
Optimizing OpenCLTM for Altera ®
FPGAs

David Neto

Principal Design Engineer, Altera Corporation

International Workshop on OpenCL, Bristol

2014-05-12

2

Performance challenge

FPGAs

CPU

Single Core

CPUs

Multicores

General-
Purpose

GPUs

Architectural Strategies

DSPs
100’s-Cores

Performance Wanted

Multimedia High-Performance

Computing

Radar

Medical

3

Fine-Grained
Massively
Parallel
Arrays

FPGAs DSPs CPUs

Spectrum of approaches to high performance

Single Cores
Coarse-Grained
Massively
Parallel
Processor
Arrays

Multi-Cores
Coarse-Grained
CPUs and DSPs

Multi-Cores Arrays

FPGAs are radically different

from CPUs and GPUs

What kind of OpenCL runs well on an FPGA?

4

Outline

 FPGA architecture

 Altera’s mapping of OpenCL to FPGAs

 What’s expensive, what’s cheap

 Design and coding strategies

 Q&A

5

FPGA Architecture

Part 1: FPGAs for software engineers

FPGA datapath ~ Unrolled CPU hardware

6

B

A

A
ALU

A simple 3-address CPU

7

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Load immediate value into register

8

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Load memory value into register

9

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Store register value into memory

10

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Add two registers, store result in register

11

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Multiply two registers, store result in register

12

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

A simple program

 Mem[100] += 42 * Mem[101]

 CPU instructions:

13

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

CPU activity, step by step

14

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

Time

Unroll the CPU hardware…

15

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

Space

… and specialize by position

16

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed.

Remove “Fetch”

… and specialize

17

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

… and specialize

18

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

… and specialize

19

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!

And propagate state.

… and specialize

20

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!

And propagate state.

5. Remove dead data.

… and specialize

21

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!

And propagate state.

5. Remove dead data.

6. Reschedule!

22

Load Load

Store

42

FPGA datapath = Your algorithm, in silicon

So what?

23

FPGA datapath = Your algorithm, in silicon

Build exactly what you need:

Operations

Data widths

Memory size, configuration

Efficiency:

Throughput / Latency / Power

Deep thought #1

24

OpenCL code is portable

Not always performance portable

Would you rather contort your code,

Or contort your machine?

Altera gives you a program-specific machine

FPGA Architecture

Part 2: Business influences

Why FPGAs are the way they are

25

Wide range of applications

26

Communications
Broadcast

Consumer
Automotive

Test,
Measurement

& Medical

Computer &
Storage

Military & Industrial

Cellular
Basestations
Wireless LAN

Switches
Routers

Optical
Metro
Access

Broadband
Audio/video
Video display

Studio
Satellite
Broadcasting

Medical
Test equipment
Manufacturing

Card readers
Control systems
ATM

Navigation
Entertainment

 Secure comm.
 Radar
 Guidance and control

Wireless

Networking

Wireline

Entertainment

Broadcast

Automotive

Instrumentation Military

Security &

Energy Management

Servers
Mainframe

RAID
SAN

Copiers
Printers
MFP

Computers

Storage

Office

Automation

Typical FPGA use cases (up to now)

 Technical demands
 CPU / GPU too slow or power hungry

 Exotic high speed IO

 Hard real-time

 Can’t afford 100M$ and 2 year design cycle for an ASIC

 Deployment scenario
 Usually single long-lived application

 Consequences
 At the edge of silicon capability

 Extreme flexibility and control

 Custom embedded system

 Higher initial design investment (than software)

27

Altera FPGA: fine grain massively parallel array

 Massive Parallelism

 Millions of bit level logic elements

 Thousands of 20Kb memory blocks

 Thousands of DSP blocks

 Dozens of High-speed transceivers

 E.g. 28Gb/s each

 Millions of programmable wires

 Traditionally hardware-centric

design flow

28

I/
O

I/O

I/O

I/O

Programmable
Routing Switch

Logic
Element

Altera SoC FPGA: ARM ® processors on the die

 OpenCL Host and Device

on the same die

 Just add RAM and power supply,

and clock generator, and …

29

Peripherals

Memory controller

I/
O

I/O

I/O

Programmable
Routing Switch

Logic
Element

ARMTM ARMTM

Mapping OpenCL to Altera FPGAs

Altera’s SDK for OpenCL:

Software design flow for Altera FPGAs

Exploit FPGA strengths

30

Altera SDK for OpenCL

 Two major releases a year

 May 2013: v13.0: OpenCL conformance

 Nov 2013: v13.1: Board partner program

 Coming soon: v14.0

31

Compiling OpenCL to FPGAs

32

x86

PCIe

Altera SDK

Compiler

Standard

C Compiler

.aocx X86 binary

OpenCL

Host Program + Kernels

main()
{
 cl_program prog
 = clCreateProgramWithBinary(…);

 read_data_from_file(…);
 maninpulate_data(…);

 clEnqueueWriteBuffer(…);
 clEnqueueNDRangeKernel(…,sum, …);
 clEnqueueReadBuffer(…);

 display_result_to_user(…);
}

kernel void
sum(global const float *a,
 global const float *b,
 global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

Kernel Program

Host Program

Production flow:

Offline compilation only

FPGA

FPGA OpenCL Architecture

33

Modest external memory bandwidth

Extremely high internal memory bandwidth

Highly customizable compute cores

Kernel

Pipeline

Kernel

Pipeline

Kernel

Pipeline

PCIe

D
D

R
*

x86 /
External

Processor

External

Memory
Controller

& PHY

M20K

M20K

M20K

M20K

M20K

M20K

Global Memory Interconnect

Local Memory Interconnect

External

Memory
Controller

& PHY

Prebuilt

Customized

to your

kernels

Relevant questions differ by architecture

GPU FPGA

How many private registers? How much area does this kernel occupy?

How much local memory? What’s the initiation interval?

How many compute units? How do I get a license?

How many processing elements? I need Quartus® II?

What is the memory banking scheme? What’s Quartus II?

34

Altera SDK for OpenCL Compiler
Kernels.cl

Quartus II
FPGA CAD
Compiler

Verilog,

Quartus project

FPGA

programming file

Kernels.aocx

Altera OpenCL

device binary

Exploiting FPGA strengths

 Pipelined parallelism

 Agnostic to divergent control flow

 Optimized mix of operations, functions

 Customized local, global, constant memory

 (All traditional compiler optimizations too)

35

The BIG Idea behind OpenCL

 OpenCL execution model …
 Define N-dimensional computation domain
 Execute a kernel at each point in computation domain

void

trad_mul(int n,

 const float *a,

 const float *b,

 float *c)

{

 int i;

 for (i=0; i<n; i++)

 c[i] = a[i] * b[i];

}

Traditional loops
kernel void

dp_mul(global const float *a,

 global const float *b,

 global float *c)

{

 int id = get_global_id(0);

 c[id] = a[id] * b[id];

} // execute over “n” work-items

Data Parallel OpenCL

Data parallel kernel

37

__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

float *a =

float *b =

float *answer =

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

7 7 7 7 7 7 7 7

__kernel void sum(…);

Example Pipeline for Vector Add

 On each cycle the portions of the

pipeline are processing different

threads

 While thread 2 is being loaded,

thread 1 is being added, and

thread 0 is being stored

Load Load

Store

0 1 2 3 4 5 6 7

8 work items for vector add example

38

+

Work item IDs

Example Pipeline for Vector Add

 On each cycle the portions of the

pipeline are processing different

threads

 While thread 2 is being loaded,

thread 1 is being added, and

thread 0 is being stored

Load Load

Store

0
1 2 3 4 5 6 7

8 work items for vector add example

39

+

Work item IDs

Example Pipeline for Vector Add

 On each cycle the portions of the

pipeline are processing different

threads

 While thread 2 is being loaded,

thread 1 is being added, and

thread 0 is being stored

Load Load

Store

0

1
2 3 4 5 6 7

8 work items for vector add example

40

+

Work item IDs

Example Pipeline for Vector Add

 On each cycle the portions of the

pipeline are processing different

threads

 While thread 2 is being loaded,

thread 1 is being added, and

thread 0 is being stored

Load Load

Store

1

2

3 4 5 6 7

8 work items for vector add example

41

+
0

Work item IDs

Example Pipeline for Vector Add

 On each cycle the portions of the

pipeline are processing different

threads

 While thread 2 is being loaded,

thread 1 is being added, and

thread 0 is being stored

Load Load

Store

2

3

4 5 6 7

8 work items for vector add example

42

+

0

1

All silicon used efficiently at steady-state

Work item IDs

So what’s expensive, and what’s

cheap?

43

Cheap operations

 Bit manipulation
 Nearly free

 Simple integer arithmetic
 add, sub, mul

 The narrower the better, e.g. short vs. int vs. long

 Use of private memory
 It’s abundant, especially if structured as shift-registers.

 Example applications:
 Encryption, hashing, fixed point signal processing

44

Optimal function mix: E.g. Inverse Normal CDF

float ltqnorm(float p)
{
 float q, r;
 if (p < 0 || p > 1) { return 0.0; }
 else if (p == 0) { return -HUGE_VAL /* minus "infinity" */; }
 else if (p == 1) { return HUGE_VAL /* "infinity" */; }
 else if (p < LOW) {
 /* Rational approximation for lower region */

 q = sqrt(-2*log(p));
 return (((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /
 ((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1);
 } else if (p > HIGH) {
 /* Rational approximation for upper region */

 q = sqrt(-2*log(1-p));
 return -(((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /
 ((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1);
 } else {
 /* Rational approximation for central region */
 q = p - 0.5;
 r = q*q;
 return (((((a[0]*r+a[1])*r+a[2])*r+a[3])*r+a[4])*r+a[5])*q /
 (((((b[0]*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1);
 }
}

• Complex functions sqrt, log

• Require (scarce) special

function unit on typical GPU

• FPGA custom datapath:

exactly the right balance of

function units

TPC 1

Geometry controller

SMC

SM

Shared
memory

SFU SFU

SP SP

SP SP

SP SP

SP SP

C cache

MT issue

I cache

SM

Shared
memory

SFU SFU

SP SP

SP SP

SP SP

SP SP

C cache

MT issue

I cache

SM

Shared
memory

SFU SFU

SP SP

SP SP

SP SP

SP SP

C cache

MT issue

I cache

Texture units

Texture L1

45

Optimized Local Memory: Customized to your program

 Abundant: Not just 32KB
 Stitch together small blocks as needed

 Alias analysis enables parallel access

 Custom access widths, banking

46

M20K

Bank0

Arbitration Network

Load/Store

Load/Store

Load/Store

Load/Store

M20K

Bank1

M20K

Bank2

M20K

Bank3

M20K

Bank4

M20K

Bank5

M20K

Bank6

M20K

Bank7

Typically single cycle access

as wide as your code wants

47

Optimized Global Memory: Coalescing

 External memory has wide words (256 bits)

 Loads/stores typically access narrower words (32-128)

bits)

 Combine requests to maximize DDR efficiency
 Reduce thrashing in DDR “protocol”

32

256-bit DDR word

32 32 32 32 32 32 32

Coalescing example

 Dynamic: Hardware exploits runtime pattern

 Static: Compiler analysis infers pattern
 Chooses best interface for each load/store site in your code

 Optimal when indexing by work-item ids
 And simple linear combinations

48

 int id = get_global_id(0);

 c[id] = a[id] * b[id];

1000 1001 1002 1003 1004 1005 1006 1007 100a 100c 100d

Load/Store Addresses (128-bit words):

1 burst request for 4 DDR words 1 word 1 word

 3 requests in total

Caches only hurt

you in this case:

Burn power

uselessly

Divergent control flow: Bad for GPU

49

 GPU uses SIMD

pipeline to save area

on control logic.

 Branches have a

significant impact on

GPU parallelism

 Parallel threads

running through

different branches

cannot run

concurrently

Branch

Path A

Path B

Branch

Path A

Path B

Divergent control flow: Just fine for FPGA

50

 FPGA datapath

already has all

operations in silicon

 Branch

Path A

Path B

Branch

Path A

Path B

Divergent control flow: Just fine for FPGA

51

 FPGA datapath

already has all

operations in silicon

 Exploit pipelining

Branch

Path A

Path B

Branch

Path A

Path B

Branch

Path A

Divergent control flow: Just fine for FPGA

52

 FPGA datapath

already has all

operations in silicon

 Exploit pipelining

 Speculatively execute

Branch

Path A

Path B

Branch

Path A

Path B

Divergent control flow: Just fine for FPGA

53

 FPGA datapath

already has all

operations in silicon

 Exploit pipelining

 Speculatively execute

 Compress the

schedule

Branch

Path A Path B

Divergent control flow: Just fine for FPGA

54

 FPGA datapath

already has all

operations in silicon

 Exploit pipelining

 Speculatively execute

 Compress the

schedule

 Overlap branch

computation too

Branch Path A Path B

Divergent control flow: Just fine for FPGA

55

 FPGA datapath

already has all

operations in silicon

 Exploit pipelining

 Speculatively execute

 Compress the

schedule

 Overlap branch

computation too

 Absorb into one block

Branch. Path B. Path A

Rules of thumb for great OpenCL code on FPGA

 Bit manipulation

 Integer arithmetic

 Large local storage requirements

 Complex control flow

 Unusual function mix

 Predictably unaliased memory access

 Predictable access patterns

56

Architecture and compiler give these for free

Low level compiler knobs

57

Use restrict on kernel pointer arguments

 Your promise that storage under this pointer doesn’t
alias with other restrict pointer arguments

 Standard C99

 Compiler can avoid conservatism in scheduling,

conflicts

58

kernel void test (global const float * restrict a,

 global const float * restrict b,

 global float * restrict answer)

{

 size_t gid = get_global_id(0);

 answer[gid] = a[gid] + b[gid];

}

Use reqd_work_group_size

 Enqueued work group size must match

 Standard OpenCL

59

__attribute__((reqd_work_group_size(128,1,1)))

kernel void compute(…)

{

 …

}

Any clues about the shape of the computation

 will help the compiler

#pragma unroll

 Compiler often automatically unrolls loops with fixed bounds

 Sometimes you should give a hint
 To control amount of hardware generated

 You might know better than the compiler

 Mandelbrot design example:

 OpenCL 2.0 has __attribute__ instead

60

 // Perform up to the maximum number of iterations to solve

 // the current work-item's position in the image

 // The loop unrolling factor can be adjusted based on the amount of FPGA

 // resources available.

 #pragma unroll 20

 while (xSqr + ySqr < 4.0f && iterations < maxIterations)

 { …

Custom sized local memory

 Remember, local memory is abundant

 Defaults to 16KB per pointer-to-local argument

 In this example:
 A: 16KB, B: 1KB, C: 32KB

 Controls area

 Enables wider range of algorithms

61

kernel void myLocalMemoryPointer(

 local float * A,

__attribute__((local_mem_size(1024))) local float * B,

__attribute__((local_mem_size(32768))) local float * C,

 global float * D)

{

 …

}

Max work group size

 Upper bound on allowable enqueued workgroup size
 Default is 256

 Controls area used by the kernel
 Only significant when using a barrier

62

__attribute__((max_work_group_size(128)))

kernel void test (…)

{

 …

 barrier(CLK_LOCAL_MEM_FENCE);

 …

}

Force SIMD-like vectorization

 Must use with reqd_work_group_size
 Must divide evenly

 Reduces area: Less control logic (like for CPU/GPU)

 Increases throughput: More work done per clock cycle

 This example
 ¼ the cycles, each cycle computes float4

63

__attribute__((num_simd_work_items(4)))

__attribute__((reqd_work_group_size(64,1,1)))

kernel void test (global const float * restrict a,

 global const float * restrict b,

 global float * restrict answer)

{

 size_t gid = get_global_id(0);

 answer[gid] = a[gid] + b[gid];

}

Force replication of the kernel internal datapath

 Increases number of concurrent workgroups

 Increases area

 Use num_simd_work_items instead if you can

64

__attribute__((num_compute_units (2)))

__attribute__((reqd_work_group_size(64,1,1)))

kernel void test (global const float * restrict a,

 global const float * restrict b,

 global float * restrict answer)

{

 size_t gid = get_global_id(0);

 answer[gid] = a[gid] + b[gid];

}

Force replication of the kernel internal datapath

65

Load Load

Store

1

2

+
0

Load Load

Store

1

2

+
0

Load Load

Store

65

66

+
64

Kernel test Kernel test, num_compute_units(2)

__attribute__((num_compute_units (2)))

__attribute__((reqd_work_group_size(64,1,1)))

kernel void test (global const float * restrict a,

 global const float * restrict b,

 global float * restrict answer)

{

 size_t gid = get_global_id(0);

 answer[gid] = a[gid] + b[gid];

}

Control __constant cache size

 Caches only built if __constant buffer kernel arguments

 Use the --const-cache-bytes <N> compiler argument to

control its size

 Controls area

 Tune according to algorithm data access pattern

66

 Normally data is interleaved (striped) across both DDRx

interfaces
 Assuming your board has multiple memory interfaces

 Often get 2x bandwidth of a single DDRx interface

 But some algorithms work better with:
 No interleaving

 Manually placed buffers

Guided buffer placement for bandwidth control

67

DDR #2 DDR #1

A0, A2, A4, … A1, A3, A5, …

Guided buffer placement for bandwidth control

 Compiler: aoc -no-interleaving

 Host: Use special mem flags on buffer creation:
 CL_MEM_BANK_1_ALTERA

 CL_MEM_BANK_2_ALTERA…

 Design example: Matrix Multiply: C  A x B
 Uses matrix blocking (like usual)

 And guided placement

 A on DDR interface 1

 B on DDR interface 2

 C on DDR interface 1

68

 Normal (with interleaving)

 Reading A and B, writing C: contend on both interfaces

 “Thrashes” DDR  Poor efficiency

E.g. Matrix Multiply: C  A x B

69

FPGA

Kernel

Pipeline

External

Memory
Controller

& PHY

Global Memory Interconnect

External

Memory
Controller

& PHY

DDR #2 DDR #1

A0, B0, C0 A1, B1, C1

 No interleaving; Use guided buffer placement

 Balanced non-thrashing access  High DDR efficiency
 (We finish reading block of A before we start writing to block of C)

E.g. Matrix Multiply: C  A x B

70

FPGA

Kernel

Pipeline

External

Memory
Controller

& PHY

Global Memory Interconnect

External

Memory
Controller

& PHY

DDR #2 DDR #1

A, C B

Global Memory Interconnect

Design strategies:

Streaming applications

71

Some applications don’t map well

 Two assumptions made in previous OpenCL examples
1. Host initiates all data transfers

2. Data level parallelism exists in the kernel program

 Some applications don’t match these assumptions
 Host initiated data transfers too expensive for some applications

 Some applications do not map well to data-parallel paradigms

 Can we avoid these problems, while still reaping the

benefits of OpenCL on Altera’s FPGAs?

72

Issue 1) Host Centric OpenCL Architecture

73

User

Kernel

Host Co-ordinates Kernel

Invocations and Data Transfers

On-chip

RAM
On-chip

RAM
On-chip

RAM
On-chip

RAM

Host CPU

Global Memory

User

Kernel

Issue 1) Host Centric OpenCL Architecture - drawbacks

 Intermediate data communicated between kernels must

be transferred through global memory
 High performance requires high bandwidth and high power !

 Limited buffer sizes when problem sizes scale to 100s of billions of points

 Having multiple kernels operating in parallel and

communicating requires the host to synchronize and

coordinate activities
 Slow, power hungry

74

 Low-Latency, High Bandwidth Channels
 Enables IO  Kernel and Kernel  Kernel Communication

 Everything inlined in the FPGA fabric: ~ one clock cycle transfer

Solution: Altera Channels Vendor Extension

75

Kernel 0
FIFO Kernel 1

FIFO Kernel 2

I/O Core
I/O Core

 Low-Latency, High Bandwidth Channels
 Enables IO  Kernel and Kernel  Kernel Communication

 Everything inlined in the FPGA fabric: ~ one clock cycle transfer

 Communication: simple and intuitive API
 Channels are program scope variables that define the communication links

 Ex: channel float4 FLOATING_POINT_CHANNEL;

 read_channel_altera

 Read data from channel endpoint

 Ex: float4 xvec = read_channel_altera(FLOATING_POINT_CHANNEL);

 write_channel_altera

 Write data to channel endpoint

 Ex: write_channel_altera(FLOATING_POINT_CHANNEL, zvec);

Solution: Altera Channels Vendor Extension

76

Kernel 0
FIFO Kernel 1

FIFO Kernel 2

I/O Core
I/O Core

 Low-Latency, High Bandwidth Channels
 Enables IO  Kernel and Kernel  Kernel Communication

 Everything inlined in the FPGA fabric: ~ one clock cycle transfer

 (I/O communication requires special board support)

Solution: Altera Channels Vendor Extension

77

Kernel 0
FIFO Kernel 1

FIFO Kernel 2

I/O Core
I/O Core

 Low-Latency, High Bandwidth Channels
 Enables IO  Kernel and Kernel  Kernel Communication

 Everything inlined in the FPGA fabric: ~ one clock cycle transfer

 Launch kernels in parallel (same cl_program)
 Use one command queue per kernel

 clFlush all of them

 Then clFinish all of them

 They’re already all in the FPGA fabric, just waiting to go

Solution: Altera Channels Vendor Extension

78

Kernel 0
FIFO Kernel 1

FIFO Kernel 2

I/O Core
I/O Core

Issue 2) Data-Parallel Execution

 On the FPGA, we use pipeline parallelism to accelerate

 Threads can execute in an embarrassingly parallel

manner

79

kernel void
sum(global const float *a,
global const float *b,
global float *c)
{
int xid = get_global_id(0);
c[xid] = a[xid] + b[xid];
}

Load Load

Store

+
0

1

2

Issue 2) Data-Parallel Execution - drawbacks

 Hard to express programs having partial data

dependencies during execution

 Would need complex (expensive, error prone)

constructs to express correctly

80

kernel void
sum(global const float *a,
global const float *b,
global float *c)
{
int xid = get_global_id(0);
c[xid] = c[xid-1] + b[xid];
}

Load Load

Store

+
0

1

2

Deep thought #2

81

A designer knows he has achieved
perfection not when there is
nothing left to add, but when there
is nothing left to take away.

— ANTOINE DE SAINT EXUPÉRY

Solution: Tasks and Loop-pipelining

 Allow users to express programs in a single-threaded

manner (OpenCL Task)

 Pipeline parallelism still used to efficiently execute

loops in Altera’s OpenCL
 Loop Pipelining

82

Load

Store

+

for (int i=1; i < n; i++)

{

 c[i] = c[i-1] + b[i];

}

i=0

i=1

i=2

Deep thought #3

OpenCL does not require

NDRange or SIMD execution

83

Loop Carried Dependencies

 Loop-carried dependency: one iteration of the loop
depends upon the results of another iteration of the
loop

 The value of state in iteration 1 depends on the value
from iteration 0

 Similarly, iteration 2 depends on the value from iteration
1, etc

84

kernel void state_machine(ulong n)
{
 t_state_vector state = initial_state();
 for (ulong i=0; i<n; i++) {
 state = next_state(state);
 unit y = process(state);
 write_channel_altera(OUTPUT, y);
 }
}

 To achieve acceleration, we can pipeline each iteration

of a loop containing loop carried dependencies
 Analyze any dependencies between iterations

 Schedule these operations

 Launch the next iteration as soon as possible

Loop Carried Dependencies

85

At this point, we can

launch the next

iteration

kernel void state_machine(ulong n)
{
 t_state_vector state = initial_state();
 for (ulong i=0; i<n; i++) {
 state = next_state(state);
 unit y = process(state);
 write_channel_altera(OUTPUT, y);
 }
}

Loop Pipelining Example

 No Loop Pipelining

86

i0

i1

i2

 With Loop Pipelining

i0

i1
i2

i3

i4
Looks almost

like ND-

range thread

execution! C
lo

c
k
 C

y
c
le

s

C
lo

c
k
 C

y
c
le

s

No Overlap of Iterations!
Finishes Faster because Iterations

Are Overlapped

Pipelined Work Items vs. Loop Pipelining

 So what’s the difference?

 Loop Pipelining enables Pipeline Parallelism AND the

communication of state information between iterations.

87

t0

t1
t2

t3

t4

Pipelined work items

launch 1 item per

clock cycle in

pipelined fashion

i0

i1

i2

i3

i4

Loop

dependencies

may not be

resolved in 1

clock cycle

Pipelined Threads Loop Pipelining

Altera’s compiler does a lot for you

 Generating a loop-specific machine

 Tells you how many clock cycles between iterations
 “Initiation Interval”

 Static optimization report tells you which data

dependencies are slowing down the loop
 Use –g to get better line number and variable info

88

User response to improve loop pipelining

 Remove dependencies
 E.g. use simpler access pattern to remove memory dependencies

 Relax dependence
 Increase dependence distance: Number of iterations between generation

and use of a value

 Often by using a shift register

 Simplify dependence complexity
 Avoid expensive operations when computing loop-carried values

89

Often requires application knowledge to

restructure code

Example: Load to Store dependency

90

 kernel void prefixsum(global int* restrict A, unsigned N) {

 for (unsigned i = 1 ; i < N ; i++) {

 int a = A[i-1];

 A[i] += a;

 }

}

==

| *** Optimization Report *** |

==

| Kernel: prefixsum | Ln.Col |

==

| Loop for.body | 2.25 |

| Pipelined execution inferred. | |

| Successive iterations launched every 321 cycles due to: | |

| | |

| Memory dependency on Load Operation from: | 3.21 |

| Store Operation | 4.7 |

| Largest Critical Path Contributors: | |

| 49%: Load Operation | 3.21 |

| 49%: Store Operation | 4.7 |

===

Relative cost of global

memory to local

computation

True fix requires

restructuring the code

1

2

3

4

5

6

Example: Accumulating a value

91

==

| *** Optimization Report *** |

==

| Kernel: test | Ln.Col |

==

| Loop for.body | 5.24 |

| Pipelined execution inferred. | |

| Successive iterations launched every 3 cycles due to: | |

| | |

| Data dependency on variable mul | 4.10 |

| Largest Critical Path Contributor: | |

| 100%: Fmul Operation | 6.7 |

==

kernel void test(global float* restrict input,

 global float* restrict output, unsigned N)

{

 float mul = 1.0f;

 for (unsigned i = 0; i < N; i++) {

 mul *= input[i];

 }

 *output = mul;

}

1

2

3

4

5

6

7

8

9

#define DEP 6
kernel void test(global float* restrict input,
 global float* restrict output, unsigned N)
{
 float mul = 1.0f;
 float mul_copies[DEP]; // Shift register in private memory

 for (unsigned i = 0; i < DEP; i++) // Initialize copies
 mul_copies[i] = 1.0f;

 for (unsigned i = 0; i < N; i++) {
 // Use one copy. Needs data from DEP iterations ago
 float cur = mul_copies[DEP-1] * input[i];

 // Shift!
 for (unsigned j = DEP-1; j > 0 ; j--) {
 mul_copies[j] = mul_copies[j - 1];
 mul_copies[0] = cur;
 }
 }

 // Accumulate result with leftovers
 for (unsigned i = 0; i < DEP; i++)
 mul *= mul_copies[i];

 *output = mul;
}

Example: Accumulating a value, quickly

92

Compiler infers a

shift register,

becomes a FIFO in

hardware

Extremely efficient

Relax dependence

across more

iterations.

#define DEP 6
kernel void test(global float* restrict input,
 global float* restrict output, unsigned N)
{
 float mul = 1.0f;
 float mul_copies[DEP]; // Shift register in private memory

 for (unsigned i = 0; i < DEP; i++) // Initialize copies
 mul_copies[i] = 1.0f;

 for (unsigned i = 0; i < N; i++) {
 // Use one copy. Needs data from DEP iterations ago
 float cur = mul_copies[DEP-1] * input[i];

 // Shift!
 for (unsigned j = DEP-1; j > 0 ; j--) {
 mul_copies[j] = mul_copies[j - 1];
 mul_copies[0] = cur;
 }
 }

 // Accumulate result with leftovers
 for (unsigned i = 0; i < DEP; i++)
 mul *= mul_copies[i];

 *output = mul;
}

==

| *** Optimization Report *** |

==

| Kernel: test | Ln.Col |

==

| Loop for.body4 | 11.24 |

| Pipelined execution inferred. | |

==

Example: Accumulating a value, quickly

93

Compiler infers a

shift register,

becomes a FIFO in

hardware

Extremely efficient

Relax dependence

across more

iterations.

Monte Carlo Asian Option Simulation

 Channels used for direct kernel-to-kernel

communication without requiring intermediate global

memory buffers

 Uses both Tasks (single work-item) and ND-range

kernels.

 Results:
 Altera Stratix® V D8: 12.0 Billion Simulations / Second @ 45 Watts

94

Initial State

Generation

Mersenne

Twister

RNG

Stock Price Motion

and Partial

Accumulation

Final Reduction

Task Task NDRange Kernel Task

Billions of Simulations
Billions of

RNG’s

624

Iterations

8192

Iterations

Stock Price Motion and Partial Accumulation Kernel

kernel void black_scholes(int m, int n, float drift, float vol, float S_0, float K) {

 // running statistics -- use double precision for the accumulator

 double sum = 0.0;

 for(int path=0;path<m;path++) {

 float S = S_0;

 float arithmetic_average = 0.0f; // We're not including the initial price in the average

 for (int t_i=0; t_i<n/16; t_i++) {

 barrier(CLK_GLOBAL_MEM_FENCE);

 float Z[16];

 float16 U = read_channel_altera(RANDOM_STREAM);

 ...

 #pragma unroll 8

 for (int i=0; i<8; i++) {

 // Convert uniform distribution to normal

 float2 z = box_muller(U[2*i], U[2*i+1]);

 Z[2*i] = z.x; Z[2*i+1] = z.y;

 }

 #pragma unroll 16

 for (int i=0; i<16; i++) {

 // Simulate the path movement using geometric brownian motion

 S *= drift * exp(vol * Z[i]);

 arithmetic_average += S;

 }

 }

 arithmetic_average /= (float)(n);

 // Check if the average value exceeds the strike price

 float call_value = arithmetic_average - K;

 if (call_value > 0.0f) {

 sum += call_value;

 }

 }

 // send a final result to the accumulate kernel after each thread has …

 write_channel_altera(ACCUMULATE_STREAM, sum);

}

95

Each work item reads a

sequence of random

numbers from a channel

Key computation loop is a

fully unrolled floating point

datapath

Write result to reduction

kernel

Simplified: Showing 16 parallel

sims/cycle instead of 64

More elaborate task/channel examples

 On Altera’s website:
 Channelizer

 Time-Domain FIR filter

 Sobel filter

 OPRA FAST parser

 Finite Difference Computation (3D)

 Tomorrow at IWOCL:
 “OpenCL Implementation of Gzip on Field-Programmable Gate-Arrays”

 Mohamed S. Abdelfattah

96

Design strategy:

Sliding window vs. stenciling

97

 Fundamental image processing algorithm
 Used commonly in industrial and automotive applications

 GPU codes would use architecture specific memory

access blocking, banking
 Goal: Automatically coalesce memory accesses across work items

Sobel Filter

98

Creates many loads from memory.

Can be relatively expensive on

FPGA: area and time

 Fundamental image processing algorithm
 Used commonly in industrial and automotive applications

 GPU codes would use architecture specific memory

access blocking, banking
 Goal: Automatically coalesce memory accesses across work items

Sobel Filter

99

Creates many loads from memory.

Can be relatively expensive on

FPGA: area and time

Sobel Filter

 Fundamental image processing algorithm
 Used commonly in industrial and automotive applications

 Altera FPGA: Use Sliding Window design pattern
 Shift register structure, but now in two dimensions

 Need enough storage for a few image lines, depending on stencil size

100

WIDTH*4-9

0

WIDTH*3

WIDTH-9

WIDTH*4-1

Pixels enter here
WIDTH-1

WIDTH*2-9

WIDTH*3-9

A B C

E F G

Use cheap shift registers

in private memory.

Everything is local to

kernel datapath.

Sobel Filter

 Fundamental image processing algorithm
 Used commonly in industrial and automotive applications

 Altera FPGA: Use Sliding Window design pattern
 Shift register structure, but now in two dimensions

 Need enough storage for a few image lines, depending on stencil size

101

WIDTH*4-9

0

WIDTH*3

WIDTH-9

WIDTH*4-1

Pixels enter here
WIDTH-1

WIDTH*2-9

WIDTH*3-9

A B C

E F G

Use cheap shift registers

in private memory.

Everything is local to

kernel datapath.

Sobel Filter on HD Video

102

for (ipixel=0; ipixel<HD_SIZE;ipixel++) {

 #pragma unroll

 for (iwidth=0;iwidth<1920*NROWS-1;iwidth++) {

 line_buf[iwidth] = line_buf[iwidth+1];

 }

 line_buf[iwidth] = input[ipixel];

 sobel = transform(line_buf[0], line_buf[1],

 line_buf[1920], line_buf[1921]);

}

Device Resolution Frames per second

Stratix V 1920 x 1080p 135

Deep thought #4

103

Sometimes it is more efficient to move the

data than to use pointer arithmetic to

access a different set of data

Dynamic tools to help you

104

Emulation on x86: New in v14.0

 Functionally debug your Altera OpenCL code on your Linux,
Windows
 Important since we’ve extended OpenCL in several ways

 Especially Channels

 Used extensively inside Altera

 aoc –c –march=emulator –g
 Then use your favourite debugger, e.g. GDB

105

Profiler support in v14.0

106

 Runtime profiled information
 Because the compiler can’t know everything, and neither do you

 Instrument hardware pipeline with performance counters
 Read back at kernel termination

kernel void add(

 global int * a,

 global int * b,

 global int * c) {

 int gid = get_global_id(0);

 c[gid] = a[gid]+b[gid];

}

Performance

Counters

Load Load

Store

+

Profiler GUI: Actionable feedback mapped to your code

 Bottlenecks, bandwidth, saturation, pipeline occupancy

107

Profiler GUI: Application trace

 Kernel execution in context, Buffer transfer traffic

108

Profiler GUI: Overall bandwidth analysis

 Relative to board device capabilities

109

Just one more thing…

110

Breakthrough in FPGA floating point

111

World’s first FPGA with hardened

Single Precision Floating Point

Multiplier-Adder

(This is going to be amazing)

Wrapup

112

FPGAs are radically different

from CPUs and GPUs

OpenCL can be awesome on Altera FPGAs

But need a little bit of knowledge for best results

113

114

References

 Everything Altera and OpenCL

http://www.altera.com/opencl

 Design examples, covering basics and showcasing

optimized applications
 Please visit!

 http://www.altera.com/support/examples/opencl/opencl.html

115

http://www.altera.com/opencl
http://www.altera.com/support/examples/opencl/opencl.html
http://www.altera.com/support/examples/opencl/opencl.html

Thank You Thank You

Q & A

117

