A Compute Model for Augmented Realitywith Integrated-GPU Acceleration
m Jingyi Jin

E Preeti Bindu Jeremy
yoration

[
—_— —

Graphics Initiative

Motivation AR Building Blocks

Object Recognition

Augmented Reality (AR) is a live view of real-world

Components of a Typical AR App

Sequences Wlth enha nced C |8|ta| information. To Preprocess Feature Extraction Feature Matching I Est:ar:iion Composition
enable such enhancement, typical modules of an AR
Seamless
application can be very compute intensive, which is a user Feature Tracking Rendering
. [~(300-500 feature)
factor that prevents users from having smooth user SXPETIENcs (64 dimensions/feature) Seversl matching g based on NN,
. .) . . High quality - inning, or optimized data structure
experience in low-end devices High qualty . B e
Tracking through = % =
We present an AR application in which the _ sensor sensor — — U= —
performance is boosted by balancing heavy . —
workload in both CPU and GPU: Rgalistic = Rotation and , ,
. . Vlr.l.:ual Input image frame 100s to 1000s of Extracted translation matrices Ren.derlng 3D graphlcs .
1) To capture high-quality data and process such object preprocessed objects * 1000 features re estimated from (510 objects) x (1-10K poly/obj)
heavy data through color camera and depth e vectors per object overlay uv-correspondences * (10-100 pixels/poly)
SEeNnsors; VSA Modules
2) To localize or track sensor movement, which 1) Imaging Device: Real-time RGB & Depth | imaging Device l
aligns real and virtual views when rendering Camera sequence capture
two worlds: 2) Depth Image Processing: Fill up “holes” in the

Depth image Color image
RAW RAW
Depth Image
Processing

raw depth map
3) Camera Tracking: Compute camera pose
based on depth image

3) To recover camera pose tracking even if that is
lost momentarily;
4) To render virtual objects with photorealism to

Y

Render Engine

blend well into the real world: 4) Render Engine/Ul: Use RGB and depth images
5) To provide seamless user experience. along with camera pose to render real world : rocessing modules
with virtual 3D objects, Record/playback user s procesing mosuies noct
interactions Do
—»/ Depth /L Bilateral % D:S:E’:ﬂ‘lp /L\ Ps:aap:i‘d % Dzz::nl:/il:p /L> 5::;22 setimation -.
Normal

[vern / Vertex / VSA Block Diagram

> Normal/ Normal/

/ Pyramid / Pyramid

|
Tracking (Pose
Volume Update Model Estimation)
Raycast [€— Pose .
Data (Global TSDF) Including compute
linear systems

Camera Tracking Algorithm

OpenCL Optimization

Silicon die layout for 4" Generation Intel® core processor, over half is dedicated to integrated GPU

Depth Map Processing
1) Fill up “holes” in depth maps

U Se Ca Se 2) Canny edge detection to find
delimiters
Visual Shopping Assistant (VSA) In Action 3) Nearest neighbor or

interpolation to fill in the
missing pixels.

User Manipulates

the Object in Real An Online

Time to Translate, Purchase is Made
Rotate, etc.

Real & Virtual
Object
Comparison

User Takes User Inserts
Measurements in Virtual Object to
Real Time be Purchased

Tracking and Recovery

1) Recover to get correct camera pose from lost tracking when the depth sensor
shakes/loses current depth frame

2) Store keyframes consisting of feature descriptors extracted using BRISK or SURF run
on an RGB image and the corresponding camera pose

Depth Map 3) Recover current camera pose by extracting features from the current frame and

matching them to the previously generated keyframes.
4) Hamming distance computation for feature matching is implemented in OpenCL

Conclusion & Future Work

\ | :
e \Windows \
Platforms e Android
Running VSA)
- Incorporate
OpenCL 2.0
=g T
* Intel Haswell on Surface Pro 2 [{GEN Ve B | - implement
* Intel Atom SoC on Bay Trail) \Atom.,... more depth
. processing and
Measurement Tool occlusion \ tVaCkl.V\g
i algorithms
e Creative Gesture ? ? g
Camera . ‘ o
e Prime Sense
e Kinect

/

Shadow Rendering

International Workshop on OpenCL

12-13 May 2015

