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Submission 
latencies  
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Start to 
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 Driver overhead is significant: 

– Not suitable for small kernels. 

– Not suitable for low latency 
scenarios. 

 Submission is expensive: 

– Memory needs to be resident. 

– GPU threads are created & 
destroyed for each kernel. 

 Why queue if I want to submit ? 

– No queue needed if 0 cost 
submission & completion. 

 
Current scheduling model doesn’t suit well for low latency / short workloads 
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 GPU Daemon is a kernel launched from the host and later 
persistent on the GPU. 

 It communicates with CPU using Fine-Grained Shared Virtual 
Memory with atomics. 

 Persistency is achieved using various methods: 

– Instant Mode – loop within a kernel. 

– Enqueue Mode –  self-enqueue utilizing device_enqueue. 

 CPU communicates directly with active GPU threads bypassing 
driver stack. 

 Whenever Daemon is no longer needed CPU sends “end” signal 
that will terminate GPU threads. 
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GPU 
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 Enqueue Mode allows various different transitions: 

– Utilizes device self-enqueue feature of OpenCL™ 2.0. 

– GPU can switch to Instant mode for direct submission. 

– GPU can enqueue traditional kernels without the need of host 
API interaction. 

 Gives great flexibility in terms of possible options: 

– Whole host code can be transferred to the device. 

– Various Instant kernels may be dispatched, serving different 
compute algorithms. 
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 Instant Mode Execution is faster than 
traditional enqueue ( +5%): 

– No Thread Creation  

– No Thread Destruction  

– GPU boosted to high frequency 

 This time includes CPU + GPU atomics 
communication cost for submission and 
completion. 

 After work is done, threads are 
immediately ready for next submission. 
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No kernel execution overhead with CPU+GPU synchronization. 
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 Instant mode may be initiated from 
the host or from GPU Daemon in 
Enqueue Mode. 

 Time needed to enter Instant Mode 
from the host is 160 us. 

 Same operation from GPU Daemon 
being in Enqueue mode takes 58 us. 

 Useful when multiple different 
instances of Instant kernels will be 
required. 
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 Time from start to completion of the 
compute task reduced 19 times ! 

 This includes submission, processing 
and completion of compute tasks. 

 All latencies are not present, immediate 
compute power available on demand. 

 

 

 

GPU Daemon is a very efficient technique for zero cost submission & completion. 
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Make sure you spawn all HW threads available 
 Query Number of Execution Units using: 

clGetDeviceInfo + CL_DEVICE_MAX_COMPUTE_UNITS  

 Multiply it by number of hardware threads on each EU ( typically 7, refer to device 
documents ), this will give you total HW threads count, i.e. for Intel(R) HD Graphics 560: 

24 * 7 = 168 Hardware Threads 

 Obtain SIMD size of your kernel using ( 8,16,32 ): 

clGetKernelWorkGroupInfo + CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE 

 Compute global work size that will result in all threads being spawned: 

Gws[0] = SIMDsize * NumberOfHwThreads  = 32 * 168 = 5376 

 Make sure your LWS is a multiple of SIMDsize. 

 Make sure your GWS is a multiple of LWS. 
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Play nicely with GPU 
 Be cautious to not spawn more HW threads than device has. 

 Choose Local Work Group Size that fits nicely into sub-slices: 

– Get familiar with https://software.intel.com/sites/default/files/managed/c5/9a/The-
Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf 

– Make sure number of HW threads per sub-slice is a multiple of HW threads per wkg. 

 When using SLM(Shared Local Memory) / barriers choose bigger workgroup sizes to 
maximize SLM re-use: 

– Take into consideration that SLM is limited, so GPU may not spawn threads because of 
lack of free resources. 

– There is 64 KB per sub-slice for all workgroups, so if each uses 16KB then only 4 may 
be executed concurrently on this sub-slice. 

 When Daemon is not needed terminate it to save power. 
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Be cautious with the amount of atomic operations 
1) DON’T increment spin on every work-item: 
__kernel Worker(__global int* pCommBuffer) 

{ 

 __global atomic_int *atomicCommBuffer = 

(__global volatile atomic_int*)pCommBuffer; 

 

    atomic_fetch_add_explicit( 

        &atomicCommBuffer[SPIN], 

        1, 

        memory_order_seq_cst, 

        memory_scope_all_svm_devices ); 

    //do the work 

} 

1) DO Only single increment per thread 
__kernel Worker(__global int* pCommBuffer) 

{ 

    __global atomic_int *atomicCommBuffer = 

(__global volatile atomic_int*)pCommBuffer; 

 

    if( get_sub_group_local_id() == 0 ) 

    { 

        atomic_fetch_add_explicit( 

            &atomicCommBuffer[SPIN], 

            1, 

     memory_order_seq_cst, 

            memory_scope_all_svm_devices ); 

     } 

     //do the work 

} 
 

Implicit SIMD synchronization reduces the amount of atomics up to 32x. 

C D 

21 
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Or even better, synchronize on Workgroup basis 
 

__private int Finish = 0; 

__private int ReqPhase = 0; 

//loop as long as you need to 

while( Finish != 0 ) 

{ 

//each work item needs to check for 

work 

ReqPhase = atomic_load_explicit( 

&atomicCommBuffer[PHASE], 

    memory_order_seq_cst,         

 memory_scope_all_svm_devices ); 

//each work item needs to obtain 

flag 

Finish = atomic_load_explicit(  

&atomicCommBuffer[FINISH], 

memory_order_seq_cst,         

 memory_scope_all_svm_devices); 

//do some work 

} 

//shared local memory keeps control variables 

__local uint Finish; 

__local uint ReqPhase; 

ReqPhase = Finish = 0; 

barrier( CLK_LOCAL_MEM_FENCE ); 

//setup done, now loop as long as you need to 

while(1){ 

//one work item checks for completion OR new work 

if(get_local_id(0) == 0 ) { 

 ReqPhase= atomic_load_explicit( &SVMComm[PHASE], 

 memory_order_seq_cst,memory_scope_all_svm_devices); 

 Finish= atomic_load(&SVMComm[FINISH], 

 memory_order_seq_cst,memory_scope_all_svm_devices);   

 //obtain work info here and propagate to SLM  

} 

barrier( CLK_LOCAL_MEM_FENCE ); 

//all work items are synchronized here  

if( Finish != 0 ) return; 

//do the work on all work items basing on SLM inputs  

} 
Atomic traffic reduced by the factor of workgroup size ( up to 256x ) 

D C 
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GPU Daemon Instant mode – Thread Spawn 

//SVM communication buffer 

std::atomic<unsigned int>*pCommBuffer = 

(std::atomic<unsigned int>*)pData; 

size_t gws = m_NumberOfHWThreads * 

kernelSIMD; 

//use 4 HW threads per WKG to minimize 

atomic traffic  

size_t HWThreadsPerWKG = 4; 

size_t lws = kernelSIMD * HWThreadsPerWKG; 

 

clEnqueueNDRange(“InstantKernel”,gws,lws); 

clFlush(); 

 

//wait before GPU is ready , each thread 

will signal 

while(pCommBuffer[SPIN] < 

m_NumberOfHWThreads); 

//if we are here it means that GPU is ready 

for submissions on all HW threads 

CPU 
__kernel InstantKernel(global int* pCommBuffer){ 

//tell compiler we will need atomic operations 

global atomic_int *SVMComm = (global volatile 

atomic_int*)pCommBuffer; 

//each HW thread notifies that it is ready 

if(get_sub_group_local_id() == 0) { 

    atomic_fetch_add_explicit( 

        &SVMComm [SPIN],1, 

     memory_order_seq_cst, 

        memory_scope_all_svm_devices ); 

} 

//initialize SLM to use it later for workgroup 

communication 

local int Finish; 

local int ReqPhase; 

ReqPhase = Finish = 0; 

barrier( CLK_LOCAL_MEM_FENCE ); 

//setup done, we may enter polling mode 

GPU 
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GPU Daemon Instant mode – communication 

//make sure atomics are used 

std::atomic<unsigned int>*pCommBuffer = 

(std::atomic<unsigned int>*)pData; 

 

for(uint i = 0; i < iterations; i++) { 

    //triger workload 

    pCommBuffer[PHASE]= ++Phase; 

    //wait before completion 

    while(pCommBuffer[COMPLETE]   

   < m_numWorkgroups); 

    //data is ready GPU completed 

 

    //re-init completion value for next iter 

    pCommBuffer[COMPLETE] = 0; 

} 

 

//terminate Instant 

pCommBuffer[FINISH] = 1; 

 

uint Phase = 0; 

while(1) { 

if(get_local_id(0) == 0) { 

    Finish = atomic_load(&SVMComm[FINISH]); 

    ReqPhase = atomic_load(&SVMComm[PHASE]); 

} 

barrier( CLK_LOCAL_MEM_FENCE ); 

if(Finish != 0) return; 

if(Phase < ReqPhase) { 

    //do some work, increment Phase 

    Phase++; 

    //now signal completion 

    barrier( CLK_GLOBAL_MEM_FENCE ); 

    if(get_local_id(0) == 0 ) { 

        atomic_fetch_add_explicit( 

        &SVMComm[COMPLETE], 

        1, memory_order_seq_cst, 

        memory_scope_all_svm_devices );}  

} 

CPU GPU 
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Summary 
 GPU Daemon is a very efficient technique for direct submission. 

– Submission and completion driver overhead is eliminated. 

– Kernel execution is boosted. 

 GPU Daemon offers various modes allowing very flexible application paradigms 

– Instant Mode for direct submission 

– Enqueue Mode whenever we need to switch between modes or enqueue other 
workloads that don’t require direct submission  

 Get familiar with https://software.intel.com/sites/default/files/managed/c5/9a/The-
Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf 
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microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the 
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent 
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture 
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the 
specific instruction sets covered by this notice. 
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