
A Comparative Analysis of Kokkos and SYCL as Heterogeneous
Parallel Programming Models for C++ Applications
Jeff Hammond, Michael Kinsner, James Brodman
Intel Corporation

IWOCL DHPCC++ 2019 (13 May 2019)

Jeff Hammond
Exascale Co-Design Group

Notices and Disclaimers
© 2018 Intel Corporation. Intel, the Intel logo, Xeon and Xeon logos are trademarks of Intel Corporation in the U.S. and/or other countries

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. . Performance
varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at
intel.com/performance/datacenter.

Some results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational
purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

The cost reduction scenarios described are intended to enable you to get a better understanding of how the purchase of a given Intel based product, combined
with a number of situation-specific variables, might affect future costs and savings. Circumstances will vary and there may be unaccounted-for costs related to
the use and deployment of a given product. Nothing in this document should be interpreted as either a promise of or contract for a given level of costs or cost
reduction.
Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and
roadmaps.

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision
#20110804.
Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as
"Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may
cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including
the performance of that product when combined with other products. For more information go to www.intel.com/benchmarks
*Other names and brands may be claimed as the property of others.

http://www.intel.com/benchmarks
http://www.intel.com/benchmarks

Jeff Hammond
Exascale Co-Design Group

Additional Disclaimer

I am not an official spokesman for any Intel products. I do not
speak for my collaborators, whether they be inside or outside
Intel.
I work on system pathfinding and workload analysis, not
software products. I am not a developer of Intel software tools.
The PowerPoint C++ compiler is very lax about syntax – the code
you see on the slides was derived from working code but has
been modified for aesthetic appeal and may contain errors.
Hanlon’s Razor (blame stupidity, not malice).

Jeff Hammond
Exascale Co-Design Group 5

Reactive to OpenCL Pros and Cons:

• OpenCL has a well-defined,
portable execution model.

• OpenCL is prohibitively verbose for
many application developers.

• OpenCL remains a C API and only
recently supported C++ kernels.

• Disjoint host and kernel source
code is awkward.

Proactive about Future C++:

• SYCL is based on purely modern
C++ and should feel familiar to
C++11 users.

• SYCL expected to run ahead of
C++Next regarding heterogeneity
and parallelism.

• Not held back by C99 or C++03
compatibility goals.

SYCL: Reactive and Proactive Motivation

Jeff Hammond
Exascale Co-Design Group

Kokkos: Motivation and Goals

• DOE wants/needs to run applications across a wide range of architectures:

• CPU w/ big or small cores (e.g. Intel® Xeon® and Xeon Phi™)

• GPU w/ and w/o unified memory (e.g. LLNL Sierra and ORNL Titan)

• No common programming model across all platforms due to inconsistent
vendor support for OpenMP* and OpenCL* L

• Goal: write one implementation which:

• compiles and runs on multiple architectures

• obtains performant memory access patterns across architectures

• can leverage architecture-specific features where possible.

The goal text above is taken verbatim from the Kokkos SC15 tutorial.

Jeff Hammond
Exascale Co-Design Group

DOE Exascale Systems (2021)

Kokkos will support both
of these machines...

Jeff Hammond
Exascale Co-Design Group

Parallel Execution Model

Jeff Hammond
Exascale Co-Design Group

Default:

cl::sycl::host_selector{}

“…selects a SYCL device based on an
implementation defined heuristic.
Must select a host device if no other
suitable OpenCL device can be found.”

Default:

Kokkos::initialize(..)

“…initializes the default execution space
Kokkos::DefaultExecutionSpace.”

The default depends on the Kokkos
configuration. Kokkos documents the
rule as:

ROCm > CUDA > OpenMP > Threads

(the priority of other cases is presumably
documented in the source code)

Parallel execution – where to run by default?

Jeff Hammond
Exascale Co-Design Group

Available devices:

• cl::sycl::host_selector{}

• cl::sycl::cpu_selector{}

• cl::sycl::gpu_selector{}

• cl::sycl::accelerator_selector{}

Available devices:

• Kokkos::Threads

• Kokkos::OpenMP

• Kokkos::OpenMPTarget

• Kokkos::Cuda

• Kokkos::ROCm

• Kokkos::HPX

• Kokkos::Qthreads

Parallel execution – controlling where to run

Jeff Hammond
Exascale Co-Design Group

queue q(cpu_selector{});

buffer<double,1> d_A { h_A, range<1>(n) };

q.submit([&](handler& h) {
auto A = d_A. get_access<RW>(h);
h.parallel_for<>(range<1>{n}, [=] (item<1> i){
A[i]++;

});
});
q.wait();

namespace K = Kokkos;

K::initialize(argc, argv);
typedef K::OpenMP Space;

typedef K::View<double*, Space> vector;
vector A("A", n);

auto range = K::RangePolicy<Space>(0,n);
K::parallel_for(range, KOKKOS_LAMBDA(int i) {
A[i]++;

});

fence();

Parallel execution – example

Jeff Hammond
Exascale Co-Design Group

Data Management Model

Jeff Hammond
Exascale Co-Design Group

SYCL buffer class parameters:

• Datatype

• Dimensions (1,2,3)

• Allocator

Accessors control access permissions.

Kokkos view class parameters:

• Datatype (built-in or struct of built-in)

• Dimensions (0,1,2,3,4,5,6,7,8)

• Space (optional)

Views can be const (assign from non-const
view).

The Space may constrain the access rules (e.g.
GPU cannot access host data unless UVM
supported).

Array allocation parameters

https://github.com/kokkos/kokkos/wiki/View

https://github.com/kokkos/kokkos/wiki/View

Jeff Hammond
Exascale Co-Design Group

SYCL data movement between
host«device(s) usually implicit based on
DAG deps, but explicit available for tuning

Implicit:

• DAG dependence triggers data
movement prior to kernel launch

Explicit:

• cl::sycl::handler::copy(..) requires
source to be at least as big as target.

• cl::sycl::handler::update_host(..)

“Kokkos never performs a hidden deep copy.”

Kokkos::deep_copy (out, in) but there are strict
rules on what can be copied:

1. Identical memory layout and padding
(likely different for host and device, e.g.
OpenMP and CUDA)

2. HostMirror b = create_mirror(a)

3. HostMirror b = create_mirror_view(a)

2 always copies but 3 is a no-op when a is host
memory.

Accessing and moving data

https://github.com/kokkos/kokkos/wiki/View

https://github.com/kokkos/kokkos/wiki/View

Jeff Hammond
Exascale Co-Design Group

Compute Primitives

Jeff Hammond
Exascale Co-Design Group

// SYCL supports 1..3 dimensions

h.parallel_for<>(range<2>{n,n}, [=] (item<2> it) {
id<2> ij{it[0],it[1]};
id<2> ji{it[1],it[0]};
B[ij] = A[ji];

});

h.parallel_for<>(range<2>{n,n}, [=] (item<2> it) {
B[it[0] * n + it[1]] = A[it[1] * n + it[0]];

});

// MDRP = MDRangePolicy

// MDRP supports 2 to 6 dimensions
auto policy = K::MDRP<K::Rank<2>>({0,0},{n,n},{t,t});

K::parallel_for(policy, KOKKOS_LAMBDA(int i, int j) {
B(i,j) = A(j,i);

});

Parallel for and nested loops

I haven’t figured out which one I’m
supposed to use, because the performance

of the former has been much worse in
some of my experiments…

Kokkos supports tiling and access pattern
(row or column major), but it’s not clear

how useful these are…

https://github.com/kokkos/kokkos/wiki/Kokkos::MDRangePolicy

https://github.com/kokkos/kokkos/wiki/Kokkos::MDRangePolicy

Jeff Hammond
Exascale Co-Design Group

Like OpenCL* and CUDA* C/C++, SYCL assumes
the user or a library implements patterns like
reduce and scan.

Intel is working on a language extension...

Khronos SYCL parallel STL is a library solution:

namespace pstl = std::experimental::parallel;

cl::sycl::queue q;
pstl::sycl::sycl_execution_policy<..> snp(q);
int result = pstl::reduce(snp, v.begin(), v.end());

K::parallel_reduce – reductions with built-in and
custom reduction operators.

K::parallel_scan – prefix sum.

Kokkos built-in reductions include everything that
MPI_Reduce supports, even the dumb stuff (prod).

Example:

double out(0);
K::parallel_reduce(n, [=] (int i, double & tmp) {

tmp += ...;
}, out);

Other parallel patterns

https://github.com/kokkos/kokkos/wiki/Data-Parallelismhttps://github.com/KhronosGroup/SyclParallelSTL

https://github.com/kokkos/kokkos/wiki/Data-Parallelism
https://github.com/KhronosGroup/SyclParallelSTL

Jeff Hammond
Exascale Co-Design Group

Nested Parallelism
This is where it all started for us J

Jeff Hammond
Exascale Co-Design Group

Kokkos vs SYCL

Kokkos Name SYCL Name

Thread team Work-group

Thread league Global range

Team scratch pad memory Local memory

Kokkos Construct SYCL Construct

parallel_for(TeamPolicy) parallel_for_work_group(#wg, wg_size)

parallel_for(TeamThreadRange) parallel_for_work_item (flex_range)

parallel_for(ThreadVectorRange) – WG or WI scope parallel_for_sub_group

Barrier not implicit on ParFor(TeamThreadRange) Implicit barrier at PFWI boundaries

single(PerTeam) – execute λ once per team Code at PFWG scope

single(PerThread) – execute λ in single vec lane Code at PFSG scope

Jeff Hammond
Exascale Co-Design Group

// TTR = TeamThreadRange
// TVR = ThreadVectorRange

typedef typename K::TeamPolicy<>::member_type tm;

struct foo {
void operator() (const tm& thread) const {

int i = thread.league_rank();
K::parallel_for(K::TTR(thread,jmax), [=] (const int& j) {

K::parallel_for(K::TVR(thread,kmax), [=] (const int& k) {
printf("foo %d %d %d\n", i, j, k);

});
});

}
};

const K::TeamPolicy<> policy(imax , K::AUTO , 1);
K::parallel_for(policy , foo());

foo 1 0 0
foo 1 0 1
foo 1 1 0
foo 1 1 1
foo 1 2 0
foo 1 2 1
foo 2 0 0
foo 2 0 1
foo 2 1 0
foo 2 1 1
foo 3 0 0
foo 3 0 1
foo 2 2 0
foo 2 2 1
foo 0 0 0
foo 0 0 1
foo 0 1 0
foo 0 1 1
foo 0 2 0
foo 0 2 1
foo 3 1 0
foo 3 1 1
foo 3 2 0
foo 3 2 1

Kokkos: nested parallelism
int imax = 4;
int jmax = 3;
int kmax = 2;

Jeff Hammond
Exascale Co-Design Group

q.submit([&](cl::sycl::handler& h) {
h.parallel_for_work_group<class foo>(

cl::sycl::nd_range<1>(imax*jmax,jmax),
[=] (cl::sycl::group<1> g) {

g.parallel_for_work_item([=] (cl::sycl::h_item<1> i) {
printf("foo g=%zu i=%zu\n", g.get_id(0), i.get_global_id());

});
});

});

foo g=0 i=1
foo g=0 i=2
foo g=0 i=0
foo g=1 i=4
foo g=1 i=5
foo g=1 i=3
foo g=2 i=7
foo g=2 i=6
foo g=2 i=8
foo g=3 i=10
foo g=3 i=11
foo g=3 i=9

SYCL: nested parallelism

int imax = 4;
int jmax = 3;
int kmax = 2;

Jeff Hammond
Exascale Co-Design Group

using namespace cl::sycl;

q.submit([&](handler& h) {
h.parallel_for_work_group<class bar>(

nd_range<2>({imax*kmax,jmax*kmax},{kmax,kmax}),
[=] (group<2> g) {

g.parallel_for_work_item([=] (h_item<2> i) {
printf("bar g[0]=%zu g[1]=%zu i[0]=%zu i[1]=%zu\n",

g.get_id(0), g.get_id(1),
i.get_global_id(0), i.get_global_id(1));

});
});

});

bar g[0]=0 g[1]=0 i[0]=0 i[1]=1
bar g[0]=0 g[1]=0 i[0]=1 i[1]=0
bar g[0]=0 g[1]=0 i[0]=0 i[1]=0
bar g[0]=0 g[1]=0 i[0]=1 i[1]=1
bar g[0]=0 g[1]=1 i[0]=0 i[1]=3
bar g[0]=0 g[1]=1 i[0]=1 i[1]=2
bar g[0]=0 g[1]=1 i[0]=1 i[1]=3
bar g[0]=0 g[1]=1 i[0]=0 i[1]=2
bar g[0]=1 g[1]=0 i[0]=3 i[1]=0
bar g[0]=1 g[1]=0 i[0]=2 i[1]=0
bar g[0]=1 g[1]=0 i[0]=2 i[1]=1
bar g[0]=1 g[1]=0 i[0]=3 i[1]=1
bar g[0]=1 g[1]=1 i[0]=3 i[1]=2
bar g[0]=1 g[1]=1 i[0]=2 i[1]=2
bar g[0]=1 g[1]=1 i[0]=2 i[1]=3
bar g[0]=1 g[1]=1 i[0]=3 i[1]=3
bar g[0]=2 g[1]=0 i[0]=4 i[1]=0
bar g[0]=2 g[1]=0 i[0]=4 i[1]=1
bar g[0]=2 g[1]=0 i[0]=5 i[1]=0
bar g[0]=2 g[1]=0 i[0]=5 i[1]=1
bar g[0]=2 g[1]=1 i[0]=4 i[1]=3
bar g[0]=2 g[1]=1 i[0]=4 i[1]=2
bar g[0]=2 g[1]=1 i[0]=5 i[1]=3
bar g[0]=2 g[1]=1 i[0]=5 i[1]=2
bar g[0]=3 g[1]=0 i[0]=6 i[1]=1
bar g[0]=3 g[1]=0 i[0]=7 i[1]=0
bar g[0]=3 g[1]=0 i[0]=7 i[1]=1
bar g[0]=3 g[1]=0 i[0]=6 i[1]=0
bar g[0]=3 g[1]=1 i[0]=7 i[1]=2
bar g[0]=3 g[1]=1 i[0]=6 i[1]=3
bar g[0]=3 g[1]=1 i[0]=6 i[1]=2
bar g[0]=3 g[1]=1 i[0]=7 i[1]=3

SYCL: nested parallelism int imax = 4;
int jmax = 2;
int kmax = 2;

Jeff Hammond
Exascale Co-Design Group

Conclusions

Jeff Hammond
Exascale Co-Design Group

• Application developers should be giving Kokkos a serious look if they want to
support all three major HPC accelerator platforms.

• SYCL needs to learn from Kokkos:

• Reductions are first-class methods in HPC – they must be in the language.

• Data/memory management needs to be more transparent (education?).
• Move beyond OpenCL/CUDA thinking and support dimensions >3.

• SYCL compiler helps make device lambda usage better.

• There is a Kokkos compiler effort but it isn’t the primary implementation.

• Kokkos@SYCL is a natural next step.
• SYCL@Kokkos might be an interesting reference implementation…

