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FPGAs are radically different 

from CPUs and GPUs 

 

 

What kind of OpenCL runs well on an FPGA? 
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Outline 

 FPGA architecture 

 Altera’s mapping of OpenCL to FPGAs 

 What’s expensive, what’s cheap 

 Design and coding strategies 

 Q&A 
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FPGA Architecture 

Part 1:  FPGAs for software engineers 

FPGA datapath ~ Unrolled CPU hardware 
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A simple 3-address CPU 
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Load immediate value into register 
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Load memory value into register 
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Store register value into memory 
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Add two registers, store result in register 
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Multiply two registers, store result in register 
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A simple program 

 Mem[100] += 42 * Mem[101] 

 

 CPU instructions: 
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R0  Load Mem[100] 

R1  Load Mem[101] 

R2  Load #42 

R2  Mul R1, R2 

R0  Add R2, R0 

Store R0  Mem[100] 

 



CPU activity, step by step 
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A 

A 

A 

A 

A 

R0  Load Mem[100] 

R1  Load Mem[101] 

R2  Load #42 

R2  Mul R1, R2 

R0  Add R2, R0 

Store R0  Mem[100] 
A 

Time 



Unroll the CPU hardware… 
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R1  Load Mem[101] 

R2  Load #42 
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Space 



… and specialize by position 
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A 

A 

A 
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R0  Load Mem[100] 

R1  Load Mem[101] 

R2  Load #42 

R2  Mul R1, R2 

R0  Add R2, R0 

Store R0  Mem[100] 
A 

1. Instructions are fixed.  

Remove “Fetch” 



… and specialize 
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1. Instructions are fixed. 
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… and specialize 
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R1  Load Mem[101] 

R2  Load #42 

R2  Mul R1, R2 

R0  Add R2, R0 

Store R0  Mem[100] 
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1. Instructions are fixed. 

Remove “Fetch” 

2. Remove unused ALU ops 
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… and specialize 
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R0  Load Mem[100] 

R1  Load Mem[101] 

R2  Load #42 

R2  Mul R1, R2 

R0  Add R2, R0 

Store R0  Mem[100] 

1. Instructions are fixed. 

Remove “Fetch” 

2. Remove unused ALU ops 

3. Remove unused Load / Store 

4. Wire up registers properly!  

And propagate state. 

 



… and specialize 
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R0  Load Mem[100] 

R1  Load Mem[101] 

R2  Load #42 

R2  Mul R1, R2 

R0  Add R2, R0 

Store R0  Mem[100] 

1. Instructions are fixed. 

Remove “Fetch” 

2. Remove unused ALU ops 

3. Remove unused Load / Store 

4. Wire up registers properly!  

And propagate state. 

5. Remove dead data. 

 



… and specialize 
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R0  Load Mem[100] 

R1  Load Mem[101] 

R2  Load #42 

R2  Mul R1, R2 

R0  Add R2, R0 

Store R0  Mem[100] 

1. Instructions are fixed. 

Remove “Fetch” 

2. Remove unused ALU ops 

3. Remove unused Load / Store 

4. Wire up registers properly!  

And propagate state. 

5. Remove dead data. 

6. Reschedule! 
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Load Load 

Store 

42 

 

FPGA datapath = Your algorithm, in silicon 
 



So what? 
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FPGA datapath = Your algorithm, in silicon 
 

Build exactly what you need: 

Operations 

Data widths 

Memory size, configuration 

 

Efficiency: 

Throughput / Latency / Power 

 

 

 



Deep thought #1 
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OpenCL code is portable 

Not always performance portable 

 

 

 

 

Would you rather contort your code, 

Or contort your machine?  

 

Altera gives you a program-specific machine 
 



FPGA Architecture 

Part 2:  Business influences 

Why FPGAs are the way they are 
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Wide range of applications  
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Communications 
Broadcast 

Consumer 
Automotive 

Test, 
Measurement 

& Medical 

Computer & 
Storage 

Military & Industrial 

Cellular 
Basestations 
Wireless LAN 

Switches 
Routers 

Optical 
Metro 
Access 

Broadband 
Audio/video 
Video display 

Studio 
Satellite 
Broadcasting 

Medical 
Test equipment 
Manufacturing 

Card readers 
Control systems 
ATM 

Navigation 
Entertainment 
 

  Secure comm. 
  Radar 
  Guidance and control 

Wireless 

Networking 

Wireline 

Entertainment 

Broadcast 

Automotive 

Instrumentation Military 

Security &  

Energy Management 

Servers 
Mainframe 

RAID 
SAN 

Copiers 
Printers 
MFP 

Computers 

Storage 

Office  

Automation 



Typical FPGA use cases (up to now) 

 Technical demands 
 CPU / GPU too slow or power hungry 

 Exotic high speed IO 

 Hard real-time 

 Can’t afford 100M$ and 2 year design cycle for an ASIC 

 

 Deployment scenario 
 Usually single long-lived application 

 

 Consequences 
 At the edge of silicon capability 

 Extreme flexibility and control 

 Custom embedded system 

 Higher initial design investment (than software) 
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Altera FPGA: fine grain massively parallel array 

 Massive Parallelism 

 Millions of bit level logic elements 

 Thousands of 20Kb memory blocks 

 Thousands of DSP blocks 

 Dozens of High-speed transceivers 

 E.g. 28Gb/s each 

 Millions of programmable wires 

 Traditionally hardware-centric 

design flow 
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Altera SoC FPGA:  ARM ® processors on the die 

 OpenCL Host and Device 

on the same die 

 Just add RAM and power supply,  

and clock generator, and … 
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Peripherals 
 
Memory controller 

I/
O

 

I/O 

I/O
 

Programmable 
Routing Switch 

Logic 
Element 

ARMTM ARMTM 



Mapping OpenCL to Altera FPGAs 

Altera’s SDK for OpenCL: 

Software design flow for Altera FPGAs 

Exploit FPGA strengths 
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Altera SDK for OpenCL 

 Two major releases a year 

 

 May 2013:  v13.0:  OpenCL conformance 

 

 Nov 2013:  v13.1:  Board partner program 

 

 Coming soon: v14.0 
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Compiling OpenCL to FPGAs 
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x86 

PCIe 

Altera SDK 

Compiler 

Standard 

C Compiler 

.aocx X86 binary 

OpenCL 

Host Program + Kernels 

main() 
{ 
   cl_program prog 
   = clCreateProgramWithBinary(… ); 
 
   read_data_from_file( … ); 
   maninpulate_data( … ); 
     
   clEnqueueWriteBuffer( … ); 
   clEnqueueNDRangeKernel(…,sum, …);   
   clEnqueueReadBuffer( … ); 
 
   display_result_to_user( … ); 
} 

kernel void 
sum(global const float *a, 
    global const float *b, 
    global float *answer) 
{ 
int xid = get_global_id(0); 
answer[xid] = a[xid] + b[xid]; 
} 

Kernel Program 

Host Program 

Production flow:  

Offline compilation only 



FPGA 

FPGA OpenCL Architecture 
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Modest external memory bandwidth 

Extremely high internal memory bandwidth 

Highly customizable compute cores 

Kernel 

Pipeline 

Kernel 

Pipeline 

Kernel 

Pipeline 

PCIe 

D
D

R
* 

x86 / 
External 

Processor 

External 

Memory 
Controller 

& PHY 

M20K 

M20K 

M20K 

M20K 

M20K 

M20K 

Global Memory Interconnect 

Local Memory Interconnect 

External 

Memory 
Controller 

& PHY 

Prebuilt 

Customized 

to your 

kernels 



Relevant questions differ by architecture 

GPU FPGA 

How many private registers? How much area does this kernel occupy? 

How much local memory? What’s the initiation interval? 

How many compute units? How do I get a license? 

How many processing elements? I need Quartus® II? 

What is the memory banking scheme? What’s Quartus II? 
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Altera SDK for OpenCL Compiler 
Kernels.cl 

Quartus II 
FPGA CAD 
Compiler 

Verilog,  

Quartus project 

FPGA 

programming file 

Kernels.aocx 

Altera OpenCL 

device binary 



Exploiting FPGA strengths 

 Pipelined parallelism 

 Agnostic to divergent control flow 

 Optimized mix of operations, functions 

 Customized local, global, constant memory 

 

 

 (All traditional compiler optimizations too) 
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The BIG Idea behind OpenCL 

 OpenCL execution model …  
 Define N-dimensional computation domain 
 Execute a kernel at each point in computation domain 

void 

trad_mul(int n,  

         const float *a,  

         const float *b,  

         float *c) 

{ 

  int i; 

  for (i=0; i<n; i++) 

    c[i] = a[i] * b[i];  

} 

Traditional loops 
kernel void 

dp_mul(global const float *a,  

       global const float *b,  

       global float *c) 

{ 

  int id = get_global_id(0); 

 

  c[id] = a[id] * b[id]; 

  

} // execute over “n” work-items 

Data Parallel OpenCL 



Data parallel kernel 
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__kernel void 
sum(__global const float *a, 
__global const float *b, 
__global float *answer) 
{ 
int xid = get_global_id(0); 
answer[xid] = a[xid] + b[xid]; 
} 

float *a = 

float *b = 

float *answer = 

0 1 2 3 4 5 6 7 

7 6 5 4 3 2 1 0 

7 7 7 7 7 7 7 7 

__kernel void sum( … ); 



Example Pipeline for Vector Add 

 On each cycle the portions of the 

pipeline are processing different 

threads 

 While thread 2 is being loaded, 

thread 1 is being added, and 

thread 0 is being stored 

Load Load 

Store 

0 1 2 3 4 5 6 7 

8 work items for vector add example 

38 

+ 

Work item IDs 



Example Pipeline for Vector Add 

 On each cycle the portions of the 

pipeline are processing different 

threads 

 While thread 2 is being loaded, 

thread 1 is being added, and 

thread 0 is being stored 

Load Load 

Store 

0 
1 2 3 4 5 6 7 

8 work items for vector add example 
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+ 
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Example Pipeline for Vector Add 

 On each cycle the portions of the 

pipeline are processing different 

threads 

 While thread 2 is being loaded, 

thread 1 is being added, and 

thread 0 is being stored 

Load Load 

Store 

0 

1 
2 3 4 5 6 7 

8 work items for vector add example 
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+ 

Work item IDs 



Example Pipeline for Vector Add 

 On each cycle the portions of the 

pipeline are processing different 

threads 

 While thread 2 is being loaded, 

thread 1 is being added, and 

thread 0 is being stored 

Load Load 

Store 

1 

2 

3 4 5 6 7 

8 work items for vector add example 
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Work item IDs 



Example Pipeline for Vector Add 

 On each cycle the portions of the 

pipeline are processing different 

threads 

 While thread 2 is being loaded, 

thread 1 is being added, and 

thread 0 is being stored 

Load Load 

Store 

2 

3 

4 5 6 7 

8 work items for vector add example 
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+ 

0 

1 

All silicon used efficiently at steady-state 

Work item IDs 



So what’s expensive, and what’s 

cheap? 
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Cheap operations 

 Bit manipulation 
 Nearly free 

 Simple integer arithmetic 
 add, sub, mul 

 The narrower the better, e.g. short vs. int vs. long 

 Use of private memory 
 It’s abundant, especially if structured as shift-registers. 

 

 Example applications: 
 Encryption, hashing, fixed point signal processing 
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Optimal function mix: E.g. Inverse Normal CDF 

float ltqnorm(float p) 
{ 
   float q, r; 
   if (p < 0 || p > 1) { return 0.0; } 
   else if (p == 0) { return -HUGE_VAL /* minus "infinity" */; } 
   else if (p == 1) { return HUGE_VAL /* "infinity" */; } 
   else if (p < LOW) { 
      /* Rational approximation for lower region */ 

      q = sqrt(-2*log(p)); 
      return (((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) / 
                 ((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1); 
   } else if (p > HIGH) { 
      /* Rational approximation for upper region */ 

      q  = sqrt(-2*log(1-p)); 
      return -(((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) / 
                 ((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1); 
   } else { 
      /* Rational approximation for central region */ 
      q = p - 0.5; 
      r = q*q; 
      return (((((a[0]*r+a[1])*r+a[2])*r+a[3])*r+a[4])*r+a[5])*q / 
             (((((b[0]*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1); 
   } 
} 

• Complex functions sqrt, log 

• Require (scarce) special 

function unit on typical GPU 

• FPGA custom datapath: 

exactly the right balance of 

function units 

TPC 1 

Geometry controller 

SMC 

SM 

Shared 
memory 

SFU SFU 

SP SP 

SP SP 

SP SP 

SP SP 

C cache 

MT issue 

I cache 

SM 

Shared 
memory 

SFU SFU 

SP SP 

SP SP 

SP SP 

SP SP 

C cache 

MT issue 

I cache 

SM 

Shared 
memory 

SFU SFU 

SP SP 

SP SP 

SP SP 

SP SP 

C cache 

MT issue 

I cache 

Texture units 

Texture L1 
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Optimized Local Memory: Customized to your program 

 Abundant: Not just 32KB 
 Stitch together small blocks as needed 

 Alias analysis enables parallel access 

 Custom access widths, banking 
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M20K 

Bank0 

Arbitration Network 

Load/Store 

 

Load/Store 

 

Load/Store 

 

Load/Store 

 

M20K 

Bank1 

M20K 

Bank2 

M20K 

Bank3 

M20K 

Bank4 

M20K 

Bank5 

M20K 

Bank6 

M20K 

Bank7 

Typically single cycle access 

as wide as your code wants 
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Optimized Global Memory: Coalescing 

 External memory has wide words (256 bits) 

 Loads/stores typically access narrower words (32-128) 

bits) 

 

 

 

 

 

 Combine requests to maximize DDR efficiency 
 Reduce thrashing in DDR “protocol” 

32 

256-bit DDR word 

32 32 32 32 32 32 32 



Coalescing example 

 Dynamic: Hardware exploits runtime pattern 

 

 

 

 

 

 Static: Compiler analysis infers pattern 
 Chooses best interface for each load/store site in your code 

 Optimal when indexing by work-item ids 
 And simple linear combinations 
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 int id = get_global_id(0); 
 

 c[id] = a[id] * b[id]; 
 

1000 1001 1002 1003 1004 1005 1006 1007 100a 100c 100d 

Load/Store Addresses (128-bit words): 

1 burst request for 4 DDR words 1 word 1 word 

 3 requests in total 

Caches only hurt 

you in this case: 

Burn power 

uselessly 



Divergent control flow:  Bad for GPU 
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 GPU uses SIMD 

pipeline to save area 

on control logic. 

 Branches have a 

significant impact on 

GPU parallelism 

 Parallel threads 

running through 

different branches 

cannot run 

concurrently 

 

Branch 

Path A 

Path B 

Branch 

Path A 

Path B 



Divergent control flow: Just fine for FPGA 
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 FPGA datapath 

already has all 

operations in silicon 

 Branch 

Path A 

Path B 

Branch 

Path A 

Path B 



Divergent control flow: Just fine for FPGA 
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 FPGA datapath 

already has all 

operations in silicon 

 Exploit pipelining 

 

Branch 

Path A 

Path B 

Branch 

Path A 

Path B 

Branch 

Path A 



Divergent control flow: Just fine for FPGA 
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 FPGA datapath 

already has all 

operations in silicon 

 Exploit pipelining 

 Speculatively execute 

 

Branch 

Path A 

Path B 

Branch 

Path A 

Path B 



Divergent control flow: Just fine for FPGA 
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 FPGA datapath 

already has all 

operations in silicon 

 Exploit pipelining 

 Speculatively execute 

 Compress the 

schedule 

 

Branch 

Path A Path B 



Divergent control flow: Just fine for FPGA 
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 FPGA datapath 

already has all 

operations in silicon 

 Exploit pipelining 

 Speculatively execute 

 Compress the 

schedule 

 Overlap branch 

computation too 

 

Branch Path A Path B 



Divergent control flow: Just fine for FPGA 
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 FPGA datapath 

already has all 

operations in silicon 

 Exploit pipelining 

 Speculatively execute 

 Compress the 

schedule 

 Overlap branch 

computation too 

 Absorb into one block 

 

Branch.  Path B.  Path A 



Rules of thumb for great OpenCL code on FPGA 

 Bit manipulation 

 Integer arithmetic 

 Large local storage requirements 

 Complex control flow 

 Unusual function mix 

 Predictably unaliased memory access 

 Predictable access patterns 
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Architecture and compiler give these for free 

 

 

 



Low level compiler knobs 
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Use restrict on kernel pointer arguments 

 Your promise that storage under this pointer doesn’t 
alias with other restrict pointer arguments 

 Standard C99 

 Compiler can avoid conservatism in scheduling, 

conflicts 
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kernel void test ( global const float * restrict a, 

      global const float * restrict b, 

      global float * restrict answer) 

{ 

    size_t gid = get_global_id(0); 

    answer[gid] = a[gid] + b[gid]; 

} 



Use reqd_work_group_size 

 Enqueued work group size must match 

 Standard OpenCL 
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__attribute__((reqd_work_group_size(128,1,1))) 

kernel void compute( … ) 

{ 

   … 

} 

Any clues about the shape of the computation 

 will help the compiler 

 

 



#pragma unroll 

 Compiler often automatically unrolls loops with fixed bounds 

 Sometimes you should give a hint 
 To control amount of hardware generated 

 You might know better than the compiler 

 Mandelbrot design example: 

 
 

 

 

 

 

 

 OpenCL 2.0 has __attribute__ instead 

60 

 // Perform up to the maximum number of iterations to solve 

 // the current work-item's position in the image 

 // The loop unrolling factor can be adjusted based on the amount of FPGA 

 // resources available. 

  #pragma unroll 20 

   while (  xSqr + ySqr < 4.0f && iterations < maxIterations) 

   { … 



Custom sized local memory 

 Remember, local memory is abundant 

 

 

 

 

 

 

 Defaults to 16KB per pointer-to-local argument 

 In this example: 
 A: 16KB, B: 1KB, C: 32KB 

 Controls area 

 Enables wider range of algorithms 

61 

kernel void myLocalMemoryPointer( 

   local float * A, 

__attribute__((local_mem_size(1024)))   local float * B, 

__attribute__((local_mem_size(32768))) local float * C, 

   global float * D ) 

{ 

 … 

} 



Max work group size 

 Upper bound on allowable enqueued workgroup size 
 Default is 256 

 

 

 

 

 

 

 Controls area used by the kernel 
 Only significant when using a barrier 
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__attribute__((max_work_group_size(128))) 

kernel void test ( … ) 

{ 

   … 

   barrier( CLK_LOCAL_MEM_FENCE ); 

   … 

} 



Force SIMD-like vectorization 

 

 

 

 

 

 

 Must use with reqd_work_group_size 
 Must divide evenly 

 Reduces area: Less control logic (like for CPU/GPU) 

 Increases throughput: More work done per clock cycle 

 This example 
 ¼ the cycles, each cycle computes float4 
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__attribute__((num_simd_work_items(4))) 

__attribute__((reqd_work_group_size(64,1,1))) 

kernel void test ( global const float * restrict a, 

      global const float * restrict b, 

      global float * restrict answer) 

{ 

    size_t gid = get_global_id(0); 

    answer[gid] = a[gid] + b[gid]; 

} 



Force replication of the kernel internal datapath 

 

 

 

 

 

 

 Increases number of concurrent workgroups 

 Increases area 

 Use num_simd_work_items instead if you can 

64 

__attribute__(( num_compute_units (2) )) 

__attribute__((reqd_work_group_size(64,1,1))) 

kernel void test (  global const float * restrict a, 

      global const float * restrict b, 

      global float * restrict answer) 

{ 

    size_t gid = get_global_id(0); 

    answer[gid] = a[gid] + b[gid]; 

} 



Force replication of the kernel internal datapath 
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Load Load 

Store 

1 

2 

+ 
0 

Load Load 

Store 

1 

2 

+ 
0 

Load Load 

Store 

65 

66 

+ 
64 

Kernel test Kernel test, num_compute_units(2)  

__attribute__(( num_compute_units (2) )) 

__attribute__((reqd_work_group_size(64,1,1))) 

kernel void test (  global const float * restrict a, 

      global const float * restrict b, 

      global float * restrict answer) 

{ 

    size_t gid = get_global_id(0); 

    answer[gid] = a[gid] + b[gid]; 

} 



Control __constant cache size 

 Caches only built if __constant buffer kernel arguments 

 Use the --const-cache-bytes <N> compiler argument to 

control its size 

 

 Controls area 

 Tune according to algorithm data access pattern 
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 Normally data is interleaved (striped) across both DDRx 

interfaces 
 Assuming your board has multiple memory interfaces 

 Often get 2x bandwidth of a single DDRx interface 
 

 

 

 

 

 But some algorithms work better with: 
 No interleaving 

 Manually placed buffers 

 

Guided buffer placement for bandwidth control 

67 

DDR #2 DDR #1 

A0, A2, A4, … A1, A3, A5, … 



Guided buffer placement for bandwidth control 

 Compiler: aoc -no-interleaving  

 Host:  Use special mem flags on buffer creation: 
 CL_MEM_BANK_1_ALTERA 

 CL_MEM_BANK_2_ALTERA… 

 Design example: Matrix Multiply:  C    A x B 
 Uses matrix blocking (like usual) 

 And guided placement 

 A on DDR interface 1 

 B on DDR interface 2 

 C on DDR interface 1 
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 Normal (with interleaving)  

 Reading A and B, writing C: contend on both interfaces 

 “Thrashes” DDR  Poor efficiency 

 

E.g. Matrix Multiply:  C  A x B 
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 No interleaving; Use guided buffer placement 

 Balanced non-thrashing access  High DDR efficiency 
 (We finish reading block of A before we start writing to block of C) 

 

 

E.g. Matrix Multiply:  C  A x B 
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Design strategies: 

Streaming applications 
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Some applications don’t map well 

 Two assumptions made in previous OpenCL examples 
1. Host initiates all data transfers 

2. Data level parallelism exists in the kernel program 

 

 Some applications don’t match these assumptions 
 Host initiated data transfers too expensive for some applications 

 Some applications do not map well to data-parallel paradigms 

 

 Can we avoid these problems, while still reaping the 

benefits of OpenCL on Altera’s FPGAs? 
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Issue 1) Host Centric OpenCL Architecture 
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Issue 1) Host Centric OpenCL Architecture - drawbacks 

 Intermediate data communicated between kernels must 

be transferred through global memory 
 High performance requires high bandwidth and high power ! 

 Limited buffer sizes when problem sizes scale to 100s of billions of points 

 

 Having multiple kernels operating in parallel and 

communicating requires the host to synchronize and 

coordinate activities 
 Slow, power hungry 
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 Low-Latency, High Bandwidth Channels 
 Enables IO  Kernel and Kernel  Kernel Communication 

 Everything inlined in the FPGA fabric:  ~ one clock cycle transfer 

 

 

 

 

Solution: Altera Channels Vendor Extension 
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 Low-Latency, High Bandwidth Channels 
 Enables IO  Kernel and Kernel  Kernel Communication 

 Everything inlined in the FPGA fabric:  ~ one clock cycle transfer 

 

 

 

 

 Communication:  simple and intuitive API 
 Channels are program scope variables that define the communication links 

 Ex: channel float4 FLOATING_POINT_CHANNEL; 

 read_channel_altera 

 Read data from channel endpoint 

 Ex: float4 xvec = read_channel_altera( FLOATING_POINT_CHANNEL ); 

 write_channel_altera 

 Write data to channel endpoint 

 Ex: write_channel_altera( FLOATING_POINT_CHANNEL, zvec ); 

Solution: Altera Channels Vendor Extension 
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 Low-Latency, High Bandwidth Channels 
 Enables IO  Kernel and Kernel  Kernel Communication 

 Everything inlined in the FPGA fabric:  ~ one clock cycle transfer 

 

 

 

 

 (I/O communication requires special board support) 

Solution: Altera Channels Vendor Extension 
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 Low-Latency, High Bandwidth Channels 
 Enables IO  Kernel and Kernel  Kernel Communication 

 Everything inlined in the FPGA fabric:  ~ one clock cycle transfer 

 

 

 

 

 Launch kernels in parallel (same cl_program) 
 Use one command queue per kernel 

 clFlush all of them 

 Then clFinish all of them 

 They’re already all in the FPGA fabric, just waiting to go 

Solution: Altera Channels Vendor Extension 
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Issue 2) Data-Parallel Execution 

 On the FPGA, we use pipeline parallelism to accelerate 

 

 

 

 

 

 

 

 

 Threads can execute in an embarrassingly parallel 

manner 

79 

kernel void 
sum(global const float *a, 
global const float *b, 
global float *c) 
{ 
int xid = get_global_id(0); 
c[xid] = a[xid] + b[xid]; 
} 

Load Load 

Store 

+ 
0 

1 

2 



Issue 2) Data-Parallel Execution - drawbacks 

 Hard to express programs having partial data 

dependencies during execution 

 

 

 

 

 

 

 

 Would need complex (expensive, error prone) 

constructs to express correctly 
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kernel void 
sum(global const float *a, 
global const float *b, 
global float *c) 
{ 
int xid = get_global_id(0); 
c[xid] = c[xid-1] + b[xid]; 
} 

Load Load 

Store 

+ 
0 

1 

2 



Deep thought #2 
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A designer knows he has achieved 
perfection not when there is 
nothing left to add, but when there 
is nothing left to take away. 
 

— ANTOINE DE SAINT EXUPÉRY 
 



Solution: Tasks and Loop-pipelining 

 Allow users to express programs in a single-threaded 

manner (OpenCL Task) 

 

 

 

 Pipeline parallelism still used to efficiently execute 

loops in Altera’s OpenCL 
 Loop Pipelining 
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Load 

Store 

+ 

for (int i=1; i < n; i++) 

{ 

   c[i] = c[i-1] + b[i]; 

} 

i=0 

i=1 

i=2 



Deep thought #3 

 

 

 

OpenCL does not require  

NDRange or SIMD execution 
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Loop Carried Dependencies 

 Loop-carried dependency:  one iteration of the loop 
depends upon the results of another iteration of the 
loop 

 

 

 

 

 

 

 

 The value of state in iteration 1 depends on the value 
from iteration 0 

 Similarly, iteration 2 depends on the value from iteration 
1, etc 
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kernel void state_machine(ulong n) 
{ 
  t_state_vector state = initial_state(); 
  for (ulong i=0; i<n; i++) { 
    state = next_state( state ); 
    unit y = process( state ); 
    write_channel_altera(OUTPUT, y); 
  } 
} 



 To achieve acceleration, we can pipeline each iteration 

of a loop containing loop carried dependencies 
 Analyze any dependencies between iterations 

 Schedule these operations 

 Launch the next iteration as soon as possible 

 

 

 

 

 

 

 

 

 

 

Loop Carried Dependencies 
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At this point, we can 

launch the next 

iteration 

kernel void state_machine(ulong n) 
{ 
  t_state_vector state = initial_state(); 
  for (ulong i=0; i<n; i++) { 
    state = next_state( state ); 
    unit y = process( state ); 
    write_channel_altera(OUTPUT, y); 
  } 
} 



Loop Pipelining Example 

 No Loop Pipelining 
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Are Overlapped 



Pipelined Work Items vs. Loop Pipelining 

 So what’s the difference? 

 

 

 

 

 

 

 

 

 Loop Pipelining enables Pipeline Parallelism AND the 

communication of state information between iterations. 
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Altera’s compiler does a lot for you 

 Generating a loop-specific machine 

 Tells you how many clock cycles between iterations 
 “Initiation Interval” 

 Static optimization report tells you which data 

dependencies are slowing down the loop 
 Use –g to get better line number and variable info 
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User response to improve loop pipelining 

 Remove dependencies 
 E.g. use simpler access pattern to remove memory dependencies 

 Relax dependence 
 Increase dependence distance: Number of iterations between generation 

and use of a value 

 Often by using a shift register 

 Simplify dependence complexity 
 Avoid expensive operations when computing loop-carried values 

 

 

 

89 

Often requires application knowledge to 

restructure code 



Example: Load to Store dependency  
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 kernel void prefixsum( global int* restrict A, unsigned N ) { 

   for ( unsigned i = 1 ; i < N ; i++ ) { 

      int a = A[i-1]; 

      A[i] += a; 

   } 

} 

============================================================================== 

|                      *** Optimization Report ***                           | 

============================================================================== 

| Kernel: prefixsum                                                | Ln.Col  | 

============================================================================== 

| Loop for.body                                                    | 2.25    | 

|     Pipelined execution inferred.                                |         | 

|     Successive iterations launched every 321 cycles due to:      |         | 

|                                                                  |         | 

|         Memory dependency on Load Operation from:                | 3.21    | 

|           Store Operation                                        | 4.7     | 

|         Largest Critical Path Contributors:                      |         | 

|             49%: Load Operation                                  | 3.21    | 

|             49%: Store Operation                                 | 4.7     | 

============================================================================= 

Relative cost of global 

memory to local 

computation 

True fix requires 

restructuring the code 

1 

2 

3 

4 

5 

6 



Example: Accumulating a value 
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================================================================================== 

|                        *** Optimization Report ***                             | 

================================================================================== 

| Kernel: test                                                         | Ln.Col  |  

================================================================================== 

| Loop for.body                                                        | 5.24    |  

|     Pipelined execution inferred.                                    |         | 

|     Successive iterations launched every 3 cycles due to:            |         | 

|                                                                      |         | 

|         Data dependency on variable mul                              | 4.10    |  

|         Largest Critical Path Contributor:                           |         | 

|             100%: Fmul Operation                                     | 6.7     |  

================================================================================== 

kernel void test(  global float* restrict input, 

                   global float* restrict output, unsigned N ) 

{ 

   float mul = 1.0f; 

   for ( unsigned i = 0; i < N; i++ ) { 

      mul *= input[ i ]; 

   } 

   *output = mul; 

} 

1 

2 

3 

4 

5 

6 

7 

8 

9 



#define DEP 6 
kernel void test( global float* restrict input, 
                  global float* restrict output, unsigned N ) 
{ 
   float mul = 1.0f; 
   float mul_copies[ DEP ]; // Shift register in private memory 
 
   for ( unsigned i = 0; i < DEP; i++ ) // Initialize copies 
      mul_copies[ i ] = 1.0f; 
 
   for ( unsigned i = 0; i < N; i++ ) { 
      // Use one copy.  Needs data from DEP iterations ago 
      float cur = mul_copies[ DEP-1 ] * input[ i ]; 
 
      // Shift! 
      for ( unsigned j = DEP-1; j > 0 ; j-- ) { 
         mul_copies[ j ] = mul_copies[ j - 1 ]; 
         mul_copies[ 0 ] = cur; 
      } 
   } 
 
   // Accumulate result with leftovers 
   for ( unsigned i = 0; i < DEP; i++ ) 
      mul *= mul_copies[ i ]; 
 
   *output = mul; 
} 

Example: Accumulating a value, quickly 
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#define DEP 6 
kernel void test( global float* restrict input, 
                  global float* restrict output, unsigned N ) 
{ 
   float mul = 1.0f; 
   float mul_copies[ DEP ]; // Shift register in private memory 
 
   for ( unsigned i = 0; i < DEP; i++ ) // Initialize copies 
      mul_copies[ i ] = 1.0f; 
 
   for ( unsigned i = 0; i < N; i++ ) { 
      // Use one copy.  Needs data from DEP iterations ago 
      float cur = mul_copies[ DEP-1 ] * input[ i ]; 
 
      // Shift! 
      for ( unsigned j = DEP-1; j > 0 ; j-- ) { 
         mul_copies[ j ] = mul_copies[ j - 1 ]; 
         mul_copies[ 0 ] = cur; 
      } 
   } 
 
   // Accumulate result with leftovers 
   for ( unsigned i = 0; i < DEP; i++ ) 
      mul *= mul_copies[ i ]; 
 
   *output = mul; 
} 

============================================================================== 

|                      *** Optimization Report ***                           | 

============================================================================== 

| Kernel: test                                                     | Ln.Col  | 

============================================================================== 

| Loop for.body4                                                   | 11.24   |          

|     Pipelined execution inferred.                                |         | 

============================================================================== 

 

Example: Accumulating a value, quickly 
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Compiler infers a 

shift register, 

becomes a FIFO in 

hardware 

Extremely efficient 

Relax dependence 

across more 

iterations.   



Monte Carlo Asian Option Simulation 

 Channels used for direct kernel-to-kernel 

communication without requiring intermediate global 

memory buffers 

 Uses both Tasks (single work-item) and ND-range 

kernels. 

 Results: 
 Altera Stratix® V D8: 12.0 Billion Simulations / Second @ 45 Watts 
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Stock Price Motion and Partial Accumulation Kernel 

kernel void black_scholes( int m, int n, float drift, float vol, float S_0, float K) { 

   // running statistics -- use double precision for the accumulator 

   double sum = 0.0; 

   for(int path=0;path<m;path++) { 

      float S = S_0; 

      float arithmetic_average = 0.0f; // We're not including the initial price in the average 

      for (int t_i=0; t_i<n/16; t_i++) {  

         barrier(CLK_GLOBAL_MEM_FENCE); 

         float Z[16]; 

         float16 U = read_channel_altera(RANDOM_STREAM); 

         ... 

         #pragma unroll 8  

         for (int i=0; i<8; i++) { 

            // Convert uniform distribution to normal 

            float2 z = box_muller(U[2*i], U[2*i+1]); 

            Z[2*i] = z.x; Z[2*i+1] = z.y; 

         } 

         #pragma unroll 16 

         for (int i=0; i<16; i++) { 

            // Simulate the path movement using geometric brownian motion 

            S *= drift * exp(vol * Z[i]); 

            arithmetic_average += S; 

         } 

      } 

      arithmetic_average /= (float)(n); 

      // Check if the average value exceeds the strike price 

      float call_value = arithmetic_average - K; 

      if (call_value > 0.0f) { 

         sum += call_value; 

      } 

   } 

   // send a final result to the accumulate kernel after each thread has … 

   write_channel_altera(ACCUMULATE_STREAM, sum); 

} 
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Each work item reads a 

sequence of random 

numbers from a channel 

 

 

Key computation loop is a 

fully unrolled floating point 

datapath 

 

Write result to reduction 

kernel 

Simplified: Showing 16 parallel 

sims/cycle instead of 64 



More elaborate task/channel examples 

 On Altera’s website: 
 Channelizer  

 Time-Domain FIR filter 

 Sobel filter 

 OPRA FAST parser 

 Finite Difference Computation (3D) 

 

 Tomorrow at IWOCL:  
 “OpenCL Implementation of Gzip on Field-Programmable Gate-Arrays” 

     Mohamed S. Abdelfattah 
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Design strategy: 

Sliding window vs. stenciling 
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 Fundamental image processing algorithm 
 Used commonly in industrial and automotive applications 

 

 

 

 

 

 GPU codes would use architecture specific memory 

access blocking, banking 
 Goal:  Automatically coalesce memory accesses across work items 

 

Sobel Filter 
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 Fundamental image processing algorithm 
 Used commonly in industrial and automotive applications 

 

 

 

 

 

 GPU codes would use architecture specific memory 

access blocking, banking 
 Goal:  Automatically coalesce memory accesses across work items 

 

Sobel Filter 
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Sobel Filter 

 Fundamental image processing algorithm 
 Used commonly in industrial and automotive applications 

 

 

 

 

 

 Altera FPGA:  Use Sliding Window design pattern 
 Shift register structure, but now in two dimensions 

 Need enough storage for a few image lines, depending on stencil size 
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Sobel Filter 

 Fundamental image processing algorithm 
 Used commonly in industrial and automotive applications 

 

 

 

 

 

 Altera FPGA:  Use Sliding Window design pattern 
 Shift register structure, but now in two dimensions 

 Need enough storage for a few image lines, depending on stencil size 
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Sobel Filter on HD Video 
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for (ipixel=0; ipixel<HD_SIZE;ipixel++) { 

    #pragma unroll 

    for (iwidth=0;iwidth<1920*NROWS-1;iwidth++) { 

           line_buf[iwidth] = line_buf[iwidth+1]; 

    } 

    line_buf[iwidth] = input[ipixel]; 

    sobel = transform(line_buf[0], line_buf[1],  

                      line_buf[1920], line_buf[1921]); 

}  

Device Resolution Frames per second 

Stratix V 1920 x 1080p 135 



Deep thought #4 
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Sometimes it is more efficient to move the 

data than to use pointer arithmetic to 

access a different set of data 



Dynamic tools to help you 
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Emulation on x86:  New in v14.0 

 Functionally debug your Altera OpenCL code on your Linux, 
Windows 
 Important since we’ve extended OpenCL in several ways 

 Especially Channels 

 Used extensively inside Altera 

 aoc –c –march=emulator –g 
 Then use your favourite debugger, e.g. GDB 
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Profiler support in v14.0 
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 Runtime profiled information 
 Because the compiler can’t know everything, and neither do you 

 Instrument hardware pipeline with performance counters 
 Read back at kernel termination 

 

 

 

 

 

kernel void add( 

   global int * a, 

   global int * b, 

   global int * c ) { 

     int gid = get_global_id(0); 

     c[gid] = a[gid]+b[gid]; 

} 

Performance 

Counters 

Load Load 

Store 

+ 



Profiler GUI:  Actionable feedback mapped to your code 

 Bottlenecks, bandwidth, saturation, pipeline occupancy 
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Profiler GUI:  Application trace 

 Kernel execution in context, Buffer transfer traffic 
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Profiler GUI: Overall bandwidth analysis 

 Relative to board device capabilities 
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Just one more thing… 
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Breakthrough in FPGA floating point 
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World’s first FPGA with hardened 

Single Precision Floating Point 

Multiplier-Adder 

(This is going to be amazing) 



Wrapup 
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FPGAs are radically different 

from CPUs and GPUs 

 

 

OpenCL can be awesome on Altera FPGAs 

But need a little bit of knowledge for best results 
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References 

 Everything Altera and OpenCL 

http://www.altera.com/opencl  

 Design examples, covering basics and showcasing 

optimized applications 
 Please visit! 

 http://www.altera.com/support/examples/opencl/opencl.html 
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http://www.altera.com/opencl
http://www.altera.com/support/examples/opencl/opencl.html
http://www.altera.com/support/examples/opencl/opencl.html


Thank You Thank You 



Q & A 
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