® codeplay®

SYCL as an Asynchronous Dataflow

Ruyman Reyes
ruyman@codeplay.com

Codeplay Software Ltd.
DHPCC++ - 16t May, 2017



Main goal of this proposal:

Bring data-flow programming as a first-level citizen

® codeplay’ 2



Current OpenCL specification

OpenCL 2.2 is low-level language
» Kernel synchronization via events and queues
» No interaction with host scheduling or threads

» Does not directly map the current trends of C++

v

Only some SVM levels support atomics and synchronization

® codeplay’ 3



Current OpenCL specification

OpenCL 2.2 is low-level language
» Kernel synchronization via events and queues
» No interaction with host scheduling or threads

» Does not directly map the current trends of C++

v

Only some SVM levels support atomics and synchronization

OpenCL behaviour is well defined
» Memory model defines data available to kernel
» Different levels have different visibility

» Clear when data is on host or not

OpenCL is too low level, but well defined

® codeplay’ 4



Current SYCL specification

SYCL behaves like a DAG
» Higher abstraction than OpenCL
» Command group and accessors define dependencies
> Access mode defines dependencies

SYCL Dag is vaguely defined
> Only expected behaviour is described
> Not clear how synchronization across context is possible
> No direct control over the generated DAG

» Cannot integrate easily with other schedulers

SYCL is high-level, but behaviour not well defined!

® codeplay’ 5



Objective: Fully define SYCL as Data Flow

Rules for memory synchronization

> Define the concepts behind accessor:
Requisite
Action

» Elaborate definitions for command group dependency
Enable users to reason an order of execution

Extending interface

v

Update the current interface definitions
Support C++ futures

Support for updates to/from buffers
Calling host functions from the SYCL dag.

v

v

v

® codeplay’ 6



What is an accessor?

auto cg = [&](handler& h) {

auto accA = buf.get_access<access::mode::read>(h);

auto accB = buf.get_access<access::mode::write>(h);

h.parallel_for<class myKernel>(myRange, [=](item it) {
accA[it] = accB[it];

19

8

someQueue . submit (cg);

Accessors define requirements
» accA: Requires being able to read data on a context

» accB: Requires being able to write data on a context

® codeplay’ 7



What is an accessor?

auto cg = [&](handler& h) {
auto accA = buf.get_access<access::mode::read>(h);
auto accB = buf.get_access<access::mode::write>(h);
h.parallel_for<class myKernel>(myRange, [=](item it) {
accA[it] = accB[it];
19
};
someQueue . submit (cg);
Accessors define requirements
» accA: Requires being able to read data on a context

» accB: Requires being able to write data on a context

Satisfy a requirement implies an action
» accA: Copy data into the context
» accB: Data must be available for writing

® codeplay’ 7



Actions are implementation-specific

buffer<int, 1> leftCameralnput {...};
buffer<int, 1> rightCameralnput {...};
buffer<int, 1> output {...};

queue ql(contextl, vpl);
queue q2(contextl, vp2);
queue q3(context2, gpu); processLeft

ql.submit (processLeft(1Cam));
q2.submit (processRight(rCam));

g3.submit(combine(1lCam, rCam, output)); A
combine

using r_mode = access::mode::write; l
using h_target = access::mode::host_buffer;

auto hostC =
output.get_access<r_mode, h_target>();

identify(hostC);

odeplay



Actions are implementation-specific

buffer<int, 1> 1Cam{...};
buffer<int, 1> rCam{...};
buffer<int, 1> output {...};

queue ql(contextl, vpl);
queue q2(contextl, vp2);

queue q3(context2, gpu); processLeﬁ
ql.submit (processLeft(1Cam));
ql.submit (processRight(rCam));
g3.submit (combine(1lCam, rCam, output)); "
combine

{

using r_mode = access::mode::write;

using h_target = access::mode::host_buffer;

auto hostC =
output.get_access<r_mode, h_target>();

identify(hostC);

Same requirements, different actions

codeplay



Formalization of concepts

Requisite r;
Must be fullfiled for one or more kernel-functions K; to be executed on a
particular device.

Actions R;

An action a; is a collection of implementation-defined operations that
must be performed in order to satisfy a requisite.

Command Group CG

A CG named foo is expressed as: CGyyp. Contains a set of requisites (R)
and a set of kernel functors K. Each r; € R represents the requirements
for the kernels in K.

Requierements affect all kernels in the CG

® codeplay’



Formalization of concepts

Satisfaction of a requirement
> A requirement is satisfied when no actions are required.

» Evaluation of a requisite only observes (CG state not changed)

true if n r; is satisfied

Eval(r;) = {

false if n r; is not satisfied

CGroo can only be executed iff Eval(r;) == trueVr; € CGroo

® codeplay’



Accessors as requirements

CG access to memory object

Accessors are expressed as modememory object: €-8: RWpyra means Read
Write access to buffer A.

Rules accessing the same memory object
» Multiple CG can request RO access simultaneously
» Only one CG can request RW access at certain time

» Multiple CG can request DRW or DW simultaneously
— Only if accessing it whole
— Partial discard access possible?

Clear definition of dependency rules across context

® codeplay’



Interface Changes

® codeplay’



Combining kernel API calls

q.submit ([&](handler& h) {

auto accA = bufA.get__access<

access ::mode::read>(h);
auto accB = bufB.get__access<

access ::mode::read>(h); l
auto accC = bufC.get_access<

access::mode::read_write>(h);
h.parallel_for(myRangel, kernell(accA, accC)); l

h.parallel_for(myRange2, kernel2(accB, accC));

auto accD = bufD.get_access<access::mode::read
>(h); l
h.parallel_for(myRange3, kernel3(accD, accC));

19)5 anotherCommandGroup
q.submit (anotherCommandGroup);

Kernels in the CG execute one after the other

Accessor resolution rules apply

® codeplay’



Events as requisites

q.submit ([&](handler& h) {
h.wait_for(myEvent);
auto accD = bufD.get_access<access::mode::
read_write>(h); l

h.parallel_for(myRangel, myKernel(accD));
1) myKernel

Command Group requires event CL_FINISHED to execute

® codeplay’



Futures as requisites

» CG cannot start

q.submit ([&](handler& h) { ) )
auto val = h.wait_for(std::move(myFuture)); untll future IS
auto accD = bufD.get_access<access::mode:: .
read_write>(h); retrieved
h.parallel_for(myRangel, myKernel(accD, val)); > Value retrieved
IOk
from future can

be used in kernel

Promise interface too?

® codeplay’



Tasks executing on the host

qA.submit(cgl);
(=]

auto cgH = (host_handler& h) {
auto accA = bufA.get__access<access::mode::
read>(h);
auto accB = bufB.get__access<access::mode::
read_write>(h);

h.single_task ([=](
accB[0] = accA[O

}
+
qA.submit (cgH);
qA.submit (cg2);

) |
] =

std::rand();

N T =

® codeplay’



Update host or device

auto cglU = [=] (handler& h) {
auto accA = bufA.get_access<access::
mode ::read>(h);
h.parallel_for<class kernel>(range,
SomeKernel (acchA));
h.update_from_device(hostPtr, accld);
I8

qA . submit (cgU);

auto cgH = | (handler& h) {
auto accA = bufA.get__access<access::
mode :: read_write>(h);
h.update_to_device(accA, hostPtr);
h.parallel_for<class kernel>(range,
SomeKernel(accA));

IE

qA.submit (cgH);




To summarize

Extensions proposals
> Well explained behaviour for CG interaction
> Extensions to add new scheduling features

» Enables interaction with existing schedulers (e.g, TF)

Current status
» Some features available via codeplay handler
» Update to/from required for TensorFlow

» Multiple kernels per command group implementable (but not tested)

Do we want this features on 2.27

Do we want/need to backport some features?

® codeplay’



@® codeplay”’

THE HETEROGENEOUS SYSTEMS EXPERTS

@codeplaysoft info@codeplay.com codeplay.com



	Motivation
	Definitions
	Interface Changes
	Conclusions

