The Hitchhiker's Guide to Cross-Platform OpenCL Application Development

Tyler Sorensen and Alastair F. Donaldson

Imperial College London, UK

IWOCL April 2016 "OpenCL supports a wide range of applications... through a low-level, high-performance, portable abstraction."

Page 11: OpenCL 2.1 specification

"OpenCL supports a wide range of applications... through a low-level, high-performance, **portable** abstraction."

Page 11: OpenCL 2.1 specification

"OpenCL supports a wide range of applications... through a low-level, high-performance, **portable** abstraction."

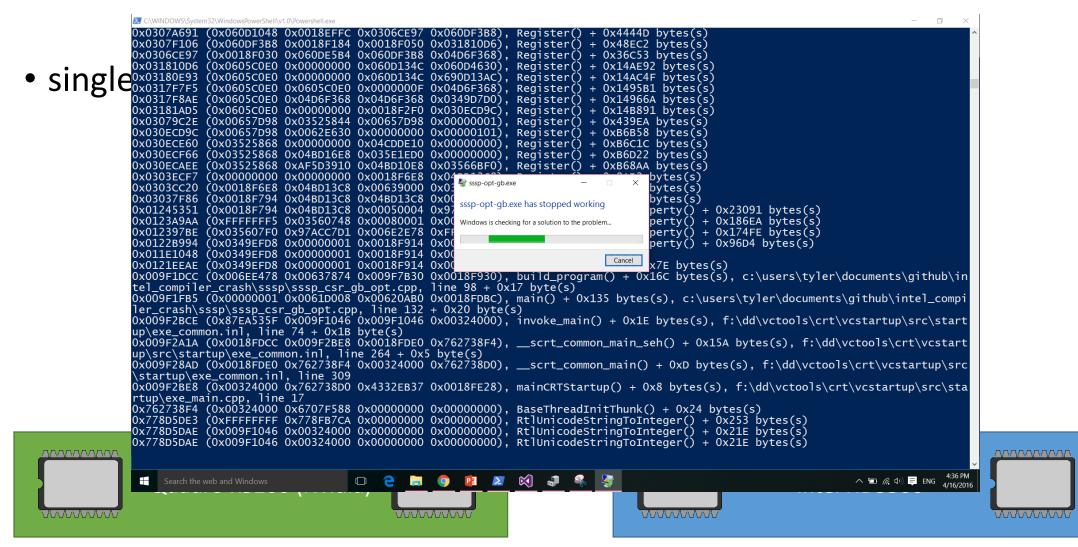
Page 11: OpenCL 2.1 specification

We consider functional portability rather than performance portability

Example

• single source shortest path application

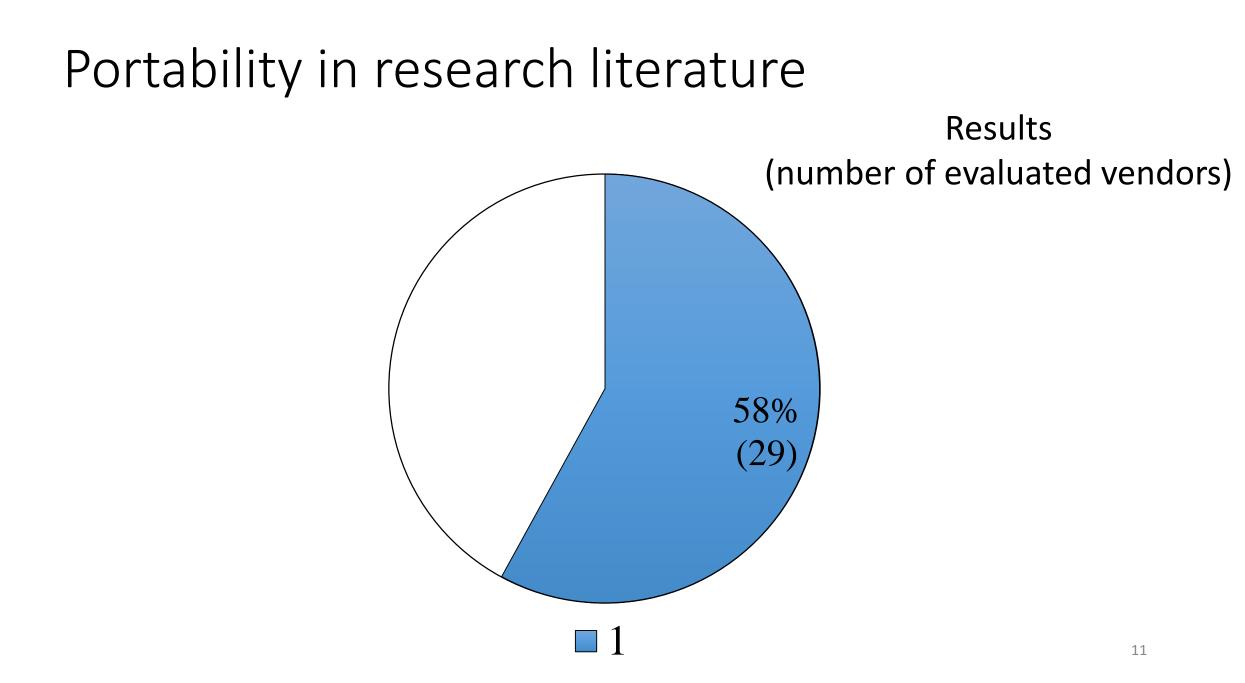
Example

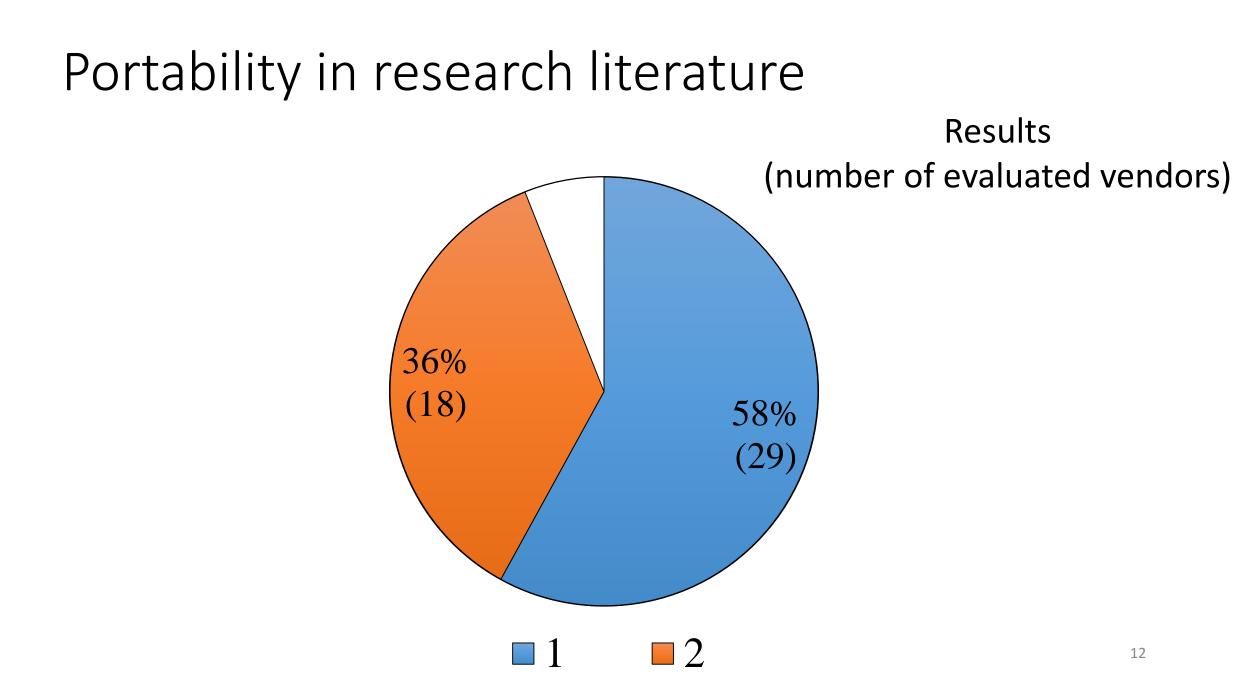

• single source shortest path application

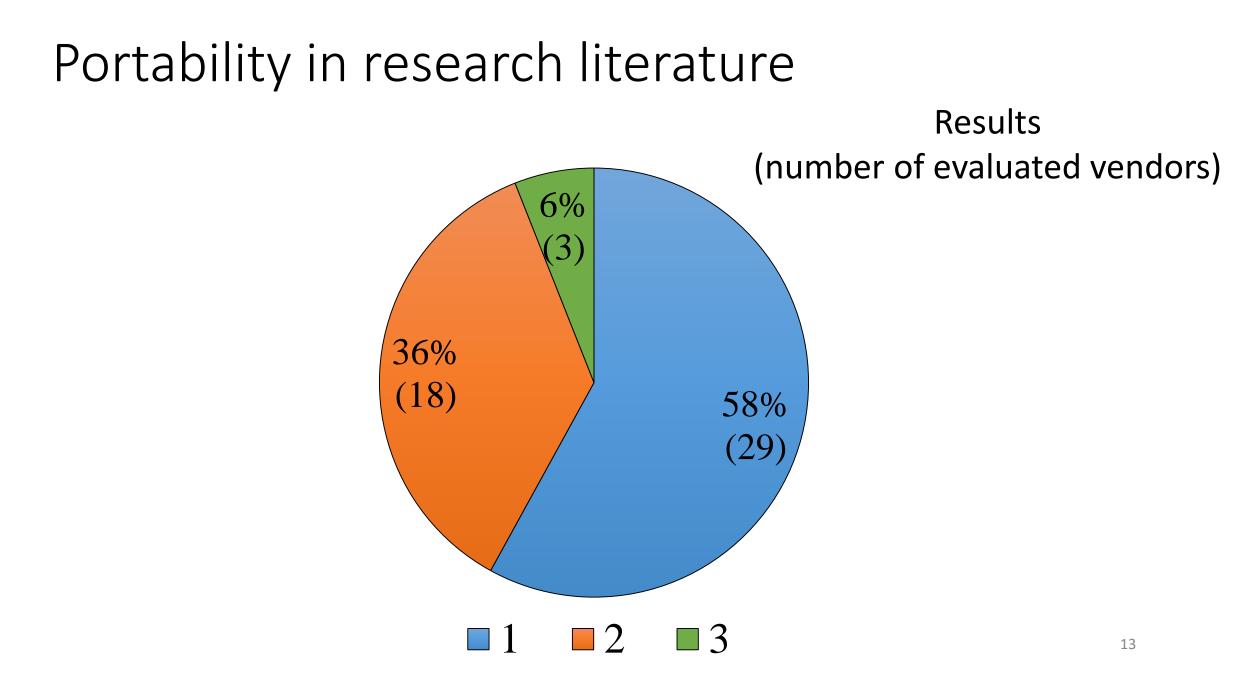
Example

An experience report on OpenCL portability

- How well is portability evaluated?
- Our experience running applications on 8 GPUs spanning 4 vendors
- Recommendations going forward

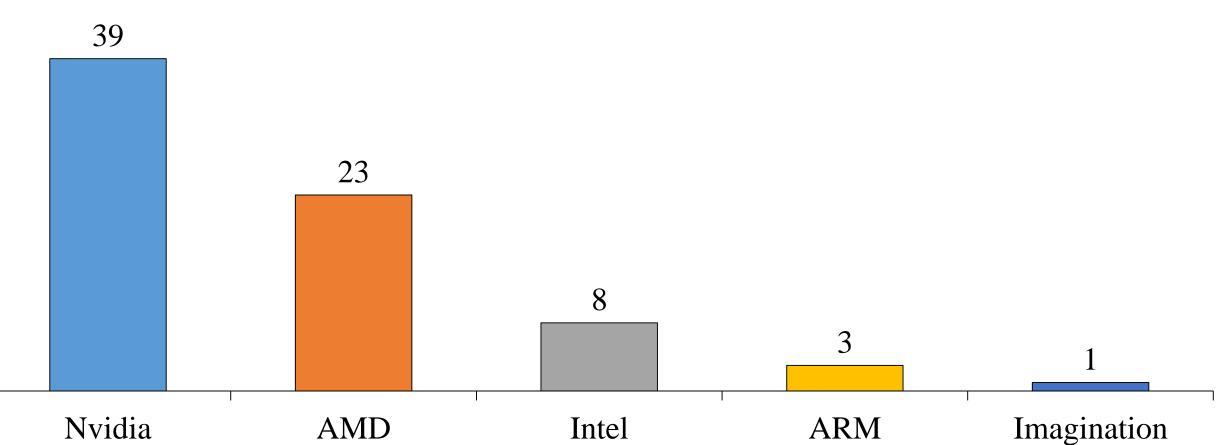

An experience report on OpenCL portability

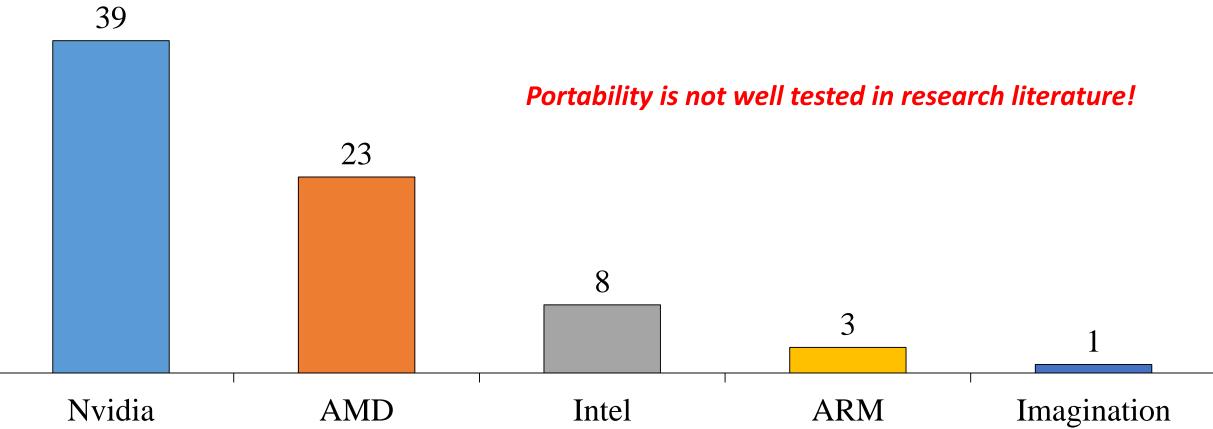

- How well is portability evaluated?
- Our experience running applications on 8 GPUs spanning 4 vendors
- Recommendations going forward


Portability in research literature

- Reviewed the 50 most recent OpenCL papers on: http://hgpu.org/
 - Only considered papers including GPU targets
 - Only considered papers with some type of experimental evaluation

• How many different vendors did the study experiment with?




Portability in research literature

Results (which vendor)

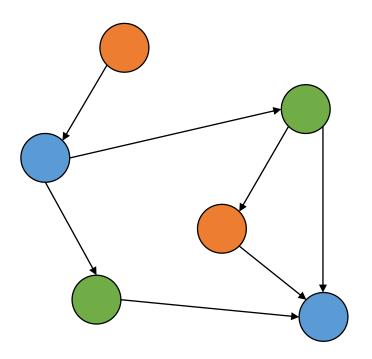
Portability in research literature

Results (which vendor)

An experience report on OpenCL portability

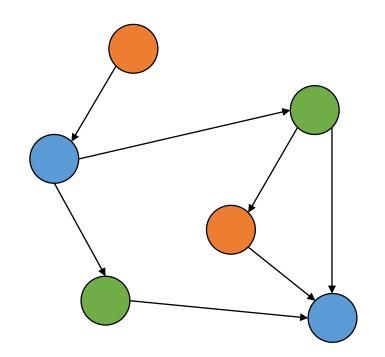
• How well is portability evaluated?

- Our experience running applications on 8 GPUs spanning 4 vendors
- Recommendations going forward


Chips we test

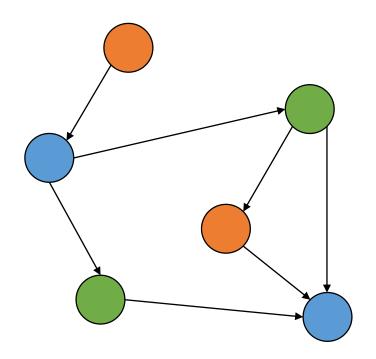
Chip	Vendor	Compute Units	OpenCL Version	Туре
GTX 980	Nvidia	16	1.1	Discrete
Quadro K500	Nvidia	12	1.1	Discrete
Iris 6100	Intel	47	2.0	Integrated
HD 5500	Intel	24	2.0	Integrated
Radeon R9	AMD	28	2.0	Discrete
Radeon R7	AMD	8	2.0	Integrated
Mali-T628	ARM	4	1.2	Integrated
Mali-T628	ARM	2	1.2	integrated

• Part of a larger study on GPU irregular parallelism

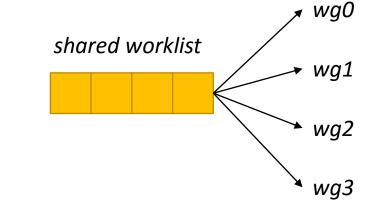

Pannotia

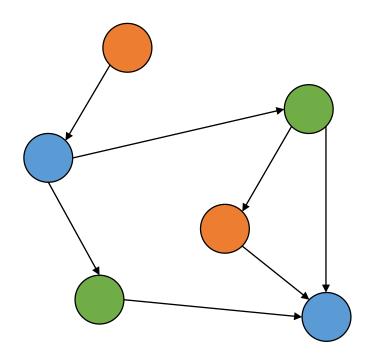
- Target AMD Radeon HD 7000
- Written in OpenCL 1.x
- 4 graph algorithms applications

Pannotia


- Target AMD Radeon HD 7000
- Written in OpenCL 1.x
- 4 graph algorithms applications

Loop until a fixed point is reached.


LonestarGPU


- Target Nvidia Kepler and Fermi
- Written in CUDA
- 4 graph algorithms applications

LonestarGPU

- Target Nvidia Kepler and Fermi
- Written in CUDA
- 4 graph algorithms applications

- Total of 8 applications
- Experience report of:
 - Porting LonestarGPU to OpenCL
 - Running Pannotia cross platform
 - Experimenting with new synchronisation idioms via OpenCL 2.0 atomics

Portability Issues

12 issues encountered, grouped into categories

• 3 Framework bugs

• 6 Specification limitations

• 3 Programming bugs

Portability Issues

12 issues encountered, grouped into categories

• 3 Framework bugs

• 6 Specification limitations

• 3 Programming bugs

#1 Compiler crash

Platforms: Intel

#1 Compiler crash

Platforms: Intel

C:\WINDOWS\System32\WindowsPowerShell\v1.0\Powershell.exe	- 0)
0x0307A691 (0x060D1048 0x0018EFFC 0x0306CE97	0x060DF3B8), Register() + 0x4444D bytes(s)	
)x0307F106 (0x060DF3B8 0x0018F184 0x0018F050		
0x0306CE97 (0x0018F030 0x060DE5B4 0x060DF3B8	0x04D6F368), Register() + 0x36C53 bytes(s)	
	0x060D4630), Register() + 0x14AE92 bytes(s)	
0x03180E93 (0x0605C0E0 0x00000000 0x060D134C	0x690D13AC), Register() + 0x14AC4F bytes(s)	
)x0317F7F5 (0x0605C0E0 0x0605C0E0 0x0000000F	0x04D6F368), Register() + 0x1495B1 bytes(s)	
)x0317F8AE (0x0605C0E0 0x04D6F368 0x04D6F368	0x0349D7D0), Reğister() + 0x14966A býtes(s)	
	0x030ECD9C), Register() + 0x14B891 bytes(s)	
0x03079C2E (0x00657D98 0x03525844 0x00657D98	0x00000001), Register() + 0x439EA bytes(s)	
0x030ECD9C (0x00657D98 0x0062E630 0x0000000	0x00000101), Register() + 0xB6B58 bytes(s)	
0x030ECE60 (0x03525868 0x00000000 0x04CDDE10	0x00000000), Register() + 0xB6C1C bytes(s)	
0x030ECF66 (0x03525868 0x04BD16E8 0x035E1ED0	0x00000000), Register() + 0xB6D22 bytes(s)	
0x030ECAEE (0x03525868 0xAF5D3910 0x04BD10E8	0x03566BF0), Register() + 0xB68AA bytes(s)	
0x030ECAEE (0x0525866 0xAF505910 0x046D1066 0x0303ECF7 (0x00000000 0x0000000 0x0018F6E8 0x0303CC20 (0x0018F6E8 0x048D13C8 0x00639000	0x04 ssp-opt-beeve X bytes(s)	
0x03037F86 (0x0018F794 0x04BD13C8 0x04BD13C8		
0x01245351 (0x0018F794 0x04BD13C8 0x00050004	perty() + 0x23091 bytes(s)	
0x0123A9AA (0xFFFFFF5 0x03560748 0x00080001		
0x012397BE (0x035607F0 0x97ACC7D1 0x006E2E78		
0x0122B994 (0x0349EFD8 0x00000001 0x0018F914		
0x011E1048 (0x0349EFD8 0x00000001 0x0018F914		
0x0121EEAE (0x0349EFD8 0x00000001 0x0018F914		
7x00aFTDCC (0x00eFE4\8 0x00e3\8\4 0x00aF\B30	0x0018F930), build_program() + 0x16C bytes(s), c:\users\tyler\documents\github\	۱r
tel_compiler_crash\sssp\sssp_csr_gb_opt.cpp,		
	0x0018FDBC), main() + 0x135 bytes(s), c:\users\tyler\documents\github\intel_com	۱р٦
<pre>ler_crash\sssp\sssp_csr_gb_opt.cpp, line 132</pre>		
	0x00324000), invoke_main() + 0x1E bytes(s), f:\dd\vctools\crt\vcstartup\src\sta	art
up\exe_common.in], line 74 + 0x1B byte(s)		
υχόραμζατα (οχόρταμοςς οχοραμζεμέα οχόρταμομο	_0x762738F4),scrt_common_main_seh() + 0x15A bytes(s), f:\dd\vctools\crt\vcsta	art
<pre>up\src\startup\exe_common.inl, line 264 + 0x</pre>	5 byte(s)	
	<pre>0x762738D0),scrt_common_main() + 0xD bytes(s), f:\dd\vctools\crt\vcstartup\s</pre>	sro
\startup\exe_common.inl, line 309		
	<pre>0x0018FE28), mainCRTStartup() + 0x8 bytes(s), f:\dd\vctools\crt\vcstartup\src\s</pre>	sta
rtup\exe_main.cpp, line 17		
JX/62/38F4 (0X00324000 0X6/0/F588 0X00000000	0x00000000), BaseThreadInitThunk() + 0x24 bytes(s)	
JX//8D5DE3 (UXFFFFFFF UX//8FB/CA 0x00000000	0x00000000), RtlUnicodeStringToInteger() + 0x253 bytes(s)	
JX778D5DAE (UXUU9F1046 UXU0324000 UX00000000	0x00000000), RtlUnicodeStringToInteger() + 0x21E bytes(s)	
JX778DSDAE (0X009F1046 0X00324000 0X00000000	0x00000000), RtlUnicodeStringToInteger() + 0x21E bytes(s)	
		26.8
🗄 Search the web and Windows 🔲 🤤 📑		:36 PI 16/20

#1 Compiler crash

Platforms: Intel

compiling several large kernels occasionally crashes compiler

Workaround: reduce the number of kernels in file

#2 Non-terminating loops

Platforms: Nvidia and AMD

#2 Non-terminating loops

This looping idiom used in kernel code

Platforms: Nvidia and AMD

while(true) {
 more_work = false;

.. // Do computation, .. // if more work, set more_work

if (!more_work)
 break;

}

#2 Non-terminating loops

This looping idiom used in kernel code

Platforms: Nvidia and AMD

while(true) {
 more_work = false;

.. // Do computation,

Does not terminate on Nvidia and AMD platforms!! .. // if more work, set more_work

if (!more_work)
 break;

}

#2 Non-terminating loops

This looping idiom used in kernel code

Platforms: Nvidia and AMD

while(true) {
 for (int i = 0; i < INT_MAX; i++) {
 more_work = false;</pre>

.. // if more work, set more_work

Change while loop to for loop

End value of *i* is consistent across platforms

if (!more_work)
 break;

}

.. // Do computation,

#3 AMD defunct processes

Platforms: AMD on Linux

Long running kernels become defunct and un-killable requiring a reboot.

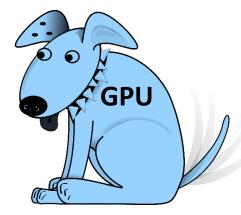
Workaround: Switch to Windows OS

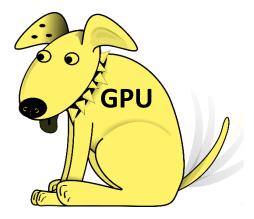
Portability Issues

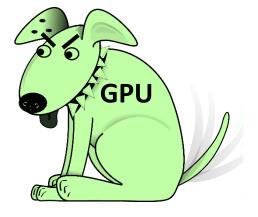
12 issues encountered, grouped into categories

• 3 Framework bugs

• 6 Specification limitations


• 3 Programming bugs

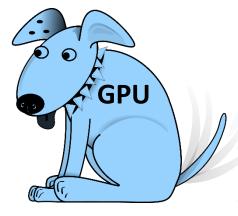

Specification limitations


#1 GPU watchdogs

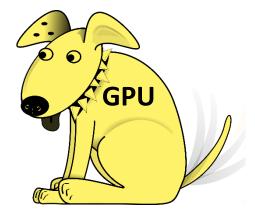
Platforms and operating systems handle watchdogs differently.

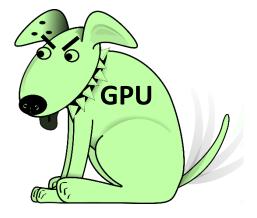
Windows

Linux (Ubuntu)


Specification limitations

#1 GPU watchdogs

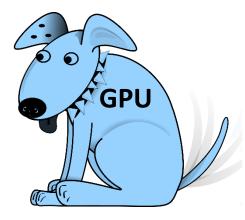

Platforms and operating systems handle watchdogs differently.


Controlled with registry

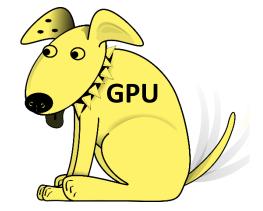
Watchdog kills entire OpenCL process

Windows

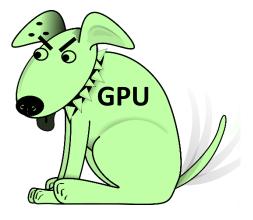
Linux (Ubuntu)


#1 GPU watchdogs

Platforms and operating systems handle watchdogs differently.


Controlled with registry

Controlled in X server settings

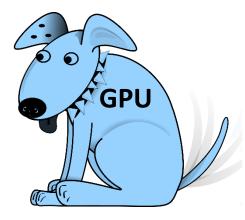

Watchdog kills entire OpenCL process Watchdog only kills kernel

Windows

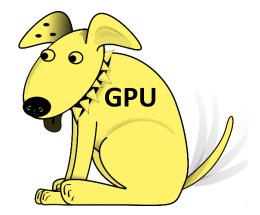
Linux (Ubuntu)

#1 GPU watchdogs

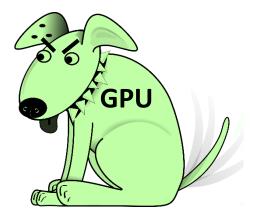
Platforms and operating systems handle watchdogs differently.


Controlled with registry

Controlled in X server settings


Watchdog kills entire OpenCL process

Watchdog only kills kernel


Cannot control at all without recompiling the driver

Windows

Linux (Ubuntu)

#2 Occupancy vs compute units

An OpenCL device has one or more compute units. A workgroup executes on a single compute unit.

Intel OpenCL Optimisation Guide

#2 Occupancy vs compute units

An OpenCL device has one or more compute units. A workgroup executes on a single compute unit.

Intel OpenCL Optimisation Guide

Persistent thread model (Gupta et al. PIPC'12): *forward progress* between occupant workgroups

#2 Occupancy vs compute units

An OpenCL device has one or more compute units. A workgroup executes on a single compute unit.

Intel OpenCL Optimisation Guide

Persistent thread model (Gupta et al. PIPC'12): *forward progress* between occupant workgroups

LonestarGPU applications depend on this

chip	compute units	PT occupancy
GTX 980	16	
Quadro K500	12	
Iris 6100	47	
HD 5500	24	
Radeon R9	28	
Radeon R7	8	
Mali-T628	4	
Mali-T628	2	

Compute units are safe and optimal

Specification limitations

chip	compute units	PT occupancy
GTX 980	16	
Quadro K500	12	12
lris 6100	47	
HD 5500	24	
Radeon R9	28	
Radeon R7	8	
Mali-T628	4	4
Mali-T628	2	2

Compute units are safe and optimal

Compute units are safe but not optimal

chip	compute units	PT occupancy
GTX 980	16	32
Quadro K500	12	12
Iris 6100	47	
HD 5500	24	
Radeon R9	28	48
Radeon R7	8	16
Mali-T628	4	4
Mali-T628	2	2

Compute units are safe and optimal

Compute units are safe but not optimal

Compute units are not safe

chip	compute units	PT occupancy
GTX 980	16	32
Quadro K500	12	12
lris 6100	47	6
HD 5500	24	3
Radeon R9	28	48
Radeon R7	8	16
Mali-T628	4	4
Mali-T628	2	2

Portability Issues

12 issues encountered, grouped into categories

• 3 Framework bugs

• 6 Specification limitations

• 3 Programming bugs

#1 Data-races

Application: LonestarGPU bfs and sssp

Fix: Add additional synchronisation barriers

#1 Data-races

Application: LonestarGPU bfs and sssp *Fix*: Add additional synchronisation barriers

Intel HD5500

Bug was dormant on Nvidia but caused crashes on Intel

#2 Struct kernel arguments

How to represent a graph:

#2 Struct kernel arguments

How to represent a graph:

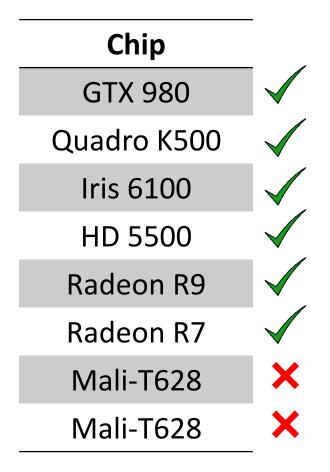
- adjacency matrix
- array of edge weights
- number of nodes
- number of edges

#2 Struct kernel arguments

Graphs are large and globally shared so they go into global memory.

Each struct member is a global memory pointer

How to represent a graph:


struct Graph

- adjacency matrix
- array of edge weights
- number of nodes
- number of edges

#2 Struct kernel arguments

#2 Struct kernel arguments

#2 Struct kernel arguments

"Arguments to kernel functions that are declared to be a struct or union do not allow OpenCL objects to be passed as elements of the struct or union"

Page 176: OpenCL 2.0 specification

An experience report on OpenCL portability

- How well is portability evaluated?
- Our experience running applications on 8 GPUs spanning 4 vendors
- Recommendations going forward

- Conformance tests
 - Compiler Fuzzing
 - "Many-Core Compiler Fuzzing" PLDI'16, Lidbury et al.
 - Memory consistency
 - "GPU Concurrency: Weak Behaviours and Programming Assumptions" ASPLOS'15, Alglave et al.

- Conformance tests
 - Compiler Fuzzing
 - "Many-Core Compiler Fuzzing" PLDI'16, Lidbury et al.
 - Memory consistency
 - "GPU Concurrency: Weak Behaviours and Programming Assumptions" ASPLOS'15, Alglave et al.

unofficial open source tests?

- Specification clarifications
 - Inter-workgroup execution model
 - "A Study of Persistent Threads Style GPU Programming for GPGPU Workloads", PIPC'12 Gupta et al.
 - GPU watchdog

- Programming tools
 - Data-race checkers
 - GPUVerify "The Design and Implementation of a Verification Technique for GPU Kernels", TOPLAS'15, Betts et al.
 - Dynamic analysis tools
 - OCLGrind "Oclgrind: an extensible OpenCL device simulator", IWOCL'15, Price and McIntosh-Smith

Conclusions

- Most applications were able to run cross-platform!
- Many portability challenges
- We believe that as a community we can overcome these challenges for a more portable OpenCL world!

Thank You

- Assessed the OpenCL portability evaluation in research
 - Surveyed 50 most recent OpenCL papers
- Found portability issues across 8 GPUs (4 Vendors)
 - 3 framework bugs, 6 specification limitations, 3 Programming Bugs

- Suggested ways to improve OpenCL portability
 - Conformance tests, specification clarifications, testing/verification tools

Tyler Sorensen http://www.doc.ic.ac.uk/~tsorensen/ Alastair Donaldson http://multicore.doc.ic.ac.uk/

#4 Floating point accuracy

Application: LonestarGPU DMR

32 bit floating point application successful on Intel

#4 Floating point accuracy

Application: LonestarGPU DMR

32 bit floating point application successful on Intel

32 bit floating point application fails on Nvidia

#5 OS portability

Chip	Windows	Linux
Radeon R9	\checkmark	Â.
Radeon R7	\checkmark	XX.
Mali-T628	×	
Mali-T628	×	\checkmark

#5 OS portability

Defunct process bug

Chin	Windows	linuv
Chip	vvinuows	Linux
Radeon R9		
Radeon R7	\checkmark	XXX.
Mali-T628	×	
Mali-T628	×	

#5 OS portability

Defunct process bug

Chip	Windows	Linux
Radeon R9	\checkmark	XX .
Radeon R7	\checkmark	XXX
Mali-T628	×	
Mali-T628	×	

Thus entire OpenCL application (device and host) must be cross platform

#1 Memory allocation failures

Platforms: Intel

Host memory allocations can cause device memory allocations to fail

Due to fragmentation

#3 Memory consistency

OpenCL 2.0 atomics allow synchronisation idioms

#3 Memory consistency

OpenCL 2.0 atomics allow synchronisation idioms

Chip	OpenCL Version	
GTX 980	1.1	
Quadro K500	1.1	No support for OpenCL 2.
Mali-T628	1.2	
Mali-T628	1.2	

#3 Memory consistency

Implement our own atomic operations

```
typedef int atomic_int;
void atomic_store(atomic_int *addr, int val) {
    mem_fence()
    *addr = val;
    mem_fence()
}
```

#3 Memory consistency

These chips passed our memory consistency unit tests

Chip	OpenCL Version	
GTX 980	1.1	
Quadro K500	1.1	
Mali-T628	1.2	\sim
Mali-T628	1.2	

#3 Memory consistency

Several other (older) chips did not

Chip	Vendor	OpenCL Version
GTX 480	Nvidia	1.1
Tesla C2075	Nvidia	1.1
HD 4400	Intel	1.2
Radeon HD 7970	AMD	1.2
Radeon HD 6570	AMD	1.2

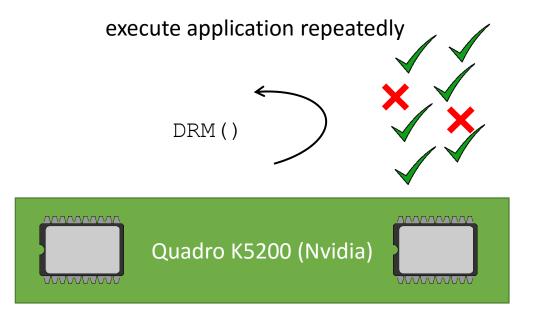
#3 Memory consistency

We did not consider these chips further

Several other (older) chips did not

Chip	Vendor	OpenCL Version
GTX 480	Nvidia	1.1
Tesla C2075	Nvidia	1.1
HD 4400	Intel	1.2
Radeon HD 7970	AMD	1.2
Radeon HD 6570	AMD	1.2

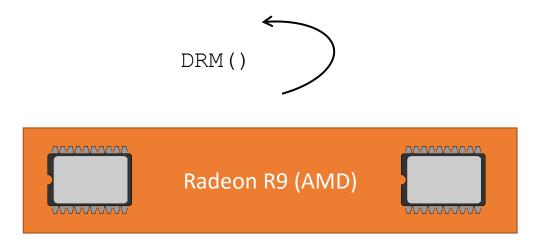
#2 Stability


Application: LonestarGPU DMR

execute application repeatedly

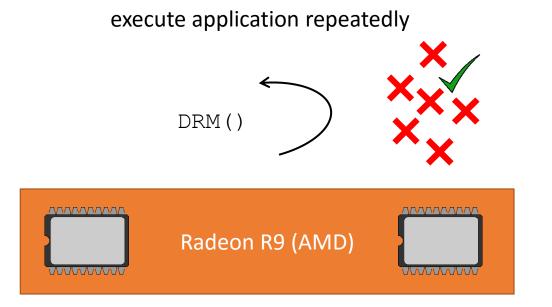
#2 Stability

Application: LonestarGPU DMR


occasional failures (known by developer and deemed acceptable)

Due to floating point precision

#2 Stability


Application: LonestarGPU DMR

execute application repeatedly

#2 Stability

Application: LonestarGPU DMR

Fails nearly every iteration on AMD chips