SPIR me the details: building custom
language support on OpenCL

Neil Henning - Technology Lead

® codeplay®



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

Who am I?

e Fiveyearsin the industry

e Spentall of that using SPUs, GPUs,
vector units & DSPs

e Last three years implementing
compute for customers (OpenCL,
RenderScript & other proprietary
compute systems)

e Passionate about making compute
easy for developers




IWOCL’14 - SPIR me the details: building custom language support on OpenCL

Who are Codeplay?

e Heterogeneous Systems Experts

e Founded by Andrew Richards
(pictured right!)

e 35 engineers based out of
Edinburgh, Scotland

e Compilers, debuggers, test suites, &
much more

e Mostly work with LLVM, Clang, LLDB
& LLD

e Both off-the-shelf products &
contractual work




IWOCL’14 - SPIR me the details: building custom language support on OpenCL

Agenda

e Whatis SPIR?

e Why should you use SPIR?

e What tools are available to use SPIR?

e How do you make your language support SPIR?
e What kind of tools can you make using SPIR?

e What is the future of SPIR?

® codeplay®



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What is SPIR?

Standard Portable Intermediate
Representation
Khronos standardization of LLVM IR
format (LLVM 3.2)
Vendor agnostic, platform agnostic,
device agnostic
Two variants, spir-unknown-
unknown & spir64-unknown-
unknown
Allows for

o Offline compilation

o Online re-optimization

o Custom language support on

OpenCL

// OpenCL C Kernel Language
void kernel foo(
global int * a,
global int * b)
{

}

*3 = *p;

// SPIR human readable representation
define spir_kernel void @foo(

i32 addrspace(1)* %a,
i32 addrspace(1)* %b)

%1 = load i32 addrspace(1)* %b,
align 4

store i32 %1, i32 addrspace(1)* %a,
align 4

ret void




IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What is SPIR?

e SPIR 1.2 is the current standardized version!

e SPIR 1.2 to match OpenCL 1.2

e SPIR inherits the restrictions of OpenCL C 1.2 Language

O

O

No recursion
Distinct address spaces for data
Can call any OpenCL 1.2 builtin function

SPIR is an inherently parallel IR

® codeplay®



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

Why should you use SPIR?

o

e SPIR allows you to ship only a binary
e Means you don't have to ship
source!
e Which means people can't just make
off with your work
o The caveat being that SPIR like
any IR could still be stolen
though!
o SPIR does mean though that its
harder to reproduce the
original intention of the code

e Money, time, effort, energy & team
morale preserved

=

® codeplay®



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

Why should you use SPIR?

e SPIR can speed up OpenCL load times!
o Compiler frontend (normally Clang) doesn't need to be involved
o Code isjust 'finalized' For the OpenCL target
o Makes user experience better!

e Allows custom language support!

e Allows us to create tools!

® codeplay®



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What tools are available to use SPIR?

e Two implementors of the SPIR specification in the wild
e Intel OpenCL SDK targeting CPU, Xeon Phi & Intel Integrated GPU
e AMD's APP SDK targeting CPU & GPU

e Both OpenCL implementations can consume SPIR

e Khronos SPIR Generator built on Clang + LLVM 3.2

o We can use this generator to turn OpenCL C kernels into SPIR

® codeplay®


https://software.intel.com/en-us/articles/opencl-drivers
https://software.intel.com/en-us/articles/opencl-drivers
http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-tools-sdks/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-tools-sdks/amd-accelerated-parallel-processing-app-sdk
https://github.com/KhronosGroup/SPIR
https://github.com/KhronosGroup/SPIR

IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What tools are available to use SPIR?

e To verify our SPIR kernels are valid, we can use Khronos SPIR Verifier

e For profiling, we can follow Anteru's Guide to AMD's GPUPerfAPI

e Orlntel's (slightly more costly) VTune tool

e Can also use Oclgrind to interpret our kernels (useful to compare against real
devices in case you suspect foul play)

® codeplay®


https://github.com/KhronosGroup/SPIR-Tools/tree/master/spir_verifier
https://anteru.net/2014/04/30/2396
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://github.com/jrprice/Oclgrind

IWOCL’14 - SPIR me the details: building custom language support on OpenCL

How do you make your language support SPIR?

e Having custom languages that can target SPIR is awesome

e Many use cases for why allowing custom languages matters

e To enable your language
o You need to produce SPIR compliant IR

o Build your tool on LLVM 3.2, mimicking the SPIR producer provided by
Khronos

o Use the SPIR verifier to prove your code is ok
o Runit through Oclgrind on host to check the logic is sound

o Only then point it at an in-the-wild implementation

® codeplay®



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

How do you make your language support SPIR?

e Butwe need to be aware of the SPIR 1.2 standard's restrictions

o Need to be able to represent address spaces (or at least default all pointers
to the global address space)

o Needto be able to segregate work into parallel chunks

o No support for recursion, so need to ban that in the languages that are
targeting SPIR

o Could also expose OpenCL builtins to the language

e And decide whether to expose OpenCL or just hide it underneath your own
language constructs

® codeplay®



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

How do you make your language support SPIR?

e SPIR enabled Codeplay to lead development of the new Khronos SYCL standard
e Any language that can use LLVM 3.2 as a backend could be made to support SPIR

e Atthe very least Clang 3.2 allows us to target ObjC, C, & C++ onto a SPIR
implementation

e Also possible to 'backport' future LLVM IR, to LLVM 3.2 IR, but it is not a trivial task

® codeplay®



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What kind of tools can you make using SPIR?

Online and offline re-optimizers!
Can modify SPIR libraries!

Can modify other people's SPIR
IIEES

Maybe change tan -> native_tan
because you don't care about
precision?

Can be done offline (buy a SPIR
library, specialize it For your
application, ship!)

Or online (application developer
links in a SPIR library, can intercept
and re-imagine!)

// Before
define spir_func <4 x float>
@myAwesomeFunction(
<4 x float> %in) {
%out = call <4 x float> @_Z3tanDv4_f(
<4 x float> %in)
ret <4 x float> %out

}

// After

define spir_func <4 x float>
@myAwesomeFunction(
<4 x float> %in) {
%out = call <4 x float>
@ Zlonative_tanDv4 f(
<4 x float> %in)
ret <4 x float> %out




IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What kind of tools can you make using SPIR?

e Static analysis tools! int myAwesomeFunction(global int * a)
4 . {
e Can take other people's libraries int offset = get global 1d(0);
and prove features of them
o Are they safe? // now really mess up offset, in some
// hilariously bad way
o Do they use global data
correctly? /...
o Do t'hey call some functions | // offset into global array a
don't want them too? // could be out of bounds!
e Imagine a library we use has return a[offset];

complicated integer arithmetic
offsetting into a global array

e We could use static analysis on the
SPIR library to warn us that some
logic is not to our liking!




IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What kind of tools can you make using SPIR?

Debuggers and profilers!
Not every platform that will support
SPIR has the tool support of Intel or
AMD
So can we build our own?
What if we buy in a SPIR library - and
want to debug that?
o We can use SPIR to create our
own debuggers (kinda)
o At the very least we can inject
printf calls into library code!
We could also split up a kernel into
multiple sub-kernels For profiling!

// Before

void kernel myAwesomeKernel(
global int * a, global int * b) {
// ... doa, b&c...

}

//After

void kernel myAwesomeKernelA(
global int * a, global int * b,
global struct AToBState * out) {

}

void kernel myAwesomeKernelB(
global int * a, global int * b,
constant struct AToBState * in,
global struct BToCState * out) {
¥
void kernel myAwesomeKernelC(
global int * a, global int * b,
constant struct BToCState * in) {




IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What is the Future of SPIR?

e SPIR will track future version of the OpenCL specification

e OpenCL2.0->SPIR 2.0

e OpenCL2.1->SPIR 2.1

e This means any feature added to OpenCL, should be available in SPIR!

e Means all of the great innovation going into the OpenCL specification becomes
available to our custom languages too!

® codeplay®



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

Wrap up

e OpenCL SPIR specification is useful, understandable & powerful

e Enables non-vendors to interact with awesome hardware in a new and excited
way!

e We can create languages and tools and throw them at the hottest hardware
around (providing more vendors come forward with SPIR support!)

e Please provide feedback (Khronos Forums For SPIR is a good place to holler!)

e |look Forward to seeing all the awesome applications and libraries that you all will
come up with!

® codeplay®


http://www.khronos.org/message_boards/

IWOCL’14 - SPIR me the details: building custom language support on OpenCL

Questions?

Neil Henning
Email - neil@codeplay.com

Twitter - @sheredom

® codeplay®


mailto:neil@codeplay.com

