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Components of a Typical AR AppAugmented Reality (AR) is a live view of real-world
sequences with enhanced digital information. To
enable such enhancement, typical modules of an AR
application can be very compute intensive, which is a
factor that prevents users from having smooth user
experience in low-end devices.

We present an AR application in which the 
performance is boosted by balancing heavy 
workload in both CPU and GPU:
1) To capture high-quality data and process such 

heavy data through color camera and depth 
sensors;

2) To localize or track sensor movement, which 
aligns real and virtual views when rendering  
two worlds; 

3) To recover camera pose tracking even if that is 
lost momentarily;

4) To render virtual objects with photorealism to 
blend well into the real world;

5) To provide seamless user experience.

Silicon die layout for 4th Generation Intel® core processor, over half is dedicated to integrated GPU

Use Case

OpenCL Optimization

VSA Block Diagram

VSA Modules
1) Imaging Device: Real-time RGB & Depth 

camera sequence capture
2) Depth Image Processing: Fill up “holes” in the 

raw depth map
3) Camera Tracking: Compute camera pose 

based on depth image
4) Render Engine/UI: Use RGB and depth images 

along with camera pose to render real world 
with virtual 3D objects, Record/playback user 
interactions
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Several matching alg. based on NN, 
Binning, or optimized data structure 

searches.
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Visual Shopping Assistant (VSA) In Action

Depth Map Processing
1) Fill up “holes” in depth maps
2) Canny edge detection to find 

delimiters
3) Nearest neighbor or 

interpolation to fill in the 
missing pixels.

Tracking and Recovery
1) Recover to get correct camera pose from lost tracking when the depth sensor 

shakes/loses current depth frame
2) Store keyframes consisting of feature descriptors extracted using BRISK or SURF run 

on an RGB image and the corresponding camera pose
3) Recover current camera pose by extracting features from the current frame and 

matching them to the previously generated keyframes.
4) Hamming distance computation for feature matching is implemented in OpenCL

Conclusion & Future Work

Platforms 
Running VSA

• Windows

• Android

HW Tested

• Intel Haswell on Surface Pro 2

• Intel Atom SoC on Bay Trail

Camera 
Technology

• Creative Gesture 

• Prime Sense

• Kinect

- Incorporate 
OpenCL 2.0
- Implement 
more depth 
processing and 
tracking 
algorithms
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