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• Background in C++ programming models for heterogeneous 
systems
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• Contributor to ISO C++ executors and heterogeneity for over 
3 years
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  auto fut = std::async(factorial, input);
  auto res = fut.get();
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  auto fut = std::async(factorial, input);
  auto res = fut.get();

  auto fut = std::async(gpu_executor{}, factorial, input);
  auto res = fut.get();
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  std::sort(par, data.begin(), data.end());
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  std::sort(par, data.begin(), data.end());

  std::sort(par.on(gpu_executor{}), data.begin(), data.end());
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Executor

● An executor is an light-weight 
object
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Executor
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● An executor is an light-weight 
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● It creates execution agents that 
invoke a callable
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Execution Context
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● Properties provide a software abstraction for executors to 
express the relationship between algorithm requirements and 
hardware capabilities
○ They allow you to require that an executor support a property
○ They allow you to query the value of an executor property

●This facilitates better performance portability in algorithm design
○ Different layers of an algorithm can be specialized or adapted 

based on executor properties
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● Performing a require 
returns an executor that 
will have the requested 
properties
○ If the properties are 

already supported the 
original executor is 
returned

○ If the properties are 
not supported this will 
result in a compile-time 
error

Executor

Require

Properties

Executor
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● Performing a prefer 
returns an executor that 
may have the requested 
properties
○ If the properties are 

already supported the 
same executor is 
returned

○ If the properties are 
not supported the 
executor will simply 
return the original 
executor

Executor

Require

Properties

Prefer

Properties

Executor Executor
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● Performing a query returns 
the current value of a 
specific property
○ In many cases this value 

will be a boolean
○ In some cases this query 

can be performed at 
compile-time if 
property::static_query_v 
is available

Executor

Require

Properties

Prefer Query

Properties Property

Executor Executor Value
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● Properties that are 
successfully requested via 
require or prefer can be 
supported in two ways
○ An executor 

implementation can 
natively support the 
property

○ An executor can 
support a property via 
an adaptation

Executor

Require

Properties

Prefer Query

Properties Property

Executor Executor Value
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  oneway_executor exec;

  auto newExec = require(exec, blocking.never);  // Must return a non-blocking executor

  auto fut = newExec.execute(func);
Require
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  oneway_executor exec;

  auto newExec = require(exec, blocking.never);   // Must return a non-blocking executor

  auto fut = newExec.execute(func);

  oneway_executor exec;

  auto newExec = prefer(exec, blocking.never);  // May or may not return a non-blocking executor

  newExec.execute(func);

Require

Prefer
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  oneway_executor exec;

  auto newExec = require(exec, blocking.never);   // Must return a non-blocking executor

  auto fut = newExec.execute(func);

  oneway_executor exec;

  auto newExec = prefer(exec, blocking.never );  // May or may not return a non-blocking executor

  newExec.execute(func);

  oneway_executor exec;

  auto newExec = prefer(exec, blocking.never);  // May or may not return a non-blocking executor

  auto isNonBlocking = query(newExec, blocking.never);

Require

Prefer

Query
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● Oneway executors provide execution functions which execute a 
callable without a communication channel
○ Eager “Fire and forget” execution
○ No return value
○ Synchronisation and error handling are managed via another 

channel

● Single and bulk cardinality
○ Execute a callable exactly once on a single execution agent
○ Execute a callable in multiple iterations on multiple execution 

agents
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  oneway_executor exec;

  exec.execute([&]() {
    ...
  });

Single
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  oneway_executor exec;

  exec.execute([&]() {
    ...
  });

  bulk_executor exec;

  exec.bulk_execute([&](index<N> i,
    auto r, auto s){
    ...
  }, shape, resultFactory, sharedFactory);

Single

Bulk
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● Twoway executors provide an execution functions which 
execute a callable with a communication channel
○ Propagates a return value or an error 
○ Provides a predicate to later callables

● Sender/receiver model
○ Lazy generalization of futures and promises

■ Sender: lazy future
■ Receiver: lazy promise

○ Composition of nested callables
○ Communication channel doesn’t require shared state 

allocation or synchronization
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Execute f on the CPU, then execute g on the GPU
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Execute f on the CPU, then execute g on the GPU

  auto s1 = take(42);
  auto s2 = transform(s1, f);
  auto s3 = via(s2, gpu_executor{});
  auto s4 = transform(s3, g);
  s4.submit(receiver{&res});
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  auto s1 = take(42);
  auto s2 = transform(s1, f);
  auto s3 = via(s2, gpu_executor{});
  auto s4 = transform(s3, g);
  s4.submit(receiver{&res});
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  auto s1 = take(42);
  auto s2 = transform(s1, f);
  auto s3 = via(s2, gpu_executor{});
  auto s4 = transform(s3, g);
  s4.submit(receiver{&res});

s1
submit(r2)

42
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  auto s1 = take(42);
  auto s2 = transform(s1, f);
  auto s3 = via(s2, gpu_executor{});
  auto s4 = transform(s3, g);
  s4.submit(receiver{&res});

s2

s1

submit(r3)

submit(r2)

f

42

create r2



© 2018 Codeplay Software Ltd.35

  auto s1 = take(42);
  auto s2 = transform(s1, f);
  auto s3 = via(s2, gpu_executor{});
  auto s4 = transform(s3, g);
  s4.submit(receiver{&res});

s3
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f

exec

42
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  auto s1 = take(42);
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  auto s3 = via(s2, gpu_executor{});
  auto s4 = transform(s3, g);
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  auto s1 = take(42);
  auto s2 = transform(s1, f);
  auto s3 = via(s2, gpu_executor{});
  auto s4 = transform(s3, g);
  s4.submit(receiver{&res});

s4

s3

s2

s1
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submit(r2)

receiver

g

f
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create r2

create r4
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  auto s1 = take(42);
  auto s2 = transform(s1, f);
  auto s3 = via(s2, gpu_executor{});
  auto s4 = transform(s3, g);
  s4.submit(receiver{&res});

s4

s3

s2

s1

submit(r4)

submit(receiver)

submit(r3)

submit(r2)

r4

receiver

g

f

exec

42

value(res)

result = res
create r3

create r2

create r4

value(res)

res = invoke(g, res)



© 2018 Codeplay Software Ltd.39

  auto s1 = take(42);
  auto s2 = transform(s1, f);
  auto s3 = via(s2, gpu_executor{});
  auto s4 = transform(s3, g);
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  auto s1 = take(42);
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  auto s1 = take(42);
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P0796: Supporting Heterogeneous & Distributed Computing 
Through Affinity

High-level

P1436: Executor properties for 
affinity-based execution

Low-level

P1437: System topology 
discovery for heterogeneous 

& distributed computing (WIP)
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● All systems are inherently heterogeneous
○ Desktop systems commonly have compute capable co-processors design for 

specific tasks such as GPUs or FPGAs
○ Server systems commonly have multiple CPU nodes or CPU + {GPU, FPGA, 

DSP, TPU, etc} nodes
○ Mobile and embedded SoC systems commonly have GPUs and/or often 

other specialised co-processors

● Many systems are distributed
○ HPC  server and cloud systems have a distribution of a large number of 

interconnected nodes
○ These nodes can be connected physically or via network communication
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● The structure of memory is no longer simple
○ Distributed memory regions across NUMA nodes
○ Hierarchical GPU memory regions
○ On-chip shared memory
○ Off-chip DMA transfers
○ Shared virtual memory through cache coherency
○ High Bandwidth Memory (HBM)
○ Persistent memory

● Memory allocation has to be adjusted to gain performance
○ Utilisation of shared memory regions (physical or virtual)
○ First touch memory allocation for lower latency access
○ Migration of memory allocations between discrete memory regions
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● Define an interface for discovering and querying affinity
○ Solution must allow querying affinity related properties of an executor
○ Solution must provide process and memory affinity binding

● Integrate closely with the unified executors proposal 
(P0443)
○ Solution must align closely with the direction of the executors design

● Ensure scalability to heterogeneous and distributed 
systems
○ Solution needs to consider the limitations of heterogeneous and distributed 

systems to ensure scalability for future hardware
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● The property bulk_execution_affinity requires that an 
executor provide a guaranteed affinity binding pattern
○ Pattern can be none, balanced, scatter or compact
○ Requires that each execution agent be bound to a particular execution 

resource before the callable is called
○ Binding must be consistent across all invocations of bulk_execute with the 

same size
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Socket 0 Socket 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Core 0 Core 1 Core 0 Core 1
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Socket 0 Socket 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Core 0 Core 1 Core 0 Core 1

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

  auto exec = execution::execution_context{execRes}.executor();

  auto affExec = execution::require(exec, execution::bulk,
    execution::bulk_execution_affinity.none);

  affExec.bulk_execute([](std::size_t i, shared s) {
    func(i);
  }, 8, sharedFactory);
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Socket 0 Socket 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Core 0 Core 1 Core 0 Core 1

0 4 1 5 2 6 3 7

  auto exec = execution::execution_context{execRes}.executor();

  auto affExec = execution::require(exec, execution::bulk,
    execution::bulk_execution_affinity.scatter);

  affExec.bulk_execute([](std::size_t i, shared s) {
    func(i);
  }, 8, sharedFactory);



© 2018 Codeplay Software Ltd.55

Socket 0 Socket 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Core 0 Core 1 Core 0 Core 1

0 1 2 3 4 5 6 7

  auto exec = execution::execution_context{execRes}.executor();

  auto affExec = execution::require(exec, execution::bulk,
    execution::bulk_execution_affinity.compact);

  affExec.bulk_execute([](std::size_t i, shared s) {
    func(i);
  }, 8, sharedFactory);
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Socket 0 Socket 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Core 0 Core 1 Core 0 Core 1

0 1 2 3 4 5 6 7

  auto exec = execution::execution_context{execRes}.executor();

  auto affExec = execution::require(exec, execution::bulk,
    execution::bulk_execution_affinity.balanced);

  affExec.bulk_execute([](std::size_t i, shared s) {
    func(i);
  }, 8, sharedFactory);
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● The query-only property concurrency returns the maximum 
potential concurrency available to it
○ This provides a guide to the optimal bulk execution shape, but not a 

guarantee that 
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  executor exec;

  size_t maxConcurrency = execution::query(exec, execution::concurrency);

● The query-only property concurrency returns the maximum 
potential concurrency available to it
○ This provides a guide to the optimal bulk execution shape, but not a 

guarantee that 
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● The query-only property execution_locality_intersection 
returns the maximum potential concurrency available to 
both of two executors
○ Tells you whether two executors will be contesting for the same resources
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  executor_a execA;
  executor_b execB;

  size_t concurrencyOverlap = execution::query(execA,
execution::execution_locality_intersection(execB));

● The query-only property execution_locality_intersection 
returns the maximum potential concurrency available to 
both of two executors
○ Tells you whether two executors will be contesting for the same resources
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● The query-only property memory_locality_intersection 
returns whether two execution resources share the same 
memory locality
○ Tells you whether memory allocated in each of the executors is in the same 

locale
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  executor_a execA;
  executor_b execB;

  bool concurrencyOverlap = execution::query(execA,
execution::memory_locality_intersection(execB));

● The query-only property memory_locality_intersection 
returns whether two execution resources share the same 
memory locality
○ Tells you whether memory allocated in each of the executors is in the same 

locale
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Conclusions



© 2018 Codeplay Software Ltd.64

● Executors did not make C++20
○ It was decided that some features need more time to bake 

before being ready for the standard

● So targeting C++23, what will executors look like?
○ There will be a properties mechanism, likely as seen in P0443
○ There will be oneway “fire and forget” executors, likely as 

seen in P0443
○ There will be twoway “sender/receiver” executors, likely to be 

along the lines of P1341
○ We hope there will be properties for affinity based allocation 

and execution, along the lines of P1436



© 2018 Codeplay Software Ltd.65

● Some useful links:
○ Current unified executors proposal - http://wg21.link/p0443
○ Sender/receiver executors - http://wg21.link/p1341
○ Executor properties for affinity - https://wg21.link/p1436

http://wg21.link/p0443
http://wg21.link/p1341
https://wg21.link/p1436


Thanks for listening


