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Motivation AR Building Blocks

Object Recognition

Augmented Reality (AR) is a live view of real-world

Components of a Typical AR App
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3) To recover camera pose tracking even if that is
lost momentarily;
4) To render virtual objects with photorealism to
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blend well into the real world: 4) Render Engine/Ul: Use RGB and depth images
5) To provide seamless user experience. along with camera pose to render real world : rocessing modules
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Camera Tracking Algorithm

OpenCL Optimization

Silicon die layout for 4" Generation Intel® core processor, over half is dedicated to integrated GPU

Depth Map Processing
1) Fill up “holes” in depth maps

U Se Ca Se 2) Canny edge detection to find
delimiters
Visual Shopping Assistant (VSA) In Action 3) Nearest neighbor or

interpolation to fill in the
missing pixels.
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Tracking and Recovery

1) Recover to get correct camera pose from lost tracking when the depth sensor
shakes/loses current depth frame

2) Store keyframes consisting of feature descriptors extracted using BRISK or SURF run
on an RGB image and the corresponding camera pose

Depth Map 3) Recover current camera pose by extracting features from the current frame and

matching them to the previously generated keyframes.
4) Hamming distance computation for feature matching is implemented in OpenCL
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