::sycl::nd_range<1>(imax*jmax,jmax),
[=] (cl::sycl::group<1> g) {

g.parallel_for_work_item( [=] (cl::sycl::h_item<1> i) {
printf("foo g=%zu i=%zu\n", g.get_id(0), i.get_global_id());

});
});

});

foo g=0 i=1
foo g=0 i=2
foo g=0 i=0
foo g=1 i=4
foo g=1 i=5
foo g=1 i=3
foo g=2 i=7
foo g=2 i=6
foo g=2 i=8
foo g=3 i=10
foo g=3 i=11
foo g=3 i=9

SYCL: nested parallelism

int imax = 4;
int jmax = 3;
int kmax = 2;
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using namespace cl::sycl;

q.submit([&](handler& h) {
h.parallel_for_work_group<class bar>(

nd_range<2>({imax*kmax,jmax*kmax},{kmax,kmax}),
[=] (group<2> g) {

g.parallel_for_work_item( [=] (h_item<2> i) {
printf("bar g[0]=%zu g[1]=%zu i[0]=%zu i[1]=%zu\n",

g.get_id(0), g.get_id(1),
i.get_global_id(0), i.get_global_id(1));

});
});

});

bar g[0]=0 g[1]=0 i[0]=0 i[1]=1
bar g[0]=0 g[1]=0 i[0]=1 i[1]=0
bar g[0]=0 g[1]=0 i[0]=0 i[1]=0
bar g[0]=0 g[1]=0 i[0]=1 i[1]=1
bar g[0]=0 g[1]=1 i[0]=0 i[1]=3
bar g[0]=0 g[1]=1 i[0]=1 i[1]=2
bar g[0]=0 g[1]=1 i[0]=1 i[1]=3
bar g[0]=0 g[1]=1 i[0]=0 i[1]=2
bar g[0]=1 g[1]=0 i[0]=3 i[1]=0
bar g[0]=1 g[1]=0 i[0]=2 i[1]=0
bar g[0]=1 g[1]=0 i[0]=2 i[1]=1
bar g[0]=1 g[1]=0 i[0]=3 i[1]=1
bar g[0]=1 g[1]=1 i[0]=3 i[1]=2
bar g[0]=1 g[1]=1 i[0]=2 i[1]=2
bar g[0]=1 g[1]=1 i[0]=2 i[1]=3
bar g[0]=1 g[1]=1 i[0]=3 i[1]=3
bar g[0]=2 g[1]=0 i[0]=4 i[1]=0
bar g[0]=2 g[1]=0 i[0]=4 i[1]=1
bar g[0]=2 g[1]=0 i[0]=5 i[1]=0
bar g[0]=2 g[1]=0 i[0]=5 i[1]=1
bar g[0]=2 g[1]=1 i[0]=4 i[1]=3
bar g[0]=2 g[1]=1 i[0]=4 i[1]=2
bar g[0]=2 g[1]=1 i[0]=5 i[1]=3
bar g[0]=2 g[1]=1 i[0]=5 i[1]=2
bar g[0]=3 g[1]=0 i[0]=6 i[1]=1
bar g[0]=3 g[1]=0 i[0]=7 i[1]=0
bar g[0]=3 g[1]=0 i[0]=7 i[1]=1
bar g[0]=3 g[1]=0 i[0]=6 i[1]=0
bar g[0]=3 g[1]=1 i[0]=7 i[1]=2
bar g[0]=3 g[1]=1 i[0]=6 i[1]=3
bar g[0]=3 g[1]=1 i[0]=6 i[1]=2
bar g[0]=3 g[1]=1 i[0]=7 i[1]=3

SYCL: nested parallelism int imax = 4;
int jmax = 2;
int kmax = 2;
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Conclusions
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• Application developers should be giving Kokkos a serious look if they want to 
support all three major HPC accelerator platforms.

• SYCL needs to learn from Kokkos:

• Reductions are first-class methods in HPC – they must be in the language.

• Data/memory management needs to be more transparent (education?).
• Move beyond OpenCL/CUDA thinking and support dimensions >3.

• SYCL compiler helps make device lambda usage better.

• There is a Kokkos compiler effort but it isn’t the primary implementation.

• Kokkos@SYCL is a natural next step.
• SYCL@Kokkos might be an interesting reference implementation…




