
Performance Transparency and
Performance Portability

Geoff Lowney

Intel Senior Fellow

1

DHPC++ 2019 Conference
May 13, 2019

May 13, 2019

2

Performance transparency: A programmer can
write a performance-oriented program for a
platform and predict how it will perform.

Performance portability: The program requires
minimal tuning to run with acceptable performance
on a new target.

May 13, 2019

Outline

tǊƻƎǊŀƳƳŜǊΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ƳƻŘŜƭ

Vector processors and auto-vectorization

GPUs and fine-grained SPMD (Single program, multiple data)

Multi-core CPUs and work-stealing

FPGAs and systolic algorithms

3May 13, 2019

tǊƻƎǊŀƳƳŜǊΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ƳƻŘŜƭ

Performance
model

Hardware
PlatformProgram

Language
and
compiler

Compiler
and
runtime

Can the language with the
compiler express the
performance features?

Can the compiler and runtime
map the model to the
hardware?

May 13, 2019 4

Programmer reasons about the performance model to achieve
performance transparency

Hardware
Platform

Performance portability

Performance
model

Hardware
PlatformProgram

May 13, 2019 5

How many changes required to run well on a new platform?

Look back 12 years

6

Learn from GP-GPU. Fine-grained SPMD is the better model for data parallel programming

May 13, 2019

Hot Chips 2007

Two multi-core, multi-threaded, SIMD
architectures

May 13, 2019 7

Hot Chips 2007

8

Remember the 100x GPU vs CPU Myth

May 13, 2019

In the summer of 2007, a visiting student, Su Xiaoke,

worked with me to investigate the performance of NVIDIA

GPUs on a LIBOR market model Monte Carlo application.

Using an NVIDIA 8800 GTX graphics card with 128

cores, we achieved a speedup of over 100 relative to a

single Xeon core.

http://people.maths.ox.ac.uk/~gilesm/cuda_old.htmlProfessor Mike Giles

http://people.maths.ox.ac.uk/~gilesm/cuda_old.html

LIBOR loop nest

9

for (path=0; path<npath; path++) {
...

for(n=0; n<Nmat; n++) {
...
for (i=n+1; i<N; i++) {

lam = lambda[i - n- 1];
con1 = delta*lam;
v += (con1*L[i])/(1.0+delta*L[i]);
vrat = exp(con1*v + lam*(sqez - 0.5*con1));
L[i] = L[i]*vrat;

}
...

}
}

Inner loop
sequential

Outer loop
parallel

May 13, 2019

Simple mapping to CUDA

10

...

for(n=0; n<Nmat; n++) {
...
for (i=n+1; i<N; i++) {

lam = lambda[i - n- 1];
con1 = delta*lam;
v += (con1*L[i])/(1.0+delta*L[i]);
vrat = exp(con1*v + lam*(sqez - 0.5*con1));
L[i] = L[i]*vrat;

}
...

}

}

Pathcalc_Portfolio_KernelGPU2<<<dimGrid, dimBlock>>>(d_v);

_global__ void Pathcalc_Portfolio_KernelGPU2(float *d_v) {

Kernel essentially
unchanged

Replace outer loop with kernel
invocation from the host

May 13, 2019

Similar solutions today in OpenMP and SYCL

11

#pragma omp parallel for simd
for (path=0; path<npath; path++) {

...
for(n=0; n<Nmat; n++) {

...
for (i=n+1; i<N; i++) {

lam = lambda[i - n- 1];
con1 = delta*lam;
v += (con1*L[i])/(1.0+delta*L[i]);
vrat = exp(con1*v + lam*(sqez - 0.5*con1));
L[i] = L[i]*vrat;

}
...

}

}

Q.parallel_for<class m >(
range<1>(npath),
[=](id<1> path) {

...
for(n=0; n<Nmat; n++) {

...
for (i=n+1; i<N; i++) {

lam = lambda[i - n- 1];
con1 = delta*lam;
v += (con1*L[i])/(1.0+delta*L[i]);
vrat = exp(con1*v + lam*(sqez - 0.5*con1));
L[i] = L[i]*vrat;

}
...

}

}

Performance portability across platforms with SPMD
May 13, 2019

Outline

tǊƻƎǊŀƳƳŜǊΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ƳƻŘŜƭ

Vector processors and auto-vectorization

GPUs and fine-grained SPMD (Single program, multiple data)

Multi-core CPUs and work-stealing

FPGAs and systolic algorithms

12May 13, 2019

Cray vector machines

13

DO 10 I = 1,N
10 Y(I) = Y(I) + A*X(I)

VLD v1, X(I) ; load 64 elements
VLD v2, Y(I) ; load 64 elements
VMUL v1,r1,v1 ; A*X(I:I+63)
VADD v3, v2, v1 ; Y(I:I+63) + V1
VST V3, Y(I) ; store 64 elements
ADD I,I,64 ; increment
CMP
Br

Instruction set with vectors

A vector register holds 64 64b floating point
numbers

Gaussian elimination

Cray 1 1976
Cray XMP 1982

Pipelined, not SIMD

May 13, 2019

Simple performance model

14

DO I = 1,N
A(I) = 3.0*A(I) + (2.0+B(I)) * C(I)

May 13, 2019
Levesque, A Guidebook to Fortran on Supercomputers

Simple performance model

15

DO I = 1,N
A(I) = 3.0*A(I) + (2.0+B(I)) * C(I)

May 13, 2019
Levesque, A Guidebook to Fortran on Supercomputers

Programmers model:
Inner-loop auto-vectorization,
performance meaured in
chimes.

Programmers learn to write loops
that can be vectorized by the
compiler.

Similar to RISC pipeline

16

LD A(1) - >r1
LD A(2) Ąr2

LD B(1) - >r3
LD B(2) - >r4

FADD 2.0, r1 - >r5
FADD 2.0, r2 - >r7

FMUL 3.0,r3 - >r8
FMUL 3.0,r4 - >r9

LD C(1) - >R10
LD C(2) - >R11

Dual issue RISC pipeline

Performance portability with compiler optimization of inner loops

May 13, 2019

DO I = 1,N
A(I) = 3.0*A(I) + (2.0+B(I)) * C(I)

auto-vectorization becomes
software pipelining

Programmers model is essentially
the same.

Inner loops are not enough for SIMD

May 13, 2019 17

0.001

0.01

0.1

1

10

100

1000

10000

1975 1980 1985 1990 1995 2000 2005 2010 2015

Cray 1

Intel x86 FLOPS/Cycle

18 May 13, 2019

c
c***
c*** KERNEL 1 HYDRO FRAGMENT
c***
c
cdir$ ivdep

1001 DO 1 k = 1,n
1 X(k)= Q + Y(k) * (R * ZX(k+10) + T * ZX(k+11))

c

Livermore loop #1

http://www.netlib.org/benchmark/livermore

http://www.netlib.org/benchmark/livermore

May 13, 2019 19

A more modernrnel

1000 line kernel, not shown

Outline

tǊƻƎǊŀƳƳŜǊΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ƳƻŘŜƭ

Vector processors and auto-vectorization

GPUs and fine-grained SPMD (Single program, multiple data)

Multi-core CPUs and work-stealing

FPGAs and systolic algorithms

20May 13, 2019

May 13, 2019 21

Hot Chips 2017

22

Matt Pharr: Bring GPU model to CPU

May 13, 2019

Performance Portability?

23
Price, et al. ISC High Performance Workshop, 2017

May 13, 2019

Performance Portability?

24
Price, et al. ISC High Performance Workshop, 2017

May 13, 2019

More challenging example: molecular dynamics

May 13, 2019 25

For each timestep // sequential

For each atom A // can be parallel

Compute forces on A from all other atoms

Move A

record statistics N**2

Use force cutoff distance
to avoid N**2 behavior

May 13, 2019 26

for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
qtmp = q[i]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];

for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_lj = special_lj[sbmask(j)];
factor_coul = special_coul[sbmask(j)];
j &= NEIGHMASK;

delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;

if (rsq < cut_bothsq) {
// MATH
f_x += delx*fpair; f_y += dely*fpair; f_z += delz*fpair;
if (newton_pair) {

f[j][0] - = delx*fpair; f[j][1] - = dely*fpair; f[j][2] - = delz*fpair;
}

}
}
f[i][0] += f_x; f[i][1] += f_y; f[i][2] += f_z;
f_x = f_y = f_z = 0.0;

}

CHARMM (Bio) Force-Field from Baseline LAMMPS

Loop over local atoms

Loop over neighbors

j atom data not usually
contiguous in memory

bŜǿǘƻƴΩǎ оrd: Force
calculated once for
each pair and updated
for both atoms in
memory. Introduces a
race condition in the
άƛέ ƭƻƻǇΦ

May 13, 2019 27

for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
. . .
for (jj = 0; jj < jnum; jj++) {

j = jlist[jj];
. . .
if (rsq < cut_bothsq) {

. . .
if (newton_pair) {

f[j][0] - = . . .
}

}
}
f[i][0] += . . .

}

CHARMM (Bio) Force-Field from Baseline LAMMPS
Option 1: Innervector, parallel outer, newton_pair == false

Option 2: Outervector, newton_pair == false

Option 3: Privatize, inner vector, parallel outer, newton_pair == true

Option 4: Atomic, inner vector, parallel outer, newton_pair == true

Outline

tǊƻƎǊŀƳƳŜǊΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ƳƻŘŜƭ

Vector processors and auto-vectorization

GPUs and fine-grained SPMD (Single program, multiple data)

Multi-core CPUs and work-stealing

FPGAs and systolic algorithms

28May 13, 2019

Intel Threaded Builing Blocks (TBB)

May 13, 2019
29

Tasks, not threads

Over-decompose (parallel
slack)

Work-stealing for load-
balancing

Adapts to the available
resources and to the
workload

Work-stealing scheduler

May 13, 2019 30
Adapted from copyrighted originals developed by Charles E. Leiserson of MIT.

