

OpenCL and Ecosystem State of the Nation Neil Trevett | Khronos President NVIDIA Vice President Developer Ecosystem OpenCL Working Group Chair <u>ntrevett@nvidia.com</u> | @neilt3d Oxford, May 2018

State of the OpenCL Nation

OpenCL is needed by the industry and widely used Unique framework for portable heterogeneous programming Significant work in OpenCL 2.2 maintenance release - here at IWOCL! Growing interest in SYCL, SPIR-V and related tools

Focus on Increasing Deployment Flexibility Enable OpenCL implementations on diverse processors and platforms Streamline deployment of safety critical systems Enable OpenCL applications to run on additional run-times

BUT OpenCL Faces Deployment Friction

OpenCL 1.2 remains the widely adopted baseline - slow adoption of 2.X Vital platforms such as Android do not have official OpenCL Many embedded processors are locked out from OpenCL conformance

OpenCL Evolution

OpenCL

2011

OpenCL 1.2

Becomes industry baseline for heterogeneous parallel computing

S O N N

2

ΗX

OpenCL 2.0

Enables new class of hardware SVM Generic Addresses On-device dispatch

SPIR-V 1.1 in Core Kernel Language

OpenCL

2015

OpenCL 2.1

SPIR-V 1.0

SPIR.

Flexibility

OpenCL C++ Kernel Language Static subset of C++14 Templates and Lambdas

SPIR-V 1.2 in Core OpenCL C++ support

Pipes Efficient device-scope communication between kernels

OpenCL 2.2 Maintenance Release

- Fully backwards compatible
 - 30+ bug fixes and clarifications
 - Including public GitHub issue fixes thank you to those who logged bugs!
- Updated and open-sourced the OpenCL C programming language spec
 - Now possible to make pull requests for it just like OpenCL API and C++ specs
 - Same look-and-feel as the other specs
- Converted the spec toolchain from AsciiDoc to AsciiDoctor
 - Same toolchain that is used by many other Khronos specs
 - Updated specs should be easier to read and to navigate
- OpenCL SPIR-V environment specification has been improved
 - Much easier for SPIR-V generators to know what is legal SPIR-V for OpenCL
- Unified headers
 - Use same headers to target any OpenCL version or to use any OpenCL extension

New Open Source Engagement Model

- Khronos is open sourcing specification sources, conformance tests, tools
 - Merge requests welcome from the community (subject to review by OpenCL working group)
- Deeper Community Enablement
 - Mix your own documentation!
 - Contribute and fix conformance tests
 - Fix the specification, headers, ICD etc.
 - Contribute new features (carefully)

Conformance

Test Suite Source

Anyone can test any

implementation at

any time

S O N N 2 Т

© Copyright Khronos[™] Group 2018 - Page 5

Growing OpenCL Adoption

- 100s of applications using OpenCL acceleration
 - Rendering, visualization, video editing, simulation, image processing
- Almost 6,000 GitHub repositories using OpenCL
 - Tools, applications, libraries, languages
 - Up from 4310 one year ago
- Khronos Resource Hub

https://www.khronos.org/opencl/resources/opencl-applications-using-opencl

Languages

Python

HTML

Java

C#

Shell

CSS

JavaScript

1,837

1,064

287

282

265

171

147

108

86

68

Repositories	5K	5,733 repository results				
Code	1M					
Commits	307K	ethereum-mining/ethminer Ethereum miner with OpenCL, CUDA and stratum support				
Issues	39К					
Topics	39	GPL-3.0 license Updated a day ago 1 issue needs help				
Wikis	4K					

© Copyright Khronos[™] Group 2018 - Page 6

OpenCL as Language/Library Backend

S O N N

H RO

 $\mathbf{\mathbf{x}}$

້ທຼ

0° 2°

2

Т

© Copyright Khronos[™] Group 2018 - Page 8

Understanding OpenCL Adoption Patterns

OpenCL 1.2 remains the widely-supported industry baseline

SVM in 2.0 is problematic for non-unified memory - e.g. discrete GPUs SVM in 2.0 is easier on mobile with shared memory Some 2.0 features are less 'controversial' and shipping more widely

No OpenCL 2.2 Yet?

12-18 months between spec and first implementations are common Don't panic - OpenCL 2.1 implementations are not late yet SPIR-V front-ends and tools maturing C++ comes 'for free' with SPIR-V 1.2 ingestion OR Is C++ interesting to kernel developers? Or is single source file, SYCL-style, where C++ interest is?

Only High-end DSPs

Smaller DSPs do not have 32-bit FP - mandated for conformance Optimized vision and inferencing engines are 'locked out'

SPIR-V Transforms the Language Ecosystem

- First multi-API, intermediate language for parallel compute and graphics
 - Natively represents structures in shader and kernel languages
 - <u>https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf</u>
- Compiler IR for OpenCL, Vulkan and OpenGL
 - Easy to parse just a stream of words
 - Easy to transform designed to be easy to convert to and from LLVM IR
 - Easy to manipulate and optimize Static Single Assignment form

Multiple Developer Advantages Use same front-end compiler for all platforms Ship SPIR-V - not shader source code Simpler and more reliable drivers Reduces runtime kernel compilation time

Support for Both SPIR-V and LLVM

- LLVM is an SDK, not a formally defined standard
 - Khronos moved away from trying to use LLVM IR as a standard
 - Issues with versioning, metadata, etc.
- But LLVM is a treasure chest of useful transforms
 - SPIR-V tools can use encapsulation and use LLVM to do useful SPIR-V transforms
- SPIR-V tools can all use different rules and there will be lots of these
 - May be lossy and only support SPIR-V subsets
 - Internal form is not standardized
 - May hide LLVM version, metadata

K H R N N O S

Evolution of SPIR Family

SPIR.	SPIR 1.2	SPIR 2.0	SPIR-V 1.X
LLVM Interaction	Uses LLVM 3.2	Uses LLVM 3.4	100% Khronos defined Round-trip lossless conversion
Compute Constructs	Metadata/Intrinsics	Metadata/Intrinsics	Native
Graphics Constructs	No	No	Native
Supported Language Feature Sets	OpenCL C 1.2	OpenCL C 1.2 OpenCL C 2.0	OpenCL C 1.2 / 2.X OpenCL C++ GLSL HLSL
OpenCL Ingestion	OpenCL 1.2 Extension	OpenCL 2.0 Extension	OpenCL 2.1/2.2 Core
Graphics API Ingestion	-	-	Vulkan and OpenGL 4.6 Core

SPIR-V defines supported subsets for each 'host' API through 'environment specs'

OpenCL Tooling Ecosystem Subgroup

- Coordinating SPIR-V and LLVM ecosystems
 - Encouraging joint development of new features and tool integration
- New common SPIRV<->LLVM translator repo w/o using LLVM tree
 - Extending SPIRV<->LLVM translation, including for Vulkan over time
 - <u>https://github.com/KhronosGroup/SPIRV-LLVM-Translator</u>
- Support SPIR-V as Clang Backend
 - Upstream SPIR-V translation to Clang/LLVM & adding target triple
 - Define set of use cases for OpenCL in Clang (build, link, create libs)
 - Leverage and re-use SPIR-V linker/opt/validator Tools
- Improving documentation

S O N N

2

Т

- SPIR-V friendly format of LLVM IR

OpenCL Ecosystem Roadmap

SYCL Ecosystem

- Single-source heterogeneous programming using STANDARD C++
 - Use C++ templates and lambda functions for host & device code
 - Layered over OpenCL
- Fast and powerful path for bring C++ apps and libraries to OpenCL
 - C++ Kernel Fusion better performance on complex software than hand-coding
 - SYCLBLAS, SYCL Eigen, SYCL TensorFlow, SYCL DNN, SYCL GTX, VisionCpp,
 - C++17 Parallel STL hosted by Khronos
 - C++20 Parallel STL with Ranges
- Implementations

S O N N

2 2 2

Т

- triSYCL, ComputeCpp, ComputeCpp SDK ...
- More information at <u>http://sycl.tech</u>

SYCL Roadmap

- SYCL 1.2.1 Ratified
 - CTS and Adopters package in progress
- SYCL 2.2 Provisional Released
 - Launched in parallel with OpenCL 2.2 to enables device capabilities from a single source file
 - Shared virtual memory, generic pointers and device-side enqueue etc.
 - Vehicle to align with C++20 and beyond
- Roadmap

S O N N

H RO

- Tighter ISO C++ alignment in parallel injecting our heterogeneous knowledge into ISO and adapting C++ features
- More regular releases ~aiming at 1.5 years per release
- Naming convention adapted to SYCLxxxx where xxxx=year of ratification
- Focus on Machine learning and Vision processing
 - For self-driving cars, SYCL TensorFlow, SYCL DNN
- SYCL Safety Critical
 - Demanded by Embedded Market customers
 - Especially Advanced Driver Assist Systems (ADAS)

Developer Choice

The development of the two specifications are aligned so code can be easily shared between the two approaches

C++ Kernel Language Low Level Control 'GPGPU'-style separation of device-side kernel source code and host code

Single-source C++ Programmer Familiarity Approach also taken by C++ AMP and OpenMP

Vulkan and New Generation GPU APIs

S O N N

Ŕ

Т

Non-proprietary, royalty-free open standard 'By the industry for the industry' Portable across multiple platforms - desktop and mobile Modern architecture | Low overhead | Multi-thread friendly EXPLICIT GPU access for EFFICIENT, LOW-LATENCY, PREDICTABLE performance

Vulkan is available on Android 7.0+

Pervasive Vulkan 1.0

S O N N

K H R

© Copyright Khronos[™] Group 2018 - Page 19

Vulkan 1.1 Launch and Ongoing Momentum

Strengthening the Ecosystem

Improved developer tools (SDK, validation/debug layers) More rigorous conformance testing Shader toolchain improvements (size, speed, robustness) Shading language flexibility - HLSL and OpenCL C support Vulkan Public Ecosystem Forum

February 2016 Vulkan 1.0 Explicit Access to GPU Acceleration

S O N N

Ŕ

Т

Vulkan 1.0 Extensions Maintenance updates plus additional functionality

Explicit Building Blocks for VR Explicit Building Blocks for Homogeneous Multi-GPU Enhanced Windows System Integration Increased Shading Language Flexibility Enhanced Cross-Process and Cross-API Sharing

March 2018 Vulkan 1.1 Integration of Proven and New Technology into Core

Building Vulkan's Future

Deliver complete ecosystem - not just specs Listen and prioritize developer needs Drive GPU technology

Widening Platform Support

Pervasive GPU vendor driver availability Port Vulkan apps to macOS/iOS and DX12 Open source drivers Vulkan 1.1 specification launched March 7th with open source conformance tests and tools, and multiple vendor implementations!

Bringing Vulkan 1.0 Apps to Apple Platforms

Vulkan Portability Initiative

K H R N N O S

Clspv OpenCL C to Vulkan Compiler

- Experimental collaboration between Google, Codeplay, and Adobe
 - Successfully tested on over 200K lines of Adobe OpenCL C production code
 - Open source tracks top-of-tree LLVM and clang, not a fork
- Compiles OpenCL C to Vulkan's SPIR-V execution environment

S O N N

C) 2

I

- Proof-of-concept that OpenCL kernels can be brought seamlessly to Vulkan
- Significant parts OpenCL C 1.2 so far shaped by submitted workloads

Google

Adobe

() codeplay[®]

Clspv Project Next Steps

The Clspv Process

- Try porting apps from OpenCL-native domains to Vulkan
- Use Clspv to port OpenCL kernels to Vulkan compute shaders
- Where compiler can't cover the difference, propose or support updates to the underlying Vulkan programming model e.g. 16-bit storage, Variable Pointers, Subgroups
- Clspv is being shaped and exercised by the workloads attempted
 - Try yours kernels!
- Do we need OpenCL to Vulkan API shim?
 - Khronos can host an open source project
- Possible domains to explore:
 - Existing OpenCL applications and libraries
 - Vision processing pipelines
 - Power-efficient machine learning and inferencing
 - Even gaming can benefit from better compute
 - e.g. HPG/SIGGRAPH 2016/17 talks
 - Andrew Lauritzen's talk @ Open Problems in Real-Time Rendering, SIGGRAPH'17

Compact memory types and operations

© Copyright Khronos[™] Group 2018 - Page 24

Embedded Processors & OpenCL Conformance

- The embedded market is a new frontier needing advanced compute
 - E.g. Vision and inferencing using a wide range of processor architectures
- BUT OpenCL is currently monolithic and arguably desktop/HPC-centric
 - E.g. a processor without 32-bit IEEE floating point cannot realistically be conformant
 - Vendors and developers do not want software emulation of higher precisions
- Many functionality requirements change between different markets and processors

OpenCL is disenfranchising one of its most important emerging market opportunities

S O N N

Т

Supported Precisions	DSP A	DSP B	DSP C
8-bit int	\checkmark	\checkmark	\checkmark
16-bit int	\checkmark	\checkmark	\checkmark
32-bit int	\checkmark	\checkmark	\checkmark
64-bit int	X	\checkmark	X
16-bit float	X	\checkmark	\checkmark
32-bit float	X	X	\checkmark
64-bit float	X	X	X
Possible to be OpenCL Compliant?	No	No	Yes

OpenCL Next Goals and Philosophy

- Enable *Conformant* OpenCL implementations on diverse processors and platforms
 - Enable vendors to ship functionality targeted for their customers/markets
- More implementation flexibility more OpenCL features become optional
 - Features can become optional in both API and languages
 - E.g. floating point precisions
- Enable incremental feature adoption
 - A conformant OpenCL can expose *precisely* what is available in the hardware
- Enhanced query mechanisms
 - So that application can query precisely which features are supported by a device
 - In addition to existing profiles, no changes for existing applications

Enable OpenCL to be a flexible run-time framework that can be cost-effectively deployed across a wide range of heterogeneous devices

OpenCL Next Feature Sets

S O N N

2 2 2

I

- Vendor can support ANY combination of features to suit their hardware/market
 - If all exposed features are conformant the implementation is conformant
- Existing profiles not going away! Khronos defined feature set alternatives
 - No reason for vendors to remove functionality as would break applications
- Opportunity to coalesce industry support around market-focused feature sets
 - Khronos aiming to provide the infrastructure for the industry

OpenCL Next Feature Set Discussion

• We need your input!

- Brainstorm discussions below!
- Industry-defined sets to reduce market fragmentation
 - Who should define these how reach consensus? Not Khronos?
 - Vertical market focused e.g. inferencing, vision processing?
 - Opportunity to move past the current 1.2 logjam OpenCL 1.2++ Desktop Feature Set?
- Feature Set Conformance providing an incentive to reduce fragmentation
 - If 100% of features pass all tests vendor can claim conformance to that Feature Set
 - Supporting popular Feature Sets may help drive sales
 - An implementation may support multiple Feature Sets

Safety Critical APIs - Khronos Experience

Khronos Safety Critical Advisory Forum

Khronos SC Activities

OpenCL SC TSG Working on OpenCL SC Gathering requirements

SYCE SC

Guidelines to augment Industry First Safe and Secure Parallel and Heterogeneous C++ Safe AI for Automotive

OpenVX SC 1.1 - May 2017 Restricted "deployment" implementation only executes precompiled binary format

and cooperation

Industry outreach

AESIN Automotive ADAS & AV + security https://aesin.org.uk

MISRA C++

C++ WG23 Programming Vulnerabilities ISO C Safe and Secure SG ISO C++ Vulnerabilities Safety Critical SG

KHRONOS SAFETY CRITICAL ADVISORY FORUM

Generate guidelines for designing safety critical APIs to ease system certification. Open to Khronos member AND industry experts https://www.khronos.org/advisors/kscaf

We are inviting safety critical experts to join KSCAF! No cost or work commitment

ູ່

0° 2°

Khronos Advisory Panels

The Working Group invites input and shares draft specifications and other materials

Members Companies pay membership Fee Sign NDA and IP Framework + Membership Directly participate in working groups Advisors Individuals Pay \$0 Sign NDA and IP Framework Provide requirements and feedback on spec drafts

Advisory Panel membership is 'By Invitation' and renewed annually. No 'minimum workload' commitment - but we love input and feedback! Please reach out if you wish to participate!

Get Involved!

- OpenCL is driving to new levels of deployment flexibility
 - We need to know what you need from OpenCL
 - IWOCL is the perfect opportunity to find out!
- In particular we need input and direction on OpenCL Next and Feature Sets
 - Let us know what you think!
- Any company or organization is welcome to join Khronos
 - For a voice and a vote in any of these standards www.khronos.org
 - Or ask about joining the OpenCL Advisory Panel as an individual
 - Or ask about joining KSCAF if you are involved in Safety Critical development
- Neil Trevett

S O N N

H RO

- ntrevett@nvidia.com
- @neilt3d

