
© Copyright Khronos Group 2015 - Page 1

IWOCL, May 2015

Ben Ashbaugh
Intel

Adam Lake
Intel

Maria Rovatsou
Codeplay

© Copyright Khronos Group 2015 – Page 2

Agenda

• OpenCL 2.1 Design Methodology

• C++ Kernel Language Overview

• SPIR-V Overview

• OpenCL 2.1 API Enhancements

• SYCL for OpenCL

• Panel Discussion

Single Source C++ Programming

Portable Kernel Intermediate Language

Core API and Language Specs

© Copyright Khronos Group 2015 – Page 3

Khronos Connects Software to Silicon

Low-level silicon APIs

needed on every platform

Graphics, parallel compute,

rich media, vision, sensor

and camera processing

Software

Silicon API Specifications AND Conformance

Tests for cross-vendor portability

Open Consortium creating OPEN STANDARD APIs for hardware acceleration

Any company is welcome – many international members – one company one vote

ROYALTY-FREE specifications

State-of-the art IP framework protects

members AND the standards

International, non-profit organization

Membership fees cover operating and

engineering expenses

Strong industry momentum

100s of man years invested by industry experts

Well over a BILLION people use Khronos APIs Every Day…

© Copyright Khronos Group 2015 - Page 4

Over 100 members worldwide
any company is welcome to join

BOARD OF PROMOTERS

© Copyright Khronos Group 2015 – Page 5

OpenCL Ecosystem
Implementers

Desktop/Mobile/FPGA

Working Group Members
Apps/Tools/Tests/Courseware

Single Source C++ Programming

Portable Kernel Intermediate Language

Core API and Language Specs

© Copyright Khronos Group 2015 – Page 6

OpenCL 2.1 Provisional Released March 2015!
• New OpenCL C++ Kernel Language

- Significantly enhanced programmer productivity and code performance

- Still supporting OpenCL C to preserve kernel code investment

• Support for the New Khronos SPIR-V Intermediate Language

- Improves portability and simplifies C++ Kernel Language deployment

• Runs on any OpenCL 2.0-capable hardware

- Only driver update required

OpenCL 1.0
Specification

Dec08 Jun10
OpenCL 1.1
Specification

Nov11
OpenCL 1.2
Specification

OpenCL 2.0
Specification

Nov13

Device Partitioning

Separate Compilation and Linking

Enhanced Image Support

Built-in Kernels / Custom Devices

Enhanced DX and OpenGL Interop

Shared Virtual Memory

Device Enqueue

Generic Address Space

Enhanced Image Support

C11 Atomics

Pipes

Android ICD

3-component Vectors

Additional Image Formats

Multiple Hosts and Devices

Buffer Region Operations

Enhanced Event-Driven Execution

Additional OpenCL C Built-ins

Improved OpenGL Data/Event Interop

18 months 18 months 24 months

OpenCL 2.1
Specification

(Provisional)

Mar1516 months

C++ Kernel Language

SPIR-V

Subgroups in Core

clCloneKernel

Device Timer Query

Priority/Throttle Hints

© Copyright Khronos Group 2015 - Page 7

OpenCL 2.1

C++ Kernel Language

© Copyright Khronos Group 2015 – Page 8

OpenCL C++ Kernel Language Overview

• A “Static Subset” of C++14

- Frees developers from low-level coding details without sacrificing performance

• In: Classes, templates, function and operator overloading, more...

- Reusable device libraries and containers - fast and elegant sharable code

- Templates enables meta-programming for highly adaptive software

• In: Upgraded Standard Library

- Leverages C++ standard library features

- Examples: atomics, images, device queues, math functions

• Out: Virtual Functions, Exceptions, Type Identification, C++ Standard Library...

© Copyright Khronos Group 2015 – Page 9

Example: A Simple OpenCL C++ Kernel
#include <opencl_stdlib>

using namespace cl;

template<typename T>

void add_vectors(const T* srcA, const T* srcB, T* dst)

{

size_t id = get_global_id(0);

dst[id] = srcA[id] + srcB[id];

}

kernel void

add_vectors_float(const float* srcA, const float* srcB, float* dst)

{

add_vectors(srcA, srcB, dst);

}

kernel void

add_vectors_float4(const float4* srcA, const float4* srcB, float4* dst)

{

add_vectors(srcA, srcB, dst);

}

New! Kernel Language Functions

Organized into Header Files

New! Kernel Language Functions
in the cl Namespace

New! Full support for Templates

© Copyright Khronos Group 2015 – Page 10

OpenCL C++ Address Spaces

• OpenCL C has global, local, constant and private address space type qualifiers

• OpenCL C++ 2.1 does not need address space qualifiers

- Pointers refer to allocations in the generic address space

• For local memory allocations, use the following types:

- local_ptr<typename T>

local_array<typename T, size_t N>

local<T>

• For constant memory allocations, use the following types:

- constant_ptr<typename T>

constant_array<typename T, size_t N>

constant<T>

© Copyright Khronos Group 2015 – Page 11

OpenCL C++ Device-Side Enqueue Syntax

• Kernels can independently launch work on the device

- without host interaction

- control execution order with event dependencies (user events or markers)

• Kernels can enqueue:

- a kernel function or

- code represented as a kernel lambda function

• A kernel lambda function is described as:

- [capture-list] (params) kernel { body }

© Copyright Khronos Group 2015 - Page 12

OpenCL 2.1

SPIR-V

© Copyright Khronos Group 2015 – Page 13

What is SPIR-V?
• Cross Vendor Intermediate Representation

- Language front-ends can easily access multiple hardware run-times

- Acceleration hardware can leverage multiple language front-ends

- Encourages tools for program analysis and optimization in SPIR form

• SPIR-V - first multi-API, intermediate language for parallel compute and graphics

- Native representation for Vulkan shader and OpenCL kernel source languages

Diverse Languages

and Frameworks

Hardware

runtimes on

multiple architectures

Tools for

analysis and

optimization

Standard

Portable

Intermediate

RepresentationSPIR-V is a significant convergence point

in the language ecosystem for graphics

and parallel computation

SPIR-V is supported in both Vulkan and OpenCL 2.1

© Copyright Khronos Group 2015 – Page 14

Evolution of SPIR
• SPIR–V is the First Fully Specified Khronos-defined SPIR standard

- Isolated from LLVM roadmap changes

- Includes full flow control, graphics and parallel constructs beyond LLVM

- Khronos considering open source SPIR-V <-> LLVM IR conversion tools

SPIR 1.2
SPIR 2.0
(Provisional) SPIR-V

LLVM Interaction Uses LLVM 3.2 IR Uses LLVM 3.4 IR 100% Khronos Defined

Compute Constructs Metadata/Intrinsics Metadata/Intrinsics Native

Graphics Constructs No No Native

Supported
Language Feature Set

OpenCL C 1.2
OpenCL C 1.2
OpenCL C 2.0

OpenCL C 1.2 / 2.0
OpenCL C++

GLSL

OpenCL Consumption OpenCL 1.2 Extension OpenCL 2.0 Extension OpenCL 2.1 CORE

Vulkan Consumption - - Vulkan CORE

© Copyright Khronos Group 2015 – Page 15

New OpenCL 2.1 Compiler Ecosystem

Device X Device Y Device Z

OpenCL C

Kernel Source

Alternative Language for

Kernels
Alternative Language for

Kernels
Diverse, domain-specific

Languages, frameworks

and tools

OpenCL

Runtime

SPIR-V is in core OpenCL 2.1

OpenCL C++

Kernel Source

OpenCL C++ to

SPIR-V Compiler

Khronos considering

open source project for

OpenCL C++ front-end

OpenCL 2.1 runtime can

ingest OpenCL C OR SPIR-V

SPIR-V designed as compiler target

SPIR Generator
(e.g. patched CLANG)

https://github.com/KhronosGroup/SPIR

https://github.com/KhronosGroup/SPIR

© Copyright Khronos Group 2015 – Page 16

SPIR-V Advantages for Developers
• Eliminates a major source of cross-vendor portability

- Developers can use same front-end compiler across multiple platforms

• Reduces runtime shader/kernel compilation time

- Driver only has to process SPIR-V, not full source language

• Provides a measure of IP protection

- Don’t have to ship shader/kernel source code

• Drivers are simpler and more reliable

- No need to include front-end compilers

• SPIR-V Whitepaper

- https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf

https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf

© Copyright Khronos Group 2015 - Page 17

OpenCL 2.1

API

© Copyright Khronos Group 2015 - Page 18

OpenCL 2.1 API Enhancements

• clCreateProgramWithIL

- Clearly distinguish between SPIR-V and source/binary programs

• clCloneKernel: deep copy of kernel, including arguments

- Safely pass kernels to threads or wrapper classes

• cl_khr_subgroups: now a core feature

- Exposes hardware threads / warps / wavefronts and their cross-lane operations

• Low-Latency Device Timer Query

- Synchronize host and device clock domains

• Usability Enhancements

- Zero-sized dispatches are valid, support events and wait lists

- NULL local work size supported with reqd_work_group_size kernels

© Copyright Khronos Group 2015 - Page 19

OpenCL 2.1 API Extensions

• Priority Hint

- Optionally, assign a “priority” to a command queue

- Provides guidance when commands from two queues are ready to run

• Throttle Hint

- Optionally, assign a “throttle level” to a command queue

- Provides guidance to make appropriate power/performance tradeoffs

© Copyright Khronos Group 2015 - Page 20

SYCL Update

© Copyright Khronos Group 2015 – Page 21

What is ?

• SYCL
- Pronounced SICKLE

• Royalty-free, cross platform, cross-toolchain C++ programming layer

- No language extensions, any standard C++ compilers can build SYCL source

code, can have multiple device compilers linking into final executable

• Full OpenCL feature set in a modern C++ single-source programming model

• A system that follows closely the developments in both C++ and OpenCL and

enables projects that can serve as a dialog for both communities.

© Copyright Khronos Group 2015 – Page 22

What does achieve?

• Single source C++11 programming model for OpenCL 1.2

• Ease of use

- SYCL source compiled for host and device(s) (No language extensions, variety of

environments and compilers for host and device)

- Ease of integration with C++ libraries and applications optimized for other technologies

- Development/Debugging on host

- Programming interface based on abstraction of OpenCL components

• Provides the full OpenCL feature set and seamless integration with existing

OpenCL code

• Enables the creation of higher level programming models and C++ templated

libraries based on OpenCL

© Copyright Khronos Group 2015 – Page 23

Call to Action

• Khronos seeking feedback on OpenCL 2.1 and SPIR-V

- Links provided on Khronos forums

- https://www.khronos.org/opencl/opencl_feedback_forum

- https://www.khronos.org/spir_v_feedback_forum

• Or, give feedback to the panel RIGHT NOW!

• Reminder: Any company or organization is welcome to join Khronos for a voice

and a vote in any of these standards

- www.khronos.org

https://www.khronos.org/opencl/opencl_feedback_forum
https://www.khronos.org/spir_v_feedback_forum
mailto:ntrevett@nvidia.com

