
MICHAL MROZEK

ZBIGNIEW ZDANOWICZ

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Notices and Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT
OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN
ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products.

• All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

• All products, platforms, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice. All dates specified are target dates, are provided for planning purposes only
and are subject to change.

• This document contains information on products in the design phase of development. Do not finalize a design with this information. Revised information will be published when the product is available. Verify with your
local sales office that you have the latest datasheet before finalizing a design.

• Code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to
use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user.

• Intel, Intel Inside, Intel Atom and Intel Core are trademarks of Intel Corporation in the U.S. and other countries.

• Other names and brands may be claimed as the property of others.

• Copyright © 2015-2016, Intel Corporation. All rights reserved.

• OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

http://www.intel.com/design/literature.htm

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda

3

• Current OpenCL™ scheduling model

• GPU Daemon:

- Instant Mode

- Enqueue Mode

• Performance Data

• Efficient use of GPU Daemon patterns

• Summary

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda

4

• Current OpenCL™ scheduling model

• GPU Daemon:

- Instant Mode

- Enqueue Mode

• Performance Data

• Efficient use of GPU Daemon patterns

• Summary

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Current OpenCL™ scheduling model

5

Application Graphics Driver Stack Graphics Processing Unit
clEnqueue
NDRange

UMD
Runtime

KMD/
OS

Threads
Creation

Threads
Execution

Cleanup
Signal

clWaitFor
Events

Total
Time
Spent
231 us

Actual
Work
12 us
(5.4%)

Submission
latencies

CPU Start
to Queue

Queue to
Submit

Submit to
GPU Start

GPU Start
to GPU End

REAL
WORK

GPU End
To CPU End Total

Subsequent
enqueue 28 19 137 12 32 231

Start

End

GPU
Start

GPU
End

Submit
137 us
(59%)

Queued
(28+19) us

20%

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Current OpenCL™ scheduling model

6

Submission
latencies

CPU
Start to
Queue

Queue to
Submit

Submit to
GPU Start

GPU Start
to GPU

End REAL
WORK

GPU End
To CPU

End Total

Subsequent
enqueue 28 19 137 12 32 231

13%

8%

60%

5%

14% CPU Start to Queue

Queue to Submit

Submit to GPU Start

GPU Start to GPU End

REAL WORK

GPU End To CPU End

 Driver overhead is significant:

– Not suitable for small kernels.

– Not suitable for low latency
scenarios.

 Submission is expensive:

– Memory needs to be resident.

– GPU threads are created &
destroyed for each kernel.

 Why queue if I want to submit ?

– No queue needed if 0 cost
submission & completion.

Current scheduling model doesn’t suit well for low latency / short workloads

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda

7

• Current OpenCL™ scheduling model

• GPU Daemon:

- Instant Mode

- Enqueue Mode

• Performance Data

• Efficient use of GPU Daemon patterns

• Summary

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Introducing GPU Daemon

8

GPU
Daemon

SVM
Communication

Buffer

 GPU Daemon is a kernel launched from the host and later
persistent on the GPU.

 It communicates with CPU using Fine-Grained Shared Virtual
Memory with atomics.

 Persistency is achieved using various methods:

– Instant Mode – loop within a kernel.

– Enqueue Mode – self-enqueue utilizing device_enqueue.

 CPU communicates directly with active GPU threads bypassing
driver stack.

 Whenever Daemon is no longer needed CPU sends “end” signal
that will terminate GPU threads.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Introducing GPU Daemon – Instant Mode

9

Application Graphics Driver Stack Graphics Processing Unit

clEnqueue
NDRange

clFlush

UMD
Runtime

KMD/
OS

Threads
Creation

GPU
Daemon

Start

SVM
Communication

Buffer

Compute
Request

Leave
Request

End

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Instant Mode – tasks processing

10

CPU GPU

SVM
Communication

Buffer

New Compute
Task

Work
Done?

New
Work?

No Yes

Process
work

Work
Done
Signal

No

Data ready

Yes

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

GPU Daemon in Enqueue mode

11

GPU
Daemon

SVM
Communication

Buffer

 Enqueue Mode allows various different transitions:

– Utilizes device self-enqueue feature of OpenCL™ 2.0.

– GPU can switch to Instant mode for direct submission.

– GPU can enqueue traditional kernels without the need of host
API interaction.

 Gives great flexibility in terms of possible options:

– Whole host code can be transferred to the device.

– Various Instant kernels may be dispatched, serving different
compute algorithms.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Introducing GPU Daemon – Enqueue mode

12

CPU GPU

GPU Daemon
Enqueue

Mode
1 HW thread

GPU Daemon
Instant
Mode

All HW threads

Switch to
Instant

SVM
Communication

Buffer Compute

Switch to
Enqueue

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda

13

• Current OpenCL™ scheduling model

• GPU Daemon:

- Instant Mode

- Enqueue Mode

• Performance Data

• Efficient use of GPU Daemon patterns

• Summary

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Model Comparison – classic vs GPU Daemon

14

Application Graphics Driver Stack Graphics Processing Unit
clEnqueue
NDRange

UMD
Runtime

KMD/
OS

Threads
Creation

Threads
Execution

Signal

clWaitFor
Events

Start

End

GPU
Start

GPU
End

Submit
137 us
(59%)

Queued
(28+19) us

20%

GPU
Daemon

SVM
Communication

Buffer

Compute
Request +
Response

VS

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Kernel execution comparison (ns)

15

 Instant Mode Execution is faster than
traditional enqueue (+5%):

– No Thread Creation

– No Thread Destruction

– GPU boosted to high frequency

 This time includes CPU + GPU atomics
communication cost for submission and
completion.

 After work is done, threads are
immediately ready for next submission.

0

2000

4000

6000

8000

10000

12000

14000

Traditional Exec Instant Exec

Traditional Exec

Instant Exec

No kernel execution overhead with CPU+GPU synchronization.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Mode Transition Latency (ns)

16

 Instant mode may be initiated from
the host or from GPU Daemon in
Enqueue Mode.

 Time needed to enter Instant Mode
from the host is 160 us.

 Same operation from GPU Daemon
being in Enqueue mode takes 58 us.

 Useful when multiple different
instances of Instant kernels will be
required.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Host -> Instant Setup Enqueue -> Instant

Setup

Host -> Instant

Setup

Enqueue ->

Instant Setup

3x

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Model Comparison – Instant with active Daemon

17

0

50000

100000

150000

200000

250000

Traditional Instant

Total Time (ns)

Traditional

Instant

19x

 Time from start to completion of the
compute task reduced 19 times !

 This includes submission, processing
and completion of compute tasks.

 All latencies are not present, immediate
compute power available on demand.

GPU Daemon is a very efficient technique for zero cost submission & completion.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda

18

• Current OpenCL™ scheduling model

• GPU Daemon:

- Instant Mode

- Enqueue Mode

• Performance Data

• Efficient use of GPU Daemon patterns

• Summary

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Make sure you spawn all HW threads available
 Query Number of Execution Units using:

clGetDeviceInfo + CL_DEVICE_MAX_COMPUTE_UNITS

 Multiply it by number of hardware threads on each EU (typically 7, refer to device
documents), this will give you total HW threads count, i.e. for Intel(R) HD Graphics 560:

24 * 7 = 168 Hardware Threads

 Obtain SIMD size of your kernel using (8,16,32):

clGetKernelWorkGroupInfo + CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE

 Compute global work size that will result in all threads being spawned:

Gws[0] = SIMDsize * NumberOfHwThreads = 32 * 168 = 5376

 Make sure your LWS is a multiple of SIMDsize.

 Make sure your GWS is a multiple of LWS.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Play nicely with GPU
 Be cautious to not spawn more HW threads than device has.

 Choose Local Work Group Size that fits nicely into sub-slices:

– Get familiar with https://software.intel.com/sites/default/files/managed/c5/9a/The-
Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf

– Make sure number of HW threads per sub-slice is a multiple of HW threads per wkg.

 When using SLM(Shared Local Memory) / barriers choose bigger workgroup sizes to
maximize SLM re-use:

– Take into consideration that SLM is limited, so GPU may not spawn threads because of
lack of free resources.

– There is 64 KB per sub-slice for all workgroups, so if each uses 16KB then only 4 may
be executed concurrently on this sub-slice.

 When Daemon is not needed terminate it to save power.

https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

21

Be cautious with the amount of atomic operations
1) DON’T increment spin on every work-item:
__kernel Worker(__global int* pCommBuffer)

{

 __global atomic_int *atomicCommBuffer =

(__global volatile atomic_int*)pCommBuffer;

 atomic_fetch_add_explicit(

 &atomicCommBuffer[SPIN],

 1,

 memory_order_seq_cst,

 memory_scope_all_svm_devices);

 //do the work

}

1) DO Only single increment per thread
__kernel Worker(__global int* pCommBuffer)

{

 __global atomic_int *atomicCommBuffer =

(__global volatile atomic_int*)pCommBuffer;

 if(get_sub_group_local_id() == 0)

 {

 atomic_fetch_add_explicit(

 &atomicCommBuffer[SPIN],

 1,

 memory_order_seq_cst,

 memory_scope_all_svm_devices);

 }

 //do the work

}

Implicit SIMD synchronization reduces the amount of atomics up to 32x.

C D

21

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

Or even better, synchronize on Workgroup basis

__private int Finish = 0;

__private int ReqPhase = 0;

//loop as long as you need to

while(Finish != 0)

{

//each work item needs to check for

work

ReqPhase = atomic_load_explicit(

&atomicCommBuffer[PHASE],

 memory_order_seq_cst,

 memory_scope_all_svm_devices);

//each work item needs to obtain

flag

Finish = atomic_load_explicit(

&atomicCommBuffer[FINISH],

memory_order_seq_cst,

 memory_scope_all_svm_devices);

//do some work

}

//shared local memory keeps control variables

__local uint Finish;

__local uint ReqPhase;

ReqPhase = Finish = 0;

barrier(CLK_LOCAL_MEM_FENCE);

//setup done, now loop as long as you need to

while(1){

//one work item checks for completion OR new work

if(get_local_id(0) == 0) {

 ReqPhase= atomic_load_explicit(&SVMComm[PHASE],

 memory_order_seq_cst,memory_scope_all_svm_devices);

 Finish= atomic_load(&SVMComm[FINISH],

 memory_order_seq_cst,memory_scope_all_svm_devices);

 //obtain work info here and propagate to SLM

}

barrier(CLK_LOCAL_MEM_FENCE);

//all work items are synchronized here

if(Finish != 0) return;

//do the work on all work items basing on SLM inputs

}
Atomic traffic reduced by the factor of workgroup size (up to 256x)

D C

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

GPU Daemon Instant mode – Thread Spawn

//SVM communication buffer

std::atomic<unsigned int>*pCommBuffer =

(std::atomic<unsigned int>*)pData;

size_t gws = m_NumberOfHWThreads *

kernelSIMD;

//use 4 HW threads per WKG to minimize

atomic traffic

size_t HWThreadsPerWKG = 4;

size_t lws = kernelSIMD * HWThreadsPerWKG;

clEnqueueNDRange(“InstantKernel”,gws,lws);

clFlush();

//wait before GPU is ready , each thread

will signal

while(pCommBuffer[SPIN] <

m_NumberOfHWThreads);

//if we are here it means that GPU is ready

for submissions on all HW threads

CPU
__kernel InstantKernel(global int* pCommBuffer){

//tell compiler we will need atomic operations

global atomic_int *SVMComm = (global volatile

atomic_int*)pCommBuffer;

//each HW thread notifies that it is ready

if(get_sub_group_local_id() == 0) {

 atomic_fetch_add_explicit(

 &SVMComm [SPIN],1,

 memory_order_seq_cst,

 memory_scope_all_svm_devices);

}

//initialize SLM to use it later for workgroup

communication

local int Finish;

local int ReqPhase;

ReqPhase = Finish = 0;

barrier(CLK_LOCAL_MEM_FENCE);

//setup done, we may enter polling mode

GPU

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

GPU Daemon Instant mode – communication

//make sure atomics are used

std::atomic<unsigned int>*pCommBuffer =

(std::atomic<unsigned int>*)pData;

for(uint i = 0; i < iterations; i++) {

 //triger workload

 pCommBuffer[PHASE]= ++Phase;

 //wait before completion

 while(pCommBuffer[COMPLETE]

 < m_numWorkgroups);

 //data is ready GPU completed

 //re-init completion value for next iter

 pCommBuffer[COMPLETE] = 0;

}

//terminate Instant

pCommBuffer[FINISH] = 1;

uint Phase = 0;

while(1) {

if(get_local_id(0) == 0) {

 Finish = atomic_load(&SVMComm[FINISH]);

 ReqPhase = atomic_load(&SVMComm[PHASE]);

}

barrier(CLK_LOCAL_MEM_FENCE);

if(Finish != 0) return;

if(Phase < ReqPhase) {

 //do some work, increment Phase

 Phase++;

 //now signal completion

 barrier(CLK_GLOBAL_MEM_FENCE);

 if(get_local_id(0) == 0) {

 atomic_fetch_add_explicit(

 &SVMComm[COMPLETE],

 1, memory_order_seq_cst,

 memory_scope_all_svm_devices);}

}

CPU GPU

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda

25

• Current OpenCL™ scheduling model

• GPU Daemon:

- Instant Mode

- Enqueue Mode

• Performance Data

• Efficient use of GPU Daemon patterns

• Summary

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Summary
 GPU Daemon is a very efficient technique for direct submission.

– Submission and completion driver overhead is eliminated.

– Kernel execution is boosted.

 GPU Daemon offers various modes allowing very flexible application paradigms

– Instant Mode for direct submission

– Enqueue Mode whenever we need to switch between modes or enqueue other
workloads that don’t require direct submission

 Get familiar with https://software.intel.com/sites/default/files/managed/c5/9a/The-
Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf

https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

27 27

