
Towards Heterogeneous and Distributed
Computing in C++

Gordon Brown - Senior Software Engineer, SYCL & C++

DHPCC++ – May 2019

© 2017 Codeplay Software Ltd.2

About me...

• Background in C++ programming models for heterogeneous
systems

• Developer with Codeplay Software for 7 years
• Worked on ComputeCpp (SYCL) for 6 years
• Contributor to the Khronos SYCL standard since its inception
• Contributor to ISO C++ executors and heterogeneity for over
3 years

© 2019 Codeplay Software Ltd.3

Contributors

Jared Hoberock, Chris Kohlhoff, Chris Mysen, Michael Garland,
Michael Wong, Carter Edwards, Thomas Rodgers, Mark

Hoemmen, Hartmut Kaiser, Hans Boehm, Torvald Riegel, Lee
Howes, David Hollman, Bryce Lelbach, Gor Nishanov, Thomas

Heller, Geoffrey Romer, Patrice Roy, Carl Cook, Jeff Hammond,
Hartmut Kaiser, Christian Trott, Paul Blinzer, Alex Voicu, Nat

Goodspeed, Tony Tye, Paul Blinzer, Michał Dominiak, Eric
Niebler, Kirk Shoop, Lewis Baker

© 2018 Codeplay Software Ltd.4

Agenda

What are C++ executors?

Properties

Oneway executors

Twoway executors

Supporting affinity

© 2018 Codeplay Software Ltd.5

Hardware
resources

Unified executor interface

Third-party /
OS hardware
abstractions

Executors

Standard /
proprietary

libraries

SYCL

Kokkos defer

define_task_block

dispatch strand<>asynchronous operations

future::then

async

invoke postparallel algorithms

OpenMP / MPI OS threads
Boost.Asio /

Networking TS
OpenCL / CUDA
/ HCC / HMM

© 2018 Codeplay Software Ltd.6

 auto fut = std::async(factorial, input);
 auto res = fut.get();

© 2018 Codeplay Software Ltd.7

 auto fut = std::async(factorial, input);
 auto res = fut.get();

 auto fut = std::async(gpu_executor{}, factorial, input);
 auto res = fut.get();

© 2018 Codeplay Software Ltd.8

 std::sort(par, data.begin(), data.end());

© 2018 Codeplay Software Ltd.9

 std::sort(par, data.begin(), data.end());

 std::sort(par.on(gpu_executor{}), data.begin(), data.end());

© 2018 Codeplay Software Ltd.10

Executor

● An executor is an light-weight
object

© 2018 Codeplay Software Ltd.11

Executor

Lightweight
Execution Agent

Lightweight
Execution Agent

Execution
Agent

● An executor is an light-weight
object

● It creates execution agents that
invoke a callable

© 2018 Codeplay Software Ltd.12

Executor

Lightweight
Execution Agent

Execution Functions

Lightweight
Execution Agent

Execution
Agent

● An executor is an light-weight
object

● It creates execution agents that
invoke a callable

● It has a number of execution
functions which provide
different way of creating
execution agents

© 2018 Codeplay Software Ltd.13

Executor

Lightweight
Execution Agent

Execution Functions

Lightweight
Execution Agent

Execution
Agent

● An executor is an light-weight
object

● It creates execution agents that
invoke a callable

● It has a number of execution
functions which provide
different way of creating
execution agents

● It has a number of properties
associated with it that dictate
it’s execution functions and the
operational semantics of the
execution agents it creates

Properties

© 2018 Codeplay Software Ltd.14

Execution Context
Executor

Lightweight
Execution Agent

Execution Functions

Lightweight
Execution Agent

Execution
Agent

● An executor is an light-weight
object

● It creates execution agents that
invoke a callable

● It has a number of execution
functions which provide
different way of creating
execution agents

● It has a number of properties
associated with it that dictate
it’s execution functions and the
operational semantics of the
execution agents it creates

● It is generally associated with
an execution context, which
manages the execution agents
it creates

Properties

© 2018 Codeplay Software Ltd.15

Agenda

What are C++ executors?

Properties

Oneway executors

Twoway executors

Supporting affinity

© 2018 Codeplay Software Ltd.16

● Properties provide a software abstraction for executors to
express the relationship between algorithm requirements and
hardware capabilities
○ They allow you to require that an executor support a property
○ They allow you to query the value of an executor property

●This facilitates better performance portability in algorithm design
○ Different layers of an algorithm can be specialized or adapted

based on executor properties

© 2018 Codeplay Software Ltd.17

● Performing a require
returns an executor that
will have the requested
properties
○ If the properties are

already supported the
original executor is
returned

○ If the properties are
not supported this will
result in a compile-time
error

Executor

Require

Properties

Executor

© 2018 Codeplay Software Ltd.18

● Performing a prefer
returns an executor that
may have the requested
properties
○ If the properties are

already supported the
same executor is
returned

○ If the properties are
not supported the
executor will simply
return the original
executor

Executor

Require

Properties

Prefer

Properties

Executor Executor

© 2018 Codeplay Software Ltd.19

● Performing a query returns
the current value of a
specific property
○ In many cases this value

will be a boolean
○ In some cases this query

can be performed at
compile-time if
property::static_query_v
is available

Executor

Require

Properties

Prefer Query

Properties Property

Executor Executor Value

© 2018 Codeplay Software Ltd.20

● Properties that are
successfully requested via
require or prefer can be
supported in two ways
○ An executor

implementation can
natively support the
property

○ An executor can
support a property via
an adaptation

Executor

Require

Properties

Prefer Query

Properties Property

Executor Executor Value

© 2018 Codeplay Software Ltd.21

 oneway_executor exec;

 auto newExec = require(exec, blocking.never); // Must return a non-blocking executor

 auto fut = newExec.execute(func);
Require

© 2018 Codeplay Software Ltd.22

 oneway_executor exec;

 auto newExec = require(exec, blocking.never); // Must return a non-blocking executor

 auto fut = newExec.execute(func);

 oneway_executor exec;

 auto newExec = prefer(exec, blocking.never); // May or may not return a non-blocking executor

 newExec.execute(func);

Require

Prefer

© 2018 Codeplay Software Ltd.23

 oneway_executor exec;

 auto newExec = require(exec, blocking.never); // Must return a non-blocking executor

 auto fut = newExec.execute(func);

 oneway_executor exec;

 auto newExec = prefer(exec, blocking.never); // May or may not return a non-blocking executor

 newExec.execute(func);

 oneway_executor exec;

 auto newExec = prefer(exec, blocking.never); // May or may not return a non-blocking executor

 auto isNonBlocking = query(newExec, blocking.never);

Require

Prefer

Query

© 2018 Codeplay Software Ltd.24

Agenda

What are C++ executors?

Properties

Oneway executors

Twoway executors

Supporting affinity

© 2018 Codeplay Software Ltd.25

● Oneway executors provide execution functions which execute a
callable without a communication channel
○ Eager “Fire and forget” execution
○ No return value
○ Synchronisation and error handling are managed via another

channel

● Single and bulk cardinality
○ Execute a callable exactly once on a single execution agent
○ Execute a callable in multiple iterations on multiple execution

agents

© 2018 Codeplay Software Ltd.26

 oneway_executor exec;

 exec.execute([&]() {
 ...
 });

Single

© 2018 Codeplay Software Ltd.27

 oneway_executor exec;

 exec.execute([&]() {
 ...
 });

 bulk_executor exec;

 exec.bulk_execute([&](index<N> i,
 auto r, auto s){
 ...
 }, shape, resultFactory, sharedFactory);

Single

Bulk

© 2018 Codeplay Software Ltd.28

Agenda

What are C++ executors?

Properties

Oneway executors

Twoway executors

Supporting affinity

© 2018 Codeplay Software Ltd.29

● Twoway executors provide an execution functions which
execute a callable with a communication channel
○ Propagates a return value or an error
○ Provides a predicate to later callables

● Sender/receiver model
○ Lazy generalization of futures and promises

■ Sender: lazy future
■ Receiver: lazy promise

○ Composition of nested callables
○ Communication channel doesn’t require shared state

allocation or synchronization

© 2018 Codeplay Software Ltd.30

Execute f on the CPU, then execute g on the GPU

© 2018 Codeplay Software Ltd.31

Execute f on the CPU, then execute g on the GPU

 auto s1 = take(42);
 auto s2 = transform(s1, f);
 auto s3 = via(s2, gpu_executor{});
 auto s4 = transform(s3, g);
 s4.submit(receiver{&res});

© 2018 Codeplay Software Ltd.32

 auto s1 = take(42);
 auto s2 = transform(s1, f);
 auto s3 = via(s2, gpu_executor{});
 auto s4 = transform(s3, g);
 s4.submit(receiver{&res});

© 2018 Codeplay Software Ltd.33

 auto s1 = take(42);
 auto s2 = transform(s1, f);
 auto s3 = via(s2, gpu_executor{});
 auto s4 = transform(s3, g);
 s4.submit(receiver{&res});

s1
submit(r2)

42

© 2018 Codeplay Software Ltd.34

 auto s1 = take(42);
 auto s2 = transform(s1, f);
 auto s3 = via(s2, gpu_executor{});
 auto s4 = transform(s3, g);
 s4.submit(receiver{&res});

s2

s1

submit(r3)

submit(r2)

f

42

create r2

© 2018 Codeplay Software Ltd.35

 auto s1 = take(42);
 auto s2 = transform(s1, f);
 auto s3 = via(s2, gpu_executor{});
 auto s4 = transform(s3, g);
 s4.submit(receiver{&res});

s3

s2

s1

submit(r4)

submit(r3)

submit(r2)

f

exec

42

create r3

create r2

© 2018 Codeplay Software Ltd.36

 auto s1 = take(42);
 auto s2 = transform(s1, f);
 auto s3 = via(s2, gpu_executor{});
 auto s4 = transform(s3, g);
 s4.submit(receiver{&res});

s4

s3

s2

s1

submit(r4)

submit(receiver)

submit(r3)

submit(r2)

g

f

exec

42

create r3

create r2

create r4

© 2018 Codeplay Software Ltd.37

 auto s1 = take(42);
 auto s2 = transform(s1, f);
 auto s3 = via(s2, gpu_executor{});
 auto s4 = transform(s3, g);
 s4.submit(receiver{&res});

s4

s3

s2

s1

submit(r4)

submit(receiver)

submit(r3)

submit(r2)

receiver

g

f

exec

42

value(res)

result = res
create r3

create r2

create r4

© 2018 Codeplay Software Ltd.38

 auto s1 = take(42);
 auto s2 = transform(s1, f);
 auto s3 = via(s2, gpu_executor{});
 auto s4 = transform(s3, g);
 s4.submit(receiver{&res});

s4

s3

s2

s1

submit(r4)

submit(receiver)

submit(r3)

submit(r2)

r4

receiver

g

f

exec

42

value(res)

result = res
create r3

create r2

create r4

value(res)

res = invoke(g, res)

© 2018 Codeplay Software Ltd.39

 auto s1 = take(42);
 auto s2 = transform(s1, f);
 auto s3 = via(s2, gpu_executor{});
 auto s4 = transform(s3, g);
 s4.submit(receiver{&res});

s4

s3

s2

s1

submit(r4)

submit(receiver)

submit(r3)

submit(r2)

r3

r4

receiver

value(res)

g

f

exec

42

value(res)

result = res
create r3

create r2

create r4

value(res)

exec.schedule()

res = invoke(g, res)

© 2018 Codeplay Software Ltd.40

 auto s1 = take(42);
 auto s2 = transform(s1, f);
 auto s3 = via(s2, gpu_executor{});
 auto s4 = transform(s3, g);
 s4.submit(receiver{&res});

s4

s3

s2

s1

submit(r4)

submit(receiver)

submit(r3)

submit(r2)

r2

r3

r4

receiver

value(res)

value(42)

g

f

exec

42

value(res)

result = res

res = invoke(f, 42)

create r3

create r2

create r4

value(res)

exec.schedule()

res = invoke(g, res)

© 2018 Codeplay Software Ltd.41

 auto s1 = take(42);
 auto s2 = transform(s1, f);
 auto s3 = via(s2, gpu_executor{});
 auto s4 = transform(s3, g);
 s4.submit(receiver{&res});

s4

s3

s2

s1

submit(r4)

submit(receiver)

submit(r3)

submit(r2)

r2

r3

r4

receiver

value(res)

value(42)

g

f

exec

42

value(res)

result = res

res = invoke(f, 42)

create r3

create r2

create r4

value(res)

exec.schedule()

res = invoke(g, res)

© 2018 Codeplay Software Ltd.42

 auto s1 = take(42);
 auto s2 = transform(s1, f);
 auto s3 = via(s2, gpu_executor{});
 auto s4 = transform(s3, g);
 s4.submit(receiver{&res});

s4

s3

s2

s1

submit(r4)

submit(receiver)

submit(r3)

submit(r2)

r2

r3

r4

receiver

value(res)

value(42)

g

f

exec

42

value(res)

result = res

res = invoke(f, 42)

create r3

create r2

create r4

value(res)

exec.schedule()

res = invoke(g, res)

© 2018 Codeplay Software Ltd.43

 auto s1 = take(42);
 auto s2 = transform(s1, f);
 auto s3 = via(s2, gpu_executor{});
 auto s4 = transform(s3, g);
 s4.submit(receiver{&res});

s4

s3

s2

s1

submit(r4)

submit(receiver)

submit(r3)

submit(r2)

r2

r3

r4

receiver

value(res)

value(42)

g

f

exec

42

value(res)

result = res

res = invoke(f, 42)

create r3

create r2

create r4

value(res)

exec.schedule()

res = invoke(g, res)

© 2018 Codeplay Software Ltd.44

 auto s1 = take(42);
 auto s2 = transform(s1, f);
 auto s3 = via(s2, gpu_executor{});
 auto s4 = transform(s3, g);
 s4.submit(receiver{&res});

s4

s3

s2

s1

submit(r4)

submit(receiver)

submit(r3)

submit(r2)

r2

r3

r4

receiver

value(res)

value(42)

g

f

exec

42

value(res)

result = res

res = invoke(f, 42)

create r3

create r2

create r4

value(res)

exec.schedule()

res = invoke(g, res)

© 2018 Codeplay Software Ltd.45

 auto s1 = take(42);
 auto s2 = transform(s1, f);
 auto s3 = via(s2, gpu_executor{});
 auto s4 = transform(s3, g);
 s4.submit(receiver{&res});

s4

s3

s2

s1

submit(r4)

submit(receiver)

submit(r3)

submit(r2)

r2

r3

r4

receiver

value(res)

value(42)

g

f

exec

42

value(res)

result = res

res = invoke(f, 42)

create r3

create r2

create r4

value(res)

exec.schedule()

res = invoke(g, res)

© 2018 Codeplay Software Ltd.46

Agenda

What are C++ executors?

Properties

Oneway executors

Twoway executors

Supporting affinity

© 2019 Codeplay Software Ltd.47

P0796: Supporting Heterogeneous & Distributed Computing
Through Affinity

High-level

P1436: Executor properties for
affinity-based execution

Low-level

P1437: System topology
discovery for heterogeneous

& distributed computing (WIP)

© 2019 Codeplay Software Ltd.48

● All systems are inherently heterogeneous
○ Desktop systems commonly have compute capable co-processors design for

specific tasks such as GPUs or FPGAs
○ Server systems commonly have multiple CPU nodes or CPU + {GPU, FPGA,

DSP, TPU, etc} nodes
○ Mobile and embedded SoC systems commonly have GPUs and/or often

other specialised co-processors

● Many systems are distributed
○ HPC server and cloud systems have a distribution of a large number of

interconnected nodes
○ These nodes can be connected physically or via network communication

© 2019 Codeplay Software Ltd.49

● The structure of memory is no longer simple
○ Distributed memory regions across NUMA nodes
○ Hierarchical GPU memory regions
○ On-chip shared memory
○ Off-chip DMA transfers
○ Shared virtual memory through cache coherency
○ High Bandwidth Memory (HBM)
○ Persistent memory

● Memory allocation has to be adjusted to gain performance
○ Utilisation of shared memory regions (physical or virtual)
○ First touch memory allocation for lower latency access
○ Migration of memory allocations between discrete memory regions

© 2019 Codeplay Software Ltd.50

● Define an interface for discovering and querying affinity
○ Solution must allow querying affinity related properties of an executor
○ Solution must provide process and memory affinity binding

● Integrate closely with the unified executors proposal
(P0443)
○ Solution must align closely with the direction of the executors design

● Ensure scalability to heterogeneous and distributed
systems
○ Solution needs to consider the limitations of heterogeneous and distributed

systems to ensure scalability for future hardware

© 2018 Codeplay Software Ltd.51

● The property bulk_execution_affinity requires that an
executor provide a guaranteed affinity binding pattern
○ Pattern can be none, balanced, scatter or compact
○ Requires that each execution agent be bound to a particular execution

resource before the callable is called
○ Binding must be consistent across all invocations of bulk_execute with the

same size

© 2018 Codeplay Software Ltd.52

Socket 0 Socket 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Core 0 Core 1 Core 0 Core 1

© 2018 Codeplay Software Ltd.53

Socket 0 Socket 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Core 0 Core 1 Core 0 Core 1

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

 auto exec = execution::execution_context{execRes}.executor();

 auto affExec = execution::require(exec, execution::bulk,
 execution::bulk_execution_affinity.none);

 affExec.bulk_execute([](std::size_t i, shared s) {
 func(i);
 }, 8, sharedFactory);

© 2018 Codeplay Software Ltd.54

Socket 0 Socket 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Core 0 Core 1 Core 0 Core 1

0 4 1 5 2 6 3 7

 auto exec = execution::execution_context{execRes}.executor();

 auto affExec = execution::require(exec, execution::bulk,
 execution::bulk_execution_affinity.scatter);

 affExec.bulk_execute([](std::size_t i, shared s) {
 func(i);
 }, 8, sharedFactory);

© 2018 Codeplay Software Ltd.55

Socket 0 Socket 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Core 0 Core 1 Core 0 Core 1

0 1 2 3 4 5 6 7

 auto exec = execution::execution_context{execRes}.executor();

 auto affExec = execution::require(exec, execution::bulk,
 execution::bulk_execution_affinity.compact);

 affExec.bulk_execute([](std::size_t i, shared s) {
 func(i);
 }, 8, sharedFactory);

© 2018 Codeplay Software Ltd.56

Socket 0 Socket 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Core 0 Core 1 Core 0 Core 1

0 1 2 3 4 5 6 7

 auto exec = execution::execution_context{execRes}.executor();

 auto affExec = execution::require(exec, execution::bulk,
 execution::bulk_execution_affinity.balanced);

 affExec.bulk_execute([](std::size_t i, shared s) {
 func(i);
 }, 8, sharedFactory);

© 2018 Codeplay Software Ltd.57

● The query-only property concurrency returns the maximum
potential concurrency available to it
○ This provides a guide to the optimal bulk execution shape, but not a

guarantee that

© 2018 Codeplay Software Ltd.58

 executor exec;

 size_t maxConcurrency = execution::query(exec, execution::concurrency);

● The query-only property concurrency returns the maximum
potential concurrency available to it
○ This provides a guide to the optimal bulk execution shape, but not a

guarantee that

© 2018 Codeplay Software Ltd.59

● The query-only property execution_locality_intersection
returns the maximum potential concurrency available to
both of two executors
○ Tells you whether two executors will be contesting for the same resources

© 2018 Codeplay Software Ltd.60

 executor_a execA;
 executor_b execB;

 size_t concurrencyOverlap = execution::query(execA,
execution::execution_locality_intersection(execB));

● The query-only property execution_locality_intersection
returns the maximum potential concurrency available to
both of two executors
○ Tells you whether two executors will be contesting for the same resources

© 2018 Codeplay Software Ltd.61

● The query-only property memory_locality_intersection
returns whether two execution resources share the same
memory locality
○ Tells you whether memory allocated in each of the executors is in the same

locale

© 2018 Codeplay Software Ltd.62

 executor_a execA;
 executor_b execB;

 bool concurrencyOverlap = execution::query(execA,
execution::memory_locality_intersection(execB));

● The query-only property memory_locality_intersection
returns whether two execution resources share the same
memory locality
○ Tells you whether memory allocated in each of the executors is in the same

locale

© 2018 Codeplay Software Ltd.63

Conclusions

© 2018 Codeplay Software Ltd.64

● Executors did not make C++20
○ It was decided that some features need more time to bake

before being ready for the standard

● So targeting C++23, what will executors look like?
○ There will be a properties mechanism, likely as seen in P0443
○ There will be oneway “fire and forget” executors, likely as

seen in P0443
○ There will be twoway “sender/receiver” executors, likely to be

along the lines of P1341
○ We hope there will be properties for affinity based allocation

and execution, along the lines of P1436

© 2018 Codeplay Software Ltd.65

● Some useful links:
○ Current unified executors proposal - http://wg21.link/p0443
○ Sender/receiver executors - http://wg21.link/p1341
○ Executor properties for affinity - https://wg21.link/p1436

http://wg21.link/p0443
http://wg21.link/p1341
https://wg21.link/p1436

Thanks for listening

