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Benchmarks levels are a suggestion for categorizing different tests based on complexity. The SHOC 
benchmark applies similar categorization (https://github.com/vetter/shoc).
Level 1&2 (high-level) benchmarks measure the performance of a device in running certain 
functionalities and use-cases, such as histogram, box filter, integral image, or more complex 
algorithms such as face detection, and fluid dynamics simulation.
Level 0 (low-level) benchmarks measure performance of specific logic modules or low-level 
capabilities of a device such as ALU bandwidth, memory read bandwidth, kernel enqueue overhead, 
etc.
Mobile GPGPU benchmarking is sensitive to multiple system factors such as power management, 
driver overhead, context switch, compiler, HW differences across platforms, and more.
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Factors contributing to performance variance:
• Dynamic system memory load, as the memory serves multiple clients in the system
• Power management mechanism will throttle clocks through different parts of the system, 

which may change performance across various benchmark runs
• Thermal limitation will protect HW from over-heating, may limit performance at certain 

physical conditions
• Timer accuracy may introduce variance in measured performance

Mitigation
• Use longer workloads, run multiple test iterations while monitoring variance
• Minimize host-device sync operations, such as clFinish
• Minimize non-benchmark tasks
• Ease system memory load and CPU workload
• Make sure CPU and memory load is low before and during benchmark run
• Benchmark can detect high CPU load automatically, disable test run at extreme conditions
• Avoid any unnecessary application activity during benchmark execution

• Use more than one timer if possible, correlate results. OpenCL 2.1 
clGetDeviceAndHostTimer allows synchronizing host and device timers, and could assist in 
correlation process

• Use system timer that runs at constant clock rate, if possible, and is not affected by power 
management
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In this case we look at performance of 2D-FFT running on Qualcomm Adreno A430 GPU using 
OpenCL. Increasing the workload from input of 256x256 to 1024x1024 reduces variance from 8.2% to 
1.6%.
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Further variance reduction is achieved through reducing host-device sync (clFinish) from every frame 
to once every 10 frames. As a result, variance is reduced from 1.6% to 1.2%.
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Too frequent driver operations (triggered by OpenCL API calls) may shift the workload 
bottleneck to the host, making the benchmark to be bounded by the host and not by the GPU.
To reduce driver activity in the benchmark, minimize number of kernel enqueue operations. 
Increase workload per kernel enqueue and reduce number of enquques. For small kernels, 
consider merging kernel functionality to create larger kernels.
Warm-up enqueue may improve overall performance in some cases. Exclude warm-up activity 
from time measurement.
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GPU contexts can be of different types and triggered by different applications. In a GPU compute 
benchmark, the main workload typically runs through the benchmark’s compute context. Best 
performance can be achieved when the workload context is not switched while running the workload 
and measuring time. However, if a context switch occurs, the benchmark workload execution may be 
interrupted in some cases, and the measured performance may be lower. 
In this example, we show performance of 2D-FFT application, where 4 kernels are enqueued
sequentially. Shortly after the kernels are enqueued and before clFinish returns, the application 
launches a UI event in the form of a screen print. Since printing to the screen is handled by the UI 
context, a context switch occurs. As a result, measured performance is slower. As can be seen in the 
chart, performance slowdown is proportional to the number of UI events. 
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Why does the work-group size and shape affects performance? The work-group size and 
shape determine the memory access pattern, which may affect performance in memory-bound 
cases. The Memory access pattern can determine effective memory bandwidth, bank conflicts,
cache utilization and other factors.
How to determine the work-group shape? Try various shapes (1-D, 2-D, 3-D), select the best 
performing one. Naturally, the local shape is limited by the global shape. 
For example, work size tuning in 2-D case: initial size = N, measure performance with work-
group size = (N,1), (N/2,2), (N/4, 4), …, (1,N), change N and try various work-group shapes 
again.
The figure on the right is a theoretic illustration of performance with different 1D/2D work size 
and shapes (diagram may change for different use-cases). The grey area represents non-
applicable work-group size (larger than maximum work-group size). Small work-group size 
may yield slow performance due underutilization of HW, whereas larger work-group size will 
better utilize the HW and have better performance. Good performance is achieved by utilizing a 
large enough work-group and by tuning the shape. In some cases, a work-group size that is too 
large may slow-down performance. 
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As can be seen in the charts above, the work group shape tuning has a significant effect on matrix 
multiply performance in Qualcomm Adreno A430 GPU, but almost no effect in case of 1D-FFT.
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Math functions, in some cases, are implemented by complex set of instructions, which may check for 
corner cases and have multiple execution paths. As a result, math function performance may depend 
on the input value. In this case, we look at performance of function log in OpenCL strict-math mode 
running on Qualcomm Adreno A430 GPU. By modifying the input value to log() before every function 
call, we can avoid log result from convergence into a constant value for certain types of inputs, and 
the measured result reflects a more typical performance of log in a real use-case. Developing math 
benchmarks requires special attention to functions which may perform differently depending on the 
input value.
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Relative performance metrics helps in understanding the strength and weakness points in a device 
architecture. With the example shown above, we can compute the relative performance of float4 ADD 
to global memory read of 128-bit data, and derive the rational performance of these two metrics. 
Given a certain workload with known requirements for operations such as data fetch bandwidth and 
ALU operation count, rational performance metrics can also assist in predicting whether a device can 
efficiently execute the workload.
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Developing a high-level benchmark requires balancing between several considerations. On the one 
hand, a correct assessment of performance requires running a workload that can maximize device 
utilization and efficiency. On the other hand, the benchmark has to be designed in a cross-platform 
approach so that it can be executed on multiple devices. Optimizing performance of a benchmark 
often required careful optimization and even using vendor libraries, if those are available. In some 
cases, using dedicated HW features for better performance generates differences in results, mainly 
due to HW differences in features that are not explicitly defined by the API spec. These differences 
may expose differences in workload across devices, making the performance comparison less “fair”. 
In order to make sure all devices run the exact same workload and to make the benchmark cross-
platform tool, a developer may compromise on performance. Such compromise can include using 
only common optimization techniques that are supported by multiple devices, which are less likely to 
generate differences in result. Using naïve code is beneficial in terms of development time and cross-
platform capability, but will poorly utilize the device, making the benchmark result highly uncorrelated 
with the device true capability. Benchmark developers should find the right balance between these 
different considerations. Achieving “fairness” by maintaining workload consistency across devices is 
highly important, yet developers should also try to improve performance using common and device 
specific optimization, while utilizing the latest API features. The advancement of compilers and 
drivers, as well as the gradually increasing availability of optimized libraries can be leveraged by 
benchmark developers in creating more accurate and balanced benchmarks.
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Result verification is a key component in benchmarking. It enables the benchmark to make sure the 
device executed the functionality as expected, validating the performance measurement.
Workload output should be compared to pre-calculated reference. Reference data can be computed 
offline or outside time measurement scope. Online reference computation may increase chances of 
thermal gating. It is recommended to avoid long and compute-heavy reference computations during 
benchmark run.
In some use-cases, performance may be data dependent. One example is the Viola-Jones Face 
Detection algorithm*, which is based on a cascade of logic modules. HW differences across devices 
may cause differences between intermediate results of the same stage across different devices, 
leading to workload and performance differences. To make sure workload is consistent across 
devices, it is recommended to compare workload output to reference data in intermediate stages as 
well as in the final stage of the computation.
When comparing workload output to reference, define error margins large enough to accommodate 
differences between various GPU implementations. Error margin definition may require 
experimenting with multiple devices.
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