
Debugging and Analyzing Programs using the
Intercept Layer for OpenCL™ Applications
Ben Ashbaugh

IWOCL 2018

https://github.com/intel/opencl-intercept-layer

https://github.com/intel/opencl-intercept-layer

Why am I here?

2

Intercept Layer for OpenCL Applications

 Debug and Analyze OpenCL Applications

 Open Source, Permissive License

 Works with Any* OpenCL Implementation

 Requires No Application Modifications

 Thin, Fast, Easy to Install / Uninstall

 Community Contributions are Welcome and
Encouraged!

Develop Fast OpenCL Code, Faster!

Agenda

3

History

How it Works

What it Can Do

Implementation Details

Possible Next Steps

Wrap Up

Intel Technology

History
(2009-Present)

4

Initial Requests:

5

One week later…

I’m debugging an application. Can you modify

the driver to print the OpenCL APIs that are

called?

Yeah, no problem.

Can you print the API arguments too?

Sure, I think we can add that.

More requests:

6

I’m debugging the GPU compiler. Can you modify

the driver to dump OpenCL kernels to a file?

Yeah, that’s not too hard.

Great.

Can you also make it work for the

CPU OpenCL implementation?

I’m not sure – I think so?

Fantastic. Can you make it work

for [third party competitor]?

Meanwhile:

Our Driver Team was also adding

instrumentation:

 Flush or Finish After Enqueue

 Assert on OpenCL Errors

 Timing API Calls

 More …

But:

 Required driver modifications!

7

Is there a better way to add these capabilities?

Prior Work from Graphics APIs:

8

Can we build something similar for OpenCL?

Intel Technology

How It Works

9

Intercept Layer for OpenCL Applications

10

Architecture: How it Works*:

 Inserts between Application and OpenCL ICD Loader

 Constructs Dispatch Table During Initialization

 Passes Through API Calls… or not!

Philosophies:

 Focus on Features that Solve Problems

 For OpenCL Implementers

 For OpenCL Developers

 Support Any OpenCL Device on Any Platform

 Be Invisible By Default

Application

OpenCL ICD

Loader

One OpenCL

Implementation

Another OpenCL

Implementation

Intercept Layer For

OpenCL Application

via dynamically constructed

dispatch table

* Typical usage on Windows and Linux, OSX is a little different.

Intel Technology

What It Can Do - Examples

11

Call and Error Logging

12

>>>> clGetPlatformIDs

<<<< clGetPlatformIDs

>>>> clGetPlatformIDs

<<<< clGetPlatformIDs

>>>> clGetDeviceIDs: platform = [NVIDIA CUDA], device_type = CL_DEVICE_TYPE_ALL (FFFFFFFF)

<<<< clGetDeviceIDs

>>>> clGetDeviceIDs: platform = [Intel(R) OpenCL], device_type = CL_DEVICE_TYPE_ALL (FFFFFFFF)

<<<< clGetDeviceIDs

>>>> clCreateContextFromType: properties = [CL_CONTEXT_PLATFORM = Intel(R) OpenCL], ...

ERROR! clCreateContextFromType returned CL_DEVICE_NOT_FOUND (-1)

<<<< clCreateContextFromType: returned 00000000

>>>> clCreateContextFromType: properties = [CL_CONTEXT_PLATFORM = Intel(R) OpenCL], ...

<<<< clCreateContextFromType: returned 00E97068

>>>> clGetContextInfo: param_name = CL_CONTEXT_DEVICES (00001081)

<<<< clGetContextInfo

>>>> clGetContextInfo: param_name = CL_CONTEXT_DEVICES (00001081)

<<<< clGetContextInfo

>>>> clCreateCommandQueue: device = [Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz (CL_DEVICE_TYPE_CPU)]

<<<< clCreateCommandQueue: returned 05B038F8

>>>> clGetContextInfo: param_name = CL_CONTEXT_DEVICES (00001081)

<<<< clGetContextInfo

>>>> clGetContextInfo: param_name = CL_CONTEXT_DEVICES (00001081)

<<<< clGetContextInfo

>>>> clCreateProgramWithSource: context = 00E97068, count = 1

<<<< clCreateProgramWithSource: returned 04572EA8, program number = 0000

Dumping Program Source

13

Can also Modify and/or Inject Modified Program Source or Binaries!

(and Binaries!)

Host API Performance Timing

14

Host Performance Timing Results:

Function Name, Calls, Average (ns), Min (ns), Max (ns)

clBuildProgram, 3, 711065926, 22172160, 1634864192

clCreateBuffer, 23, 2234125, 2113, 36218573

clCreateCommandQueue, 1, 25054, 25054, 25054

clCreateContext, 1, 123618277, 123618277, 123618277

clCreateImage2D, 2, 8600269, 4682137, 12518402

clCreateKernel, 6, 7898, 2113, 14489

clCreateProgramWithSource, 3, 24551, 4829, 51617

clEnqueueNDRangeKernel(AdvancePaths), 18036, 36967, 22941, 61064301

clEnqueueNDRangeKernel(Init), 1, 7529273, 7529273, 7529273

clEnqueueNDRangeKernel(InitFrameBuffer), 1, 1095145, 1095145, 1095145

clEnqueueNDRangeKernel(Intersect), 18036, 25952, 15998, 24253177

clEnqueueNDRangeKernel(Sampler), 18036, 29856, 15696, 218847

clEnqueueReadBuffer, 2288, 3758695, 123158, 10236648

clFinish, 2, 4723341, 717519, 8729163

clFlush, 18036, 31018, 21432, 374003

clGetDeviceIDs, 4, 1811, 301, 5735

...

Device Command Performance Timing

15

Device Performance Timing Results:

Total Time (ns): 123904875200

Function Name, Calls, Time (ns), Time (%), Average (ns), Min (ns), Max (ns)

AdvancePaths, 18036, 28203368032, 22.76%, 1563726, 1388096, 1761472

Init, 1, 8600000, 0.01%, 8600000, 8600000, 8600000

InitFrameBuffer, 1, 155712, 0.00%, 155712, 155712, 155712

Intersect, 18036, 79765237056, 64.38%, 4422556, 3248832, 5297600

Sampler, 18036, 14307721664, 11.55%, 793286, 75712, 1182400

clEnqueueReadBuffer, 2288, 1619792736, 1.31%, 707951, 39904, 4220992

Performance Timing on VTune

16

and Chrome*

Platform and Device Queries

17

Explore how applications respond to different query responses!

Intel Technology

Implementation Details:
OpenCL API Learnings and Insights

18

OpenCL APIs from a Layering Perspective

19

Most things went really well!

Features that made life easy:

 Built-in Reference Counting and Object Queries

 Standard Event Profiling, Standard Program Binaries

 Online Compilation

Features that made things complicated:

 NULL Local Work Size: Need “what happened” queries!

 Out-of-Order Queues – especially with Device Timing

 Device-side Only Controls (kernel attributes)

 Easier to permute Host-side Controls (build options)

Intel Technology

Intel-Specific Enhancements

20

Intel Specific Enhancement: Driver Diagnostics

21

cl_intel_driver_diagnostics: Intel Extension

 Extends Context Callback to Include GOOD / BAD / INFORMATIONAL Diagnostics

 Use the Intercept Layer for OpenCL Applications to Enable and Log Diagnostics

>>>> clCreateBuffer: flags = CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR (12), ...

=======> Context Callback (private_info = 00AFF728, cb = 4):

Performance hint: clCreateBuffer needs to allocate memory for buffer. For subsequent

operations the buffer will share the same physical memory with CPU.

<======= End of Context Callback

<<<< clCreateBuffer: returned 0573E000

...

>>>> clEnqueueMapBuffer: [map count = 0] queue = 03254850, buffer = 0573E000, ...

=======> Context Callback (private_info = 00AFF214, cb = 4):

Performance hint: clEnqueueMapBuffer call on a buffer 0573E000 will not require any data

copy as buffer shares the same physical memory with CPU.

<======= End of Context Callback

<<<< clEnqueueMapBuffer: [map count = 1] returned 04702000

https://www.khronos.org/registry/OpenCL/extensions/intel/cl_intel_driver_diagnostics.txt

Intel Technology

Future Work

22

Future Work – Short Term

23

Continue to stay use-case driven: How to find bugs and fix them faster?

 Example: OpenCL Object Leak Detection

Improve Usability and Accessibility

Future Work – Longer Term

24

Android Support

Intercept Layer as an ICD: Work with
applications that statically link to the
ICD loader.

Application

OpenCL ICD

Loader

One OpenCL

Implementation

Another OpenCL

Implementation
Intercept Layer For

OpenCL Application

Future Work – Longer Term

25

Log and Analyze Graphs of OpenCL Commands

 Especially Important with Out-of-Order Queues

 Can we plot graphs of commands?

 Can we time device execution of subgraphs?

C

B

A

X

Y

C B X

Barrier

A Y

Future Work – Longer Term

26

Automatic Reproducer Generation

 Very Limited Capture-Playback

 One Kernel + Inputs + Params

 See Fossilize for Vulkan

Speaking of Vulkan...

 Lots of Layer Prior Art

 Steal with Pride?

https://github.com/Themaister/Fossilize

Intel Technology

Wrap Up

27

Summary and Call to Action

28

Try the Intercept Layer for OpenCL Applications!

 Debug and Analyze OpenCL programs faster!

 Send Issues and Pull Requests!

Grow the OpenCL Ecosystem with Layers

 Layers are an important part of the OpenCL ecosystem

To the Khronos OpenCL Working Group: Design the API with layers in mind!

To OpenCL Users: Use layers, evangelize layers, build layers!

Thank you!

 ben.ashbaugh@intel.com

mailto:ben.Ashbaugh@intel.com

Acknowledgements

29

Thanks to Michal Mrozek, Michael Carroll, Mike Kinsner, and Adam Herr for
reviewing these slides.

Thanks to everyone from Intel who has used or contributed to the Intercept
Layer for OpenCL Applications!

Useful Links:

30

Intercept Layer for OpenCL Applications:

https://github.com/intel/opencl-intercept-layer

Vulkan Loader and Layers:

https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers

https://github.com/intel/opencl-intercept-layer
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers

Legal Notice and Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration
will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more
complete information about performance and benchmark results, visit http://www.intel.com/benchmarks.

Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.

© 2018 Intel Corporation.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

* Other names and brands may be claimed as the property of others.

http://www.intel.com/benchmarks

Legal Disclaimer and Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR

OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO

LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS

INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,

MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,

operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information

and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when

combined with other products.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are

trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel

microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the

availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent

optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are

reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.

Notice revision #20110804

32

