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Upcoming OpenCV 3.0 architecture improves support for GPUs 
• “Transparent API” enables same code to use CPU or OpenCL 
• Little or no code changes from existing OpenCV code 
• On platforms without OpenCL uses efficient CPU fallback 
• Improved use of shared physical memory for integrated GPU perf 

Many companies including 
Intel contribute optimizations 
for the OpenCL™ code in 
OpenCV 
• Initial work for 2.4.8 
• Propagated to 3.0 
 

Up	
  to	
  3.4X! 

Intel optimizations delivered substantial 
performance improvements 
• Most optimizations are general  

(improve performance on all GPUs) 

Optimizations #3: Host to Device Transfers 
• Host (CPU) and Device (GPU) share the same physical 

memory 
• No transfers for OpenCL buffers (zero copy)! 
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Optimization #1: Reduce memory overdraw with 
kernel fusion  
• Reduces GPU/CPU round trips and associated 

overheads 
• Examples: separable filters like 

Sobel/Sharr/Blur and combos (cornerHarris) 

Optimization #2: Process multiple pixels 
per work item 
• Amortizes GPU scheduling  
• Amortizes GPU data path 
• Example: cvtColor 

OpenCV 3.0 is designed to better use of OpenCL™ on Intel® Architecture 
ProcessorGraphics  Graphics! 

Take advantage of shared physical memory! 
• Allocate system memory aligned to a cache line 

(64 bytes) 
• Allocate an even number of cache lines 
• Create buffer with system memory pointer and  

CL_MEM_USE_HOST_PTR 
• Use clEnqueueMapBuffer() to access data 
• OpenCV 3.0 changes make excellent use of this feature! Optimizations #4: 

• Avoid redundant resource allocation/dealloc  
• Pre-compile and cache kernels 

 


