
A LOOK AT THE OPENCL 2.0 EXECUTION MODEL
 / Benedict R. Gaster @cuberoo_

OPENCL 1.X EXECUTION MODEL

I'm going to assume we all know the 1.x NDRange model

OPENCL 2.0 SUBSUMES 1.X EXECUTION MODEL

Of course, OpenCL 2.0 supports this data-parallel model

OPENCL 2.0 EXECUTION MODEL (DATA PARALLEL MODE)

EACH WORKITEM
PC - Program counter
PM - Private memory (i.e. registers)
EP - Execution predicate (is enabled)

EACH WORKITEM
PC - Program counter

conceptually same for each workitem
PM - Private memory (i.e. registers)
EP - Execution predicate (is enabled)

SYNCHRONIZING COMMUNICATION
kernel foo(...) {

 local int l[WORK_GROUP_SIZE_PLUS_ONE];

 l[WORK_GROUP_SIZE_PLUS_ONE-1] = 0;

 barrier(CLK_LOCAL_MEM_FENCE);

 l[get_local_id(0)] = f(...);

 barrier(CLK_LOCAL_MEM_FENCE);

 int v = l[get_local_id(0) + 1];

}

DIVERGENCE CAN BE BAD...
kernel foo(...) {

 local int l[WORK_GROUP_SIZE_PLUS_ONE];

 l[WORK_GROUP_SIZE_PLUS_ONE-1] = 0;

 barrier(CLK_LOCAL_MEM_FENCE);)

 l[get_local_id(0)] = f(...);

 if (b) {

 barrier(CLK_LOCAL_MEM_FENCE);

 }

 int v = l[get_local_id(0) + 1];

}

EVEN WORSE...
kernel foo(...) {

 local int l[WORK_GROUP_SIZE_PLUS_ONE];

 l[WORK_GROUP_SIZE_PLUS_ONE-1] = 0;

 barrier(CLK_LOCAL_MEM_FENCE);)

 bar(l,...); does bar contain a barrier?

 int v = l[get_local_id(0) + 1];

}

OPENCL 2.0 CAN HELP
An extended excution model
An actual memory model

SUBGROUPS

A "SIMD" hardware thread

Extension since OpenCL 2.0

OPENCL 2.0 EXECUTION MODEL+ (VECTOR PARALLEL MODE)

EACH SUBGROUP
PC - A single program counter
PM - Private memory for each workitem
EP - A vector Execution Predicate (one mask for each
workitem)

OPENCL 2.0 PROVIDES

Independent forward progress between each subgroup

OPENCL 2.0 PROVIDES

How does this help with our barrier problem(s)?

BARRIER OBJECTS

What if we made barriers first class?

FIRST CLASS BARRIER OBJECTS

Regain composibility
Subsets of workitems could communicate

BUT...
OpenCL 2.0 does not have first class barriers!
HSA has fbarriers, which amount to the same thing!

BARRIER OBJECTS

Well that is disappointing!

BARRIER OBJECTS

Could we define our own?

REQUIREMENTS FOR BARRIER OBJECTS

Supports synchronized communication between subsets of
workitems
Foward progress between communicating workitems

IMPLEMENTING REQUIREMENTS FOR BARRIER OBJECTS

Supports synchronized communication between

workitems

OpenCL 2.0's memory model provides what we need

Foward progress between communicating workitems

Subgroups provide independent forward progress

BARRIER OBJECTS API
// create a barrier
barrier_t create_barrier(int num_subgroups, barrier_t bobj);

// take part and wait
void wait(barrier_t, memory_order mo, memory_scope);

// take part but do not wait
void arrive(barrier_t, memory_order, memory_scope scope);

BARRIER OBJECTS IMPLEMENTATION

Fairly straightforward using a noiton of sense, to enable
reuse
Must use sub_group_barrier internally for workitems
within subgroup
Replies on relaxed atomics for memory consistency of
barrier object

OUR EXAMPLE AGAIN...
kernel foo(...) {

 local int l[WORK_GROUP_SIZE_PLUS_ONE];

 l[WORK_GROUP_SIZE_PLUS_ONE-1] = 0;

 barrier_t b(get_num_subgroups());

 barrier(CLK_LOCAL_MEM_FENCE);

 bar(l,b); //now we know it (likely) uses a barrier?

 int v = l[get_local_id(0) + 1];

}

CONCLUSION

Impossible to do justice to OpenCL 2.0 execution model in
15 minutes!
Subgroups provide an important new design point

Forward progress adds the ability to reason about
producer/consumer
Barrier objects address concerns with composibility
Expose underlying hardware to enable portable
optimizations that were already being done in non-
portable ways (not covered here)

Have not mentioned "nested parallelism", you may wonder
why?

