Advantages and pitfalls of OpenCL in computational physics

K. Ostaszewski, P. Heinisch, H. Ranocha
Computational Physics

• Very few physical problems can be solved analytically due to
 • Complexity,
 • Lack of algebraic solvability.
• Numerical approximations are required.
• Fields of application:
 • Plasmaphysics (Fusion, Astrophysics, industrial plasmas),
 • Weather prediction,
 • Solid state physics, etc.
Computational Physics

- Overlap of physics, applied mathematics and computer science.

- Different fields constrain each other.
Motivation

- Legacy Plasmacode (A.I.K.E.F) used for different NASA/ESA missions.
- Parallelized with MPI (CPU based).
- Limits in scalability and resources reached.
Plasmaphysics

- Different models to describe a plasma: Fluid-Model, Hybrid-Model, Particle-in-Cell (PiC).
- Need to describe particles and electromagnetic fields.
- Hybrid-Model includes the following mathematical problems:
 - Systems of linear equations,
 - Ordinary/partial differential equations,
 - N-Body interactions.
Simulation Approach

- Usual approach is to combine a global inter-node based MPI parallelization with a local OpenMP parallelization.
- Developed for deployment on clusters (HLRN,...)
- Substitute OpenMP with OpenCL
Simulation Approach

- Usual approach is to combine a global inter-node based MPI parallelization with a local OpenMP parallelization.
- Developed for deployment on clusters (HLRN, ...)
- Substitute OpenMP with OpenCL
Advantages and pitfalls

Advantages of OpenCL

- Deployment on heterogenous systems (portability),
- Runtime advantage by using GPUs,
- Easy testing/changing of numerical submodules (Python, Oclgrind, MatCL),
Advantages and pitfalls

Advantages of OpenCL

- Deployment on heterogenous systems (portability),
- Runtime advantage by using GPUs,
- Easy testing of numerical submodules (MatCL),

```c
convec.x = d_field_b_old[idx].x*(d_field_u[increment x(idx,1)].x - d_field_u[increment x(idx,-1)].x)/(2.0f*(REAL)DX)
+d_field_b_old[idx].y*(d_field_u[increment y(idx,1)].x - d_field_u[increment y(idx,-1)].x)/(2.0f*(REAL)DY))
-0.5*d_field_b_old[idx].x*(d_field_u[increment x(idx,1)].x - d_field_u[increment x(idx,-1)].x)/(2.0f*(REAL)DX)
+d_field_u[increment y(idx,1)].y - d_field_u[increment y(idx,-1)].y)/(2.0f*(REAL)DY))
-0.5*(d_field_u[idx].x*d_field_b_old[increment x(idx,1)].x - d_field_b_old[increment x(idx,-1)].x)/(2.0f*(REAL)DX)
+d_field_u[idx].y*(d_field_b_old[increment y(idx,1)].x - d_field_b_old[increment y(idx,-1)].x)/(2.0f*(REAL)DY))
-0.5*(d_field_u[increment x(idx,1)].x*d_field_b_old[increment x(idx,-1)].x - d_field_b_old[increment x(idx,-1)].x)/(2.0f*(REAL)DX)
+d_field_u[increment y(idx,1)].y - d_field_u[increment y(idx,-1)].y)/(2.0f*(REAL)DY))
```

```c
convec.y = d_field_b_old[idx].x*(d_field_u[increment x(idx,1)].y - d_field_u[increment x(idx,-1)].y)/(2.0f*(REAL)DX)
+d_field_b_old[idx].y*(d_field_u[increment y(idx,1)].y - d_field_u[increment y(idx,-1)].y)/(2.0f*(REAL)DY))
-0.5*d_field_b_old[idx].x*(d_field_u[increment x(idx,1)].y - d_field_u[increment x(idx,-1)].y)/(2.0f*(REAL)DX)
+d_field_u[increment y(idx,1)].y - d_field_u[increment y(idx,-1)].y)/(2.0f*(REAL)DY))
-0.5*(d_field_u[increment x(idx,1)].x*d_field_b_old[increment x(idx,-1)].y - d_field_b_old[increment x(idx,-1)].y)/(2.0f*(REAL)DX)
+d_field_u[increment y(idx,1)].y - d_field_u[increment y(idx,-1)].y)/(2.0f*(REAL)DY))
-0.5*(d_field_u[increment x(idx,1)].x*d_field_b_old[increment x(idx,-1)].y - d_field_b_old[increment x(idx,-1)].y)/(2.0f*(REAL)DX)
+d_field_u[increment y(idx,1)].y - d_field_u[increment y(idx,-1)].y)/(2.0f*(REAL)DY));
```
Advantages and pitfalls

Pitfalls of OpenCL

- Copy overhead serious bottleneck,

- Lack of debugging capability (e.g. no buffer overflow check),

- Documentation/examples lacking.
Partial Differential Equations

- Most simulation codes involve solving of differential equations on a discretized grid:

\[
\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}
\]

\[
\nabla \times \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}
\]

- Discretization schema influences physical properties of solution.
 - Trade of between accuracy and computational cost!
Example: Partial Differential Equations

- Example: Frozen-in-Theorem

\[\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{u} \times \vec{B}) \]

B: Magnetic field
\(\vec{u} \): Fluid velocity

- Solution will rotate around middle of the box.
Example: Partial Differential Equations

- Solver 2nd Order

- Solver 4th Order
Example: Partial Differential Equations

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>Performance penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU</td>
<td>CPU</td>
</tr>
<tr>
<td>50x50x50</td>
<td>0.78</td>
</tr>
<tr>
<td>100x100x100</td>
<td>0.95</td>
</tr>
<tr>
<td>150x150x150</td>
<td>1.11</td>
</tr>
<tr>
<td>200x200x200</td>
<td>1.21</td>
</tr>
</tbody>
</table>
Particle to Grid Reduction

- Sum up all particle on next node.
- Needed to describe the interaction between electromagnetic fields and particles.
- Naive approach: add up all particles using atomics.
Particle to Grid Reduction

50x50x50 Nodes

100x100x100 Nodes

150x150x150 Nodes

200x200x200 Nodes
Particle to Grid Reduction

- Problem also encountered in gravitational N-Body simulations.

- Solution available, but they depend on GPU architecture → loss of portability.

- FPGAs perfect for this kind of task → limited availability.
Conclusion

- OpenCL offers many advantages in computational science.
 - deployment on heterogenous systems,
 - separation between "physics" and (architecture dependent) host code.
- But it is difficult getting started:
 - lack of documentation/examples,
 - limited debug possibilities.
Systems of linear Equations

- Systems of linear equations are used in:
 - solving of implicit differential equations,
 - inverse kinematics,
 - computer vision (OpenCV).

- Common methods:
 - Gauß-Seidel-Methods (SOR,...),
 - Conjugate Gradient Method (CG),
 - Cholesky-Method.
System of linear Equations

50x50x50 Nodes

100x100x100 Nodes

150x150x150 Nodes

200x200x200 Nodes