
	

	

	

	

Leveraging OpenCV 3.0
on Intel® Graphics Technology
with OpenCL™
Maxim Shevtsov, Software Architect, Intel Corporation, maxim.y.shevtsov@intel.com
	

Optimization notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee
the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

Upcoming OpenCV 3.0 architecture improves support for GPUs
• “Transparent API” enables same code to use CPU or OpenCL
• Little or no code changes from existing OpenCV code
• On platforms without OpenCL uses efficient CPU fallback
• Improved use of shared physical memory for integrated GPU perf

Many companies including
Intel contribute optimizations
for the OpenCL™ code in
OpenCV
• Initial work for 2.4.8
• Propagated to 3.0

Up	
 to	
 3.4X!

Intel optimizations delivered substantial
performance improvements
• Most optimizations are general

(improve performance on all GPUs)

Optimizations #3: Host to Device Transfers
• Host (CPU) and Device (GPU) share the same physical

memory
• No transfers for OpenCL buffers (zero copy)!

*Other names and brands may be claimed as the property of others. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos. Intel, the Intel logo, are trademarks of Intel Corporation in the U.S. and/or other countries.
Copyright © 2014 Intel Corporation. All rights reserved	

Optimization #1: Reduce memory overdraw with
kernel fusion
• Reduces GPU/CPU round trips and associated

overheads
• Examples: separable filters like

Sobel/Sharr/Blur and combos (cornerHarris)

Optimization #2: Process multiple pixels
per work item
• Amortizes GPU scheduling
• Amortizes GPU data path
• Example: cvtColor

OpenCV 3.0 is designed to better use of OpenCL™ on Intel® Architecture
ProcessorGraphics Graphics!

Take advantage of shared physical memory!
• Allocate system memory aligned to a cache line

(64 bytes)
• Allocate an even number of cache lines
• Create buffer with system memory pointer and

CL_MEM_USE_HOST_PTR
• Use clEnqueueMapBuffer() to access data
• OpenCV 3.0 changes make excellent use of this feature! Optimizations #4:

• Avoid redundant resource allocation/dealloc
• Pre-compile and cache kernels

