
International Workshop on OpenCL

12-13 May 2015

A Compute Model for Augmented Reality with Integrated-GPU Acceleration
Preeti Bindu Jeremy Bottleson Sungye Kim Jingyi Jin

Graphics Initiative Team, VPG, Intel Corporation

Motivation AR Building Blocks

Realistic
virtual
object

rendering

Tracking
sensor

movement

High quality
data capture

through
sensor

Seamless
user
experience

Components of a Typical AR AppAugmented Reality (AR) is a live view of real-world
sequences with enhanced digital information. To
enable such enhancement, typical modules of an AR
application can be very compute intensive, which is a
factor that prevents users from having smooth user
experience in low-end devices.

We present an AR application in which the
performance is boosted by balancing heavy
workload in both CPU and GPU:
1) To capture high-quality data and process such

heavy data through color camera and depth
sensors;

2) To localize or track sensor movement, which
aligns real and virtual views when rendering
two worlds;

3) To recover camera pose tracking even if that is
lost momentarily;

4) To render virtual objects with photorealism to
blend well into the real world;

5) To provide seamless user experience.

Silicon die layout for 4th Generation Intel® core processor, over half is dedicated to integrated GPU

Use Case

OpenCL Optimization

VSA Block Diagram

VSA Modules
1) Imaging Device: Real-time RGB & Depth

camera sequence capture
2) Depth Image Processing: Fill up “holes” in the

raw depth map
3) Camera Tracking: Compute camera pose

based on depth image
4) Render Engine/UI: Use RGB and depth images

along with camera pose to render real world
with virtual 3D objects, Record/playback user
interactions

Camera Tracking Algorithm

Pose
Estimation

PreprocessRGB

Rendering

Composition

Feature Tracking

Feature MatchingFeature Extraction

100s to 1000s of
objects * 1000

vectors per object

~(300-500 feature) x
(64 dimensions/feature)

[0]

[1]

[2]

[n]

Several matching alg. based on NN,
Binning, or optimized data structure

searches.

Rotation and
translation matrices
are estimated from
uv-correspondences

Rendering 3D graphics
(5-10 objects) x (1-10K poly/obj)

x (10-100 pixels/poly)

Input image frame
preprocessed

Extracted
features
overlay

Object Recognition

Depth Map

Ray casted Depth Map

Occlusion

Shadow Rendering

Measurement Tool

Self Shadow Rendering VSA

User Takes
Measurements in

Real Time

User Inserts
Virtual Object to

be Purchased

User Manipulates
the Object in Real
Time to Translate,

Rotate, etc.

An Online
Purchase is Made

Real & Virtual
Object

Comparison

Visual Shopping Assistant (VSA) In Action

Depth Map Processing
1) Fill up “holes” in depth maps
2) Canny edge detection to find

delimiters
3) Nearest neighbor or

interpolation to fill in the
missing pixels.

Tracking and Recovery
1) Recover to get correct camera pose from lost tracking when the depth sensor

shakes/loses current depth frame
2) Store keyframes consisting of feature descriptors extracted using BRISK or SURF run

on an RGB image and the corresponding camera pose
3) Recover current camera pose by extracting features from the current frame and

matching them to the previously generated keyframes.
4) Hamming distance computation for feature matching is implemented in OpenCL

Conclusion & Future Work

Platforms
Running VSA

• Windows

• Android

HW Tested

• Intel Haswell on Surface Pro 2

• Intel Atom SoC on Bay Trail

Camera
Technology

• Creative Gesture

• Prime Sense

• Kinect

- Incorporate
OpenCL 2.0
- Implement
more depth
processing and
tracking
algorithms

Depth Filtered

Depth Map

Vertex

Normal/

Pyramid

Vertex

Normal/

Pyramid

Volume

Data

Bilateral

Update Model

(Global TSDF)

Tracking (Pose

Estimation)

Including compute

linear systems

Depth 2

Vertex 2

Normal

Depth

Pyramid

Raycast

Depth Map

Pyramid

Pose

