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Performance transparency:  A programmer can 
write a performance-oriented program for a 
platform and predict how it will perform.   

Performance portability:  The program requires 
minimal tuning to run with acceptable performance 
on a new target.
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tǊƻƎǊŀƳƳŜǊΩǎ  ǇŜǊŦƻǊƳŀƴŎŜ ƳƻŘŜƭ

Performance 
model

Hardware 
PlatformProgram

Language 
and 
compiler

Compiler 
and 
runtime

Can the language with the 
compiler express the 
performance features?

Can the compiler and runtime 
map the model to the 
hardware?
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Programmer reasons about the performance model to achieve 
performance transparency
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How many changes required to run well on a new platform?



Look back 12 years
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Learn from GP-GPU.  Fine-grained SPMD is the better model for data parallel programming 
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Hot Chips 2007



Two multi-core, multi-threaded, SIMD 
architectures
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Hot Chips 2007
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Remember the 100x GPU vs CPU Myth
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In the summer of 2007, a visiting student, Su Xiaoke,

worked with me to investigate the performance of NVIDIA

GPUs on a LIBOR market model Monte Carlo application.

Using an NVIDIA 8800 GTX graphics card with 128

cores, we achieved a speedup of over 100 relative to a

single Xeon core.

http://people.maths.ox.ac.uk/~gilesm/cuda_old.htmlProfessor Mike Giles

http://people.maths.ox.ac.uk/~gilesm/cuda_old.html


LIBOR loop nest
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for (path=0; path<npath; path++) {
...

for(n=0; n<Nmat; n++) {
...
for (i=n+1; i<N; i++) {

lam  = lambda[i - n- 1];
con1 = delta*lam;
v   += (con1*L[i])/(1.0+delta*L[i]);
vrat = exp(con1*v + lam*(sqez - 0.5*con1));
L[i] = L[i]*vrat;

}
...

}
}

Inner loop 
sequential

Outer loop 
parallel

May 13, 2019



Simple mapping to CUDA
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...

for(n=0; n<Nmat; n++) {
...
for (i=n+1; i<N; i++) {

lam  = lambda[i - n- 1];
con1 = delta*lam;
v   += (con1*L[i])/(1.0+delta*L[i]);
vrat = exp(con1*v + lam*(sqez - 0.5*con1));
L[i] = L[i]*vrat;

}
...

}

}

Pathcalc_Portfolio_KernelGPU2<<<dimGrid, dimBlock>>>(d_v);

_global__ void Pathcalc_Portfolio_KernelGPU2(float *d_v ) {

Kernel essentially 
unchanged

Replace outer loop with kernel 
invocation from the host
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Similar solutions today in OpenMP and SYCL
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#pragma omp parallel for simd
for (path=0; path<npath; path++) {

...
for(n=0; n<Nmat; n++) {

...
for (i=n+1; i<N; i++) {

lam  = lambda[i - n- 1];
con1 = delta*lam;
v   += (con1*L[i])/(1.0+delta*L[i]);
vrat = exp(con1*v + lam*(sqez - 0.5*con1));
L[i] = L[i]*vrat;

}
...

}

}

Q.parallel_for<class m >(
range<1>(npath),  
[=](id<1> path) {

...
for(n=0; n<Nmat; n++) {

...
for (i=n+1; i<N; i++) {

lam  = lambda[i - n- 1];
con1 = delta*lam;
v   += (con1*L[i])/(1.0+delta*L[i]);
vrat = exp(con1*v + lam*(sqez - 0.5*con1));
L[i] = L[i]*vrat;

}
...

}

}

Performance portability across platforms with SPMD
May 13, 2019
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Cray vector machines
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DO 10 I = 1,N
10  Y(I) = Y(I) + A*X(I)

VLD  v1, X(I)   ; load 64 elements
VLD  v2, Y(I)   ; load 64 elements
VMUL v1,r1,v1   ; A*X(I:I+63)
VADD v3, v2, v1 ; Y(I:I+63) + V1
VST  V3, Y(I)   ; store 64 elements
ADD  I,I,64     ; increment
CMP
Br  

Instruction set with vectors

A vector register holds 64 64b floating point 
numbers

Gaussian elimination

Cray 1 1976
Cray XMP 1982

Pipelined, not SIMD
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Simple performance model
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DO I = 1,N
A(I) = 3.0*A(I)  + (2.0+B(I)) * C(I)

May 13, 2019
Levesque,  A Guidebook to Fortran on Supercomputers



Simple performance model
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DO I = 1,N
A(I) = 3.0*A(I)  + (2.0+B(I)) * C(I)

May 13, 2019
Levesque,  A Guidebook to Fortran on Supercomputers

Programmers model:
Inner-loop auto-vectorization, 
performance meaured in 
chimes.

Programmers learn to write loops 
that can be vectorized by the 
compiler.



Similar to RISC pipeline
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LD A(1) - >r1
LD A(2) Ąr2

LD B(1) - >r3
LD B(2) - >r4

FADD 2.0, r1 - >r5
FADD 2.0, r2 - >r7

FMUL 3.0,r3 - >r8
FMUL 3.0,r4 - >r9

LD C(1) - >R10
LD C(2) - >R11

Dual issue RISC pipeline

Performance portability with compiler optimization of inner loops

May 13, 2019

DO I = 1,N
A(I) = 3.0*A(I)  + (2.0+B(I)) * C(I)

auto-vectorization becomes 
software pipelining

Programmers model is essentially 
the same.



Inner loops are not enough for SIMD
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c
c*******************************************************************************
c***  KERNEL 1      HYDRO FRAGMENT
c*******************************************************************************
c
cdir$ ivdep

1001    DO 1 k = 1,n
1       X(k)= Q + Y(k) * (R * ZX(k+10) + T * ZX(k+11))

c

Livermore loop #1  

http://www.netlib.org/benchmark/livermore

http://www.netlib.org/benchmark/livermore
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A more modernrnel

1000 line kernel, not shown



Outline

tǊƻƎǊŀƳƳŜǊΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ƳƻŘŜƭ

Vector processors and auto-vectorization

GPUs and fine-grained SPMD (Single program, multiple data)

Multi-core CPUs and work-stealing

FPGAs and systolic algorithms

20May 13, 2019



May 13, 2019 21

Hot Chips 2017
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Matt Pharr:  Bring GPU model to CPU
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Performance Portability?
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Price, et al.  ISC High Performance Workshop,  2017

May 13, 2019



Performance Portability?
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Price, et al.  ISC High Performance Workshop,  2017
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More challenging example: molecular dynamics
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For each timestep    // sequential 

For each atom A  // can be parallel 

Compute forces on A from all other atoms

Move A

record statistics N**2

Use force cutoff distance 
to avoid N**2 behavior
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for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
qtmp = q[i]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];

for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_lj = special_lj[sbmask(j)];
factor_coul = special_coul[sbmask(j)];
j &= NEIGHMASK;

delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;

if (rsq < cut_bothsq) {
// MATH
f_x += delx*fpair; f_y += dely*fpair; f_z += delz*fpair;
if (newton_pair) {

f[j][0] - = delx*fpair; f[j][1] - = dely*fpair; f[j][2] - = delz*fpair;
}

}
}
f[i][0] += f_x; f[i][1] += f_y; f[i][2] += f_z;
f_x = f_y = f_z = 0.0;

}

CHARMM (Bio) Force-Field from Baseline LAMMPS

Loop over local atoms

Loop over neighbors

j atom data not usually 
contiguous in memory

bŜǿǘƻƴΩǎ оrd: Force 
calculated once for 
each pair and updated 
for both atoms in 
memory.  Introduces a 
race condition in the 
άƛέ ƭƻƻǇΦ
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for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
. . .
for (jj = 0; jj < jnum; jj++) {

j = jlist[jj];
. . .
if (rsq < cut_bothsq) {

. . .
if (newton_pair) {

f[j][0] - = . . .
}

}
}
f[i][0] += . . .

}

CHARMM (Bio) Force-Field from Baseline LAMMPS
Option 1: Innervector, parallel outer, newton_pair == false

Option 2: Outervector, newton_pair == false

Option 3: Privatize, inner vector, parallel outer, newton_pair == true

Option 4: Atomic, inner vector, parallel outer, newton_pair == true
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Intel Threaded Builing Blocks (TBB)
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Tasks, not threads

Over-decompose (parallel 
slack)

Work-stealing for load-
balancing

Adapts to the available 
resources and to the 
workload



Work-stealing scheduler
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Adapted from copyrighted originals developed by Charles E. Leiserson of MIT.


