
Device1

Device0Host Device

Device layerHost layer

Main program

Main program

HOST

PROGRAM

1

1

2

2

3

3

4a
4b

5

5

DRIVER

DRIVER

Heterogeneous Platform with Shared System Address Space

Out of Order Execution Framework for OpenCL Implementation
Ville Korhonen (ville.t.korhonen@tut.fi), Pekka Jääskeläinen (pekka.jaaskelainen@tut.fi) / Tampere University of Technology, Finland

Clément Léger (clement.leger@kalray.eu) / Kalray, France

a) No task level parallelism
b) At most 4 tasks (A, B, C, D) can be executed in parallel, if there are computational

resources

20

Command Queue 1, Device 1

Command Queue 0, Device 0

Command Queue 0, Device 0

A: Write Buffer B: Exec. Kernel D: Read Buffer

A: Write Buffer

B: Write Buffer

C: Write Buffer

D: Write Buffer

E: Exec. Kernel

F: Exec. Kernel G: Exec. Kernel H: Read Buffer

C: Exec. Kernel

a)

b)

Event dependency

Example Implementations

­ Task level parallelism can be expressed with out of order command queues.
­ Scheduling freedom of commands when respecting the explicit synchronization and event

dependencies.
­ Command queues are synchronised across all devices by the runtime, which simplifies

host application control logic.

Task Parallelism in OpenCL Goals
­ Flexible framework for implementing out of order command queues (OoOCQ).
­ Enable distribution of scheduling and synchronisation overhead to devices
­ Support different degrees of host orchestration vs. independent task graph execution in the

device.

submit()

notify()

Submits a command to the device driver.

flush() Flushes commands to the device.

join()

broadcast()

Used for notifying device driver that a waited event has been
completed.

Used by clFinish to ensure that commands will be executed.

When command is completed a notification is broadcasted for all
devices that have commands waiting completed command.

Framework Functions
An extension to PoCL host­device/driver interface.

OoOE support can be implemented for a new device by redefining some or all of
the framework functions:

Standalone Single Core

­ For small embedded
devices and soft
cores

­ No threading support
assumed

­ Host + kernels
possibly compiled to
the same image

Kalray MPPA­256 Manycore Processor

Host Device

Host layer Device layer

core 0

HOST

PROGRAM

DRIVER

DEVICE

core n
Worker thread n

Submit

command

Execute

command

Update

event status

Host Device

Host layer

HOST

PROGRAM

DEVICE

Device layer

DRIVER

Submit

command

Execute

command

Update

event status

CQ is pushed to the device
driver.

Driver pushes CQ to
device's command buffer.

Events are notified to host
by rasing interrupt.

Events notified to the host
that broadcasts the
events to the listeners OR

Device notifies peers
independently.

Driver updates host side
event status in any case.

1

2

3

4a

4b

5

­ Each device can be with
different ISA.

­ Each device can have a local
memory.

­ Global memory buffers reside
in the shared host accessible
global memory.

­ Commands are submitted to
devices command queues in
global memory.

­ Events are notified to peers by
modifying commands waitlist in
other devices CQ.

Homogeneous CPU with Multiple Cores and/or HW Threads

­ By default one worker
thread per core.

­ Independent task graph
execution.

­ Memory shared with the
host, low overheads.

­ Load balancing across
cores.

Devices with Task Graph Execution Capabilities

Device 0 Device 1 Device n

. . .

Host

BuffersDev 0 CQ Dev n CQ...

Local Mem

Compute

unit

Compute

unit

Compute

unit

Compute

unit

Processing element

Processing element

Processing element

This work will be contributed to
Portable Computing Language ­ an open source OpenCL
implementation available at http://portablecl.org

­ PCIe accelerator card with
MPPA­256 processor.

­ Multiple kernels enqueued and
ran simultaneously.

­ Threads to handle transfers
to/from global memory
asynchronously from command
queue execution

­ Transfers can be done while
kernels are executed to hide
latency

­ Kernel scheduling offloading on
device for special cases
(kernel­to­kernel dependencies)

PCIe card

with

MPPA-256

Host Device

Device layerHost layer

HOST

PROGRAM

MPPA

DRIVER

Memory

transfer

threads

Kernel

handling

thread

Event

status

thread

Submit

commands

Update

events

Copy memory

Send kernel

for scheduling

Dispatch commands

Receive

command status

Update

command

status




