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Why am I here?
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Intercept Layer for OpenCL Applications

 Debug and Analyze OpenCL Applications

 Open Source, Permissive License

 Works with Any* OpenCL Implementation

 Requires No Application Modifications

 Thin, Fast, Easy to Install / Uninstall

 Community Contributions are Welcome and 
Encouraged!

Develop Fast OpenCL Code, Faster!



Agenda
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History

How it Works

What it Can Do

Implementation Details

Possible Next Steps

Wrap Up
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History
(2009-Present)
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Initial Requests:
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One week later…

I’m debugging an application.  Can you modify 

the driver to print the OpenCL APIs that are 

called?

Yeah, no problem.

Can you print the API arguments too?

Sure, I think we can add that.



More requests:
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I’m debugging the GPU compiler.  Can you modify 

the driver to dump OpenCL kernels to a file?

Yeah, that’s not too hard.

Great.

Can you also make it work for the 

CPU OpenCL implementation?

I’m not sure – I think so?

Fantastic.  Can you make it work 

for [third party competitor]?



Meanwhile:

Our Driver Team was also adding 

instrumentation:

 Flush or Finish After Enqueue

 Assert on OpenCL Errors

 Timing API Calls

 More …

But:

 Required driver modifications!
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Is there a better way to add these capabilities?



Prior Work from Graphics APIs:
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Can we build something similar for OpenCL?
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How It Works
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Intercept Layer for OpenCL Applications
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Architecture: How it Works*:

 Inserts between Application and OpenCL ICD Loader

 Constructs Dispatch Table During Initialization

 Passes Through API Calls… or not!

Philosophies:

 Focus on Features that Solve Problems

 For OpenCL Implementers

 For OpenCL Developers

 Support Any OpenCL Device on Any Platform

 Be Invisible By Default

Application

OpenCL ICD

Loader

One OpenCL

Implementation

Another OpenCL

Implementation

Intercept Layer For

OpenCL Application

via dynamically constructed

dispatch table

* Typical usage on Windows and Linux, OSX is a little different.
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What It Can Do - Examples
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Call and Error Logging
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>>>> clGetPlatformIDs

<<<< clGetPlatformIDs

>>>> clGetPlatformIDs

<<<< clGetPlatformIDs

>>>> clGetDeviceIDs: platform = [ NVIDIA CUDA ], device_type = CL_DEVICE_TYPE_ALL (FFFFFFFF)

<<<< clGetDeviceIDs

>>>> clGetDeviceIDs: platform = [ Intel(R) OpenCL ], device_type = CL_DEVICE_TYPE_ALL (FFFFFFFF)

<<<< clGetDeviceIDs

>>>> clCreateContextFromType: properties = [ CL_CONTEXT_PLATFORM = Intel(R) OpenCL ], ...

ERROR! clCreateContextFromType returned CL_DEVICE_NOT_FOUND (-1)

<<<< clCreateContextFromType: returned 00000000

>>>> clCreateContextFromType: properties = [ CL_CONTEXT_PLATFORM = Intel(R) OpenCL ], ...

<<<< clCreateContextFromType: returned 00E97068

>>>> clGetContextInfo: param_name = CL_CONTEXT_DEVICES (00001081)

<<<< clGetContextInfo

>>>> clGetContextInfo: param_name = CL_CONTEXT_DEVICES (00001081)

<<<< clGetContextInfo

>>>> clCreateCommandQueue: device = [ Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz (CL_DEVICE_TYPE_CPU) ]

<<<< clCreateCommandQueue: returned 05B038F8

>>>> clGetContextInfo: param_name = CL_CONTEXT_DEVICES (00001081)

<<<< clGetContextInfo

>>>> clGetContextInfo: param_name = CL_CONTEXT_DEVICES (00001081)

<<<< clGetContextInfo

>>>> clCreateProgramWithSource: context = 00E97068, count = 1

<<<< clCreateProgramWithSource: returned 04572EA8, program number = 0000



Dumping Program Source

13

Can also Modify and/or Inject Modified Program Source or Binaries!

(and Binaries!)



Host API Performance Timing
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Host Performance Timing Results:

Function Name, Calls, Average (ns),   Min (ns),   Max (ns)

clBuildProgram, 3, 711065926,   22172160, 1634864192

clCreateBuffer, 23, 2234125,       2113,   36218573

clCreateCommandQueue, 1, 25054,      25054,      25054

clCreateContext, 1, 123618277,  123618277,  123618277

clCreateImage2D, 2, 8600269,    4682137,   12518402

clCreateKernel, 6, 7898,       2113,      14489

clCreateProgramWithSource, 3, 24551,       4829,      51617

clEnqueueNDRangeKernel( AdvancePaths ), 18036, 36967,      22941,   61064301

clEnqueueNDRangeKernel( Init ), 1, 7529273,    7529273,    7529273

clEnqueueNDRangeKernel( InitFrameBuffer ), 1, 1095145,    1095145,    1095145

clEnqueueNDRangeKernel( Intersect ), 18036, 25952,      15998,   24253177

clEnqueueNDRangeKernel( Sampler ), 18036, 29856,      15696,     218847

clEnqueueReadBuffer, 2288, 3758695,     123158,   10236648

clFinish, 2, 4723341,     717519,    8729163

clFlush, 18036, 31018,      21432,     374003

clGetDeviceIDs, 4, 1811,        301,       5735

...



Device Command Performance Timing
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Device Performance Timing Results:

Total Time (ns): 123904875200

Function Name,  Calls, Time (ns), Time (%), Average (ns), Min (ns), Max (ns)

AdvancePaths,  18036, 28203368032,   22.76%, 1563726, 1388096, 1761472

Init,      1, 8600000,    0.01%, 8600000, 8600000, 8600000

InitFrameBuffer,      1, 155712,    0.00%, 155712, 155712, 155712

Intersect,  18036, 79765237056,   64.38%, 4422556, 3248832, 5297600

Sampler,  18036, 14307721664,   11.55%, 793286, 75712, 1182400

clEnqueueReadBuffer,   2288,  1619792736,    1.31%,       707951,    39904,  4220992



Performance Timing on VTune
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and Chrome*



Platform and Device Queries
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Explore how applications respond to different query responses!
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Implementation Details:
OpenCL API Learnings and Insights
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OpenCL APIs from a Layering Perspective
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Most things went really well!

Features that made life easy:

 Built-in Reference Counting and Object Queries

 Standard Event Profiling, Standard Program Binaries

 Online Compilation

Features that made things complicated:

 NULL Local Work Size: Need “what happened” queries!

 Out-of-Order Queues – especially with Device Timing

 Device-side Only Controls (kernel attributes)

 Easier to permute Host-side Controls (build options)
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Intel-Specific Enhancements
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Intel Specific Enhancement: Driver Diagnostics
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cl_intel_driver_diagnostics: Intel Extension

 Extends Context Callback to Include GOOD / BAD / INFORMATIONAL Diagnostics

 Use the Intercept Layer for OpenCL Applications to Enable and Log Diagnostics

>>>> clCreateBuffer: flags = CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR (12), ...

=======> Context Callback (private_info = 00AFF728, cb = 4):

Performance hint: clCreateBuffer needs to allocate memory for buffer. For subsequent

operations the buffer will share the same physical memory with CPU.

<======= End of Context Callback

<<<< clCreateBuffer: returned 0573E000

...

>>>> clEnqueueMapBuffer: [ map count = 0 ] queue = 03254850, buffer = 0573E000, ...

=======> Context Callback (private_info = 00AFF214, cb = 4):

Performance hint: clEnqueueMapBuffer call on a buffer 0573E000 will not require any data

copy as buffer shares the same physical memory with CPU.

<======= End of Context Callback

<<<< clEnqueueMapBuffer: [ map count = 1 ] returned 04702000

https://www.khronos.org/registry/OpenCL/extensions/intel/cl_intel_driver_diagnostics.txt
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Future Work
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Future Work – Short Term
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Continue to stay use-case driven: How to find bugs and fix them faster?

 Example: OpenCL Object Leak Detection

Improve Usability and Accessibility



Future Work – Longer Term
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Android Support 

Intercept Layer as an ICD: Work with 
applications that statically link to the 
ICD loader.

Application

OpenCL ICD

Loader

One OpenCL

Implementation

Another OpenCL

Implementation
Intercept Layer For

OpenCL Application



Future Work – Longer Term
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Log and Analyze Graphs of OpenCL Commands

 Especially Important with Out-of-Order Queues

 Can we plot graphs of commands?

 Can we time device execution of subgraphs?
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Future Work – Longer Term
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Automatic Reproducer Generation

 Very Limited Capture-Playback

 One Kernel + Inputs + Params

 See Fossilize for Vulkan

Speaking of Vulkan...

 Lots of Layer Prior Art

 Steal with Pride?

https://github.com/Themaister/Fossilize
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Wrap Up
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Summary and Call to Action
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Try the Intercept Layer for OpenCL Applications!

 Debug and Analyze OpenCL programs faster!

 Send Issues and Pull Requests!

Grow the OpenCL Ecosystem with Layers

 Layers are an important part of the OpenCL ecosystem

To the Khronos OpenCL Working Group: Design the API with layers in mind!

To OpenCL Users: Use layers, evangelize layers, build layers!

Thank you!

 ben.ashbaugh@intel.com

mailto:ben.Ashbaugh@intel.com
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Useful Links:
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Intercept Layer for OpenCL Applications:

https://github.com/intel/opencl-intercept-layer

Vulkan Loader and Layers:

https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers

https://github.com/intel/opencl-intercept-layer
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers
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