
Alexey Bader, James Brodman, Mike Kinsner, Andrew Savonichev

And many more!

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Agenda

• What is SYCL?

• “Hello, world!” in SYCL

• Scheduler

• Compilation flow

• SPIR-V

• Integration header

• Upstream plan

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of
Intel Corporation or its subsidiaries in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

3

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

What is SYCL?

SYCL is a cross platform abstraction layer for heterogeneous
compute developed by the Khronos Group.

It allows code for heterogeneous processors (CPU, GPU, FPGA, etc.)
to be written in a “single-source” style using standard C++11.

https://www.khronos.org/sycl/

https://www.khronos.org/sycl/

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

“Hello, world!”
template <typename T>

void vector_add(const std::vector<T>& A, const std::vector<T>& B, std::vector<T>& C) {

buffer<T, 1> bufferA(A.data(), A.size());

buffer<T, 1> bufferB(B.data(), B.size());

buffer<T, 1> bufferC(C.data(), C.size());

queue deviceQueue;

deviceQueue.submit([&](handler& cgh) {

auto accessorA = bufferA.get_access<sycl_read>(cgh);

auto accessorB = bufferB.get_access<sycl_read>(cgh);

auto accessorC = bufferC.get_access<sycl_write>(cgh);

cgh.parallel_for<class vec_add>(range<1>(A.size()),

[=](id<1> wiID) {

accessorC[wiID] = accessorA[wiID] + accessorB[wiID];

});

}); deviceQueue.wait();

}

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Intel’s Compiler and Runtime for SYCL

Note: Not yet 100% conformant

Note: Boxes not to scale

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

SYCL standard library

SYCL standard library implementation consists of 28 public headers, and ~30
implementation (detail) headers:

• include/CL/sycl/accessor.hpp

• include/CL/sycl/buffer.hpp

• include/CL/sycl/device.hpp

• include/CL/sycl/kernel.hpp

• etc.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Scheduler
deviceQueue.submit([&](handler& cgh) {

auto accessorA = bufferA.get_access<sycl_read>(cgh);
auto accessorB = bufferB.get_access<sycl_read>(cgh);
auto accessorC = bufferC.get_access<sycl_write>(cgh);

cgh.parallel_for<class kernel_1>(range<1>(A.size()),
[=](id<1> wiID) {
accessorC[wiID] = accessorA[wiID] + accessorB[wiID];

});
});

Kernel
#1

BA

C

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

Scheduler
deviceQueue.submit([&](handler& cgh) {

auto accessorA = bufferA.get_access<sycl_read>(cgh);
auto accessorB = bufferB.get_access<sycl_read>(cgh);
auto accessorC = bufferC.get_access<sycl_write>(cgh);

cgh.parallel_for<class kernel_1>(range<1>(A.size()),
[=](id<1> wiID) {
accessorC[wiID] = accessorA[wiID] + accessorB[wiID];

});
});

deviceQueue.submit([&](handler& cgh) {
auto accessorС = bufferC.get_access<sycl_read>(cgh);
auto accessorD = bufferD.get_access<sycl_read>(cgh);
auto accessorE = bufferE.get_access<sycl_write>(cgh);

cgh.parallel_for<class vec_add>(range<1>(C.size()),
[=](id<1> wiID) {
accessorE[wiID] = accessorC[wiID] + accessorD[wiID];

});
});

Kernel
#1

BA

C

Kernel
#2

D

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

Scheduler
deviceQueue.submit([&](handler& cgh) {

auto accessorA = bufferA.get_access<sycl_read>(cgh);
auto accessorB = bufferB.get_access<sycl_read>(cgh);
auto accessorC = bufferC.get_access<sycl_write>(cgh);

cgh.parallel_for<class kernel_1>(range<1>(A.size()),
[=](id<1> wiID) {
accessorC[wiID] = accessorA[wiID] + accessorB[wiID];

});
});

deviceQueue.submit([&](handler& cgh) {
auto accessorС = bufferC.get_access<sycl_read>(cgh);
auto accessorD = bufferD.get_access<sycl_read>(cgh);
auto accessorE = bufferE.get_access<sycl_write>(cgh);

cgh.parallel_for<class vec_add>(range<1>(C.size()),
[=](id<1> wiID) {
accessorE[wiID] = accessorC[wiID] + accessorD[wiID];

});
});

Kernel
#1

BA

C

Kernel
#2

D

No explicit “wait” operation!
SYCL runtime is responsible
for synchronization.

What do you mean everyone doesn’t hack on Compilers for fun?

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Standard C++ flow

a.cpp

a.o

a.out

clang -c

ld

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

Standard C++ flow => SYCL flow

a.cpp

a.o

a.out

clang -c -fsycl

ld -lsycl

Enable SYCL compiler
features

Link with SYCL Runtime

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SYCL compilation flow (under the hood) *

16

* simplified

a.cpp
clang -fsycl-is-device –int-header=… clang –include=a.int.header.h

a.device.ll

a.device.bin
(SPIR-V)

< device compiler >

a.host.ll

a.host.o

ld -lsycl
a.o

clang
offload
tools

a.out

Device
compilation

Host
compilation

a.int.header.h

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SYCL compilation flow (under the hood) *

17

* simplified

a.cpp
clang -fsycl-is-device –int-header=… clang –include=a.int.header.h

a.device.ll

a.device.bin
(SPIR-V)

< device compiler >

a.host.ll

a.host.o

ld -lsycl
a.o

clang
offload
tools

a.out

Device
compilation

Host
compilation

a.int.header.h

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

SPIR-V support

SPIR-V is a device-agnostic IR originally
created for OpenCL and Vulkan.

It allows to run a single SYCL executable
On any device that supports SPIR-V.

SPIR-V Translator from LLVM IR to SPIR-V
is developed on Github:
https://github.com/KhronosGroup/SPIRV-LLVM-Translator

SYCL
executable

SPIR-V
bin

CPU GPU
Other devices
with SPIR-V

support

https://github.com/KhronosGroup/SPIRV-LLVM-Translator

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

SYCL flow: integration header

cgh.parallel_for<class kernel_1>(cl::sycl::range<1>(8),
[=](cl::sycl::id<1> wiID) {
accessorC[wiID] = accessorA[wiID] + accessorB[wiID];

});

Step 1:
device compiler
extracts the
lambda function.

Class name kernel_1
is a device kernel
name.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

SYCL flow: integration header

cgh.parallel_for<class kernel_1>(cl::sycl::range<1>(8),
[=](cl::sycl::id<1> wiID) {
accessorC[wiID] = accessorA[wiID] + accessorB[wiID];

});

Step 1:
device compiler
extracts the
lambda function.

Class name kernel_1
is a device kernel
name.

a.device.bin:

__kernel kernel_1(T* buf) {
...

}

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

SYCL flow: integration header

cgh.parallel_for<class kernel_1>(cl::sycl::range<1>(8),
[=](cl::sycl::id<1> wiID) {
accessorC[wiID] = accessorA[wiID] + accessorB[wiID];

});

Step 2:
Host code must
call the device
function by name,
and provide the
required parameters.

a.device.bin:

__kernel kernel_1(T* buf) {
...

}

a.host.cpp:

clCreateKernel(“kernel name”);
clSetKernelArg(0, buf);

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

SYCL flow: integration header

cgh.parallel_for<class kernel_1>(cl::sycl::range<1>(8),
[=](cl::sycl::id<1> wiID) {
accessorC[wiID] = accessorA[wiID] + accessorB[wiID];

});

a.device.bin:

__kernel kernel_1(T* buf) {
...

}

a.host.cpp:

clCreateKernel(“kernel name”);
clSetKernelArg(0, buf);

No way to map a type name (kernel_1)
to a string!

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

SYCL flow: integration header

cgh.parallel_for<class kernel_1>(cl::sycl::range<1>(8),
[=](cl::sycl::id<1> wiID) {
accessorC[wiID] = accessorA[wiID] + accessorB[wiID];

});

a.device.bin:

__kernel kernel_1(T* buf) {
...

}

a.host.cpp:

clCreateKernel(“kernel name”);
clSetKernelArg(0, buf);

No way to determine an order of
arguments captured by a lambda

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

SYCL flow: integration header

cgh.parallel_for<class kernel_1>(cl::sycl::range<1>(8),
[=](cl::sycl::id<1> wiID) {
accessorC[wiID] = accessorA[wiID] + accessorB[wiID];

});

a.device.bin:

__kernel kernel_1(T* buf) {
...

}

a.host.cpp:

clCreateKernel(
KernelDesk<T>::getName());

...

a.int.h:

template<>
class KernelDesc<kernel_1> {
const char* getName();
unsigned getArgNum();
ArgDesc getArg(unsigned);

};

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

SYCL upstream to LLVM.org

• Intel/llvm repository is a staging area to design concepts and prototype
solutions

• Contribution to llvm.org is our primary goal

• RFC: https://lists.llvm.org/pipermail/cfe-dev/2019-January/060811.html

• First changes to the clang driver are already committed:
https://reviews.llvm.org/D57768

• Detailed plan for upstream: https://github.com/intel/llvm/issues/49

• SYCL source code: https://github.com/intel/llvm/tree/sycl

https://lists.llvm.org/pipermail/cfe-dev/2019-January/060811.html
https://reviews.llvm.org/D57768
https://github.com/intel/llvm/issues/49
https://github.com/intel/llvm/tree/sycl

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Call to action

We welcome feedback and input on the design and implementation.

Please contribute ideas/implementation to our sandbox or join us on the path
to llvm.org!

https://github.com/intel/llvm

https://github.com/intel/llvm

